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Data integration combining a probability sample with another nonprob-
ability sample is an emerging area of research in survey sampling. We
consider the case when the study variable of interest is measured only in
the nonprobability sample, but comparable auxiliary information is
available for both data sources. We consider mass imputation for the
probability sample using the nonprobability data as the training set for
imputation. The parametric mass imputation is sensitive to parametric
model assumptions. To develop improved and robust methods, we con-
sider nonparametric mass imputation for data integration. In particular,
we consider kernel smoothing for a low-dimensional covariate and gen-
eralized additive models for a relatively high-dimensional covariate for
imputation. Asymptotic theories and variance estimation are developed.
Simulation studies and real applications show the benefits of our pro-
posed methods over parametric counterparts.
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1. INTRODUCTION

Probability sampling is a scientific way of obtaining a representative sample
from the target population. Official statistics are mostly computed based on
probability samples. However, obtaining a probability sample is expensive and
time-consuming, and is often subject to nonresponse. However, nonprobability
samples become increasingly available and can be used to complement gold-
standard probability sampling even though the scientific justification for using
nonprobability samples is still limited (Keiding and Louis 2016). Because of
the lack of information on sampling mechanisms, the nonprobability sample is
often not representative of the target population. Thus, statistical inference
from nonprobability samples without further adjustment may lead to biased
results and misleading interpretations.

Data integration is one way to leverage the information from the nonprob-
ability sample and to learn the outcome–covariate relationship. This process
combines information from a probability sample with information from the
nonprobability sample to obtain a valid inference for the target population
(Lohr and Raghunathan 2017). We consider the case when the study variable
of interest is measured only in the nonprobability sample, but comparable aux-
iliary information is available for both data sources. Thus, the probability sam-
ple is used to obtain the representativeness of the sample, but the measurement
is made only in the nonprobability sample.

There are two main approaches for combining the probability and nonprob-
ability samples. One approach is to use propensity weighting to improve the
representativeness of the nonprobability sample (Chen, Li, and Wu 2019;
Yang, Kim, and Song 2020). The other approach is to use mass imputation,
which creates synthetic imputed values of the study variable for the probability
sample using the nonprobability sample as a training sample for developing
the imputation model. Rivers (2007) proposed using the value of the nearest
neighbor for mass imputation, but did not discuss its properties theoretically.
Yang and Kim (2018) filled the theoretical gap by establishing the asymptotic
distribution of the nearest neighbor mass imputation estimators; however, near-
est neighbor imputation estimators suffer from the curse of dimensionality.
Kim, Park, Chen, and Wu (2018) proposed using regression models for mass
imputation and discussed its statistical properties, including consistent variance
estimation. However, such a parametric mass imputation method is subject to
model misspecification bias.

In this paper, we develop nonparametric mass imputation estimators from
the probability sample where the nonparametric imputation model is trained
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based on the nonprobability sample. Instead of restrictive parametric modeling
assumptions, we only require mild smoothness conditions for the outcome
model and therefore the imputation estimators gains robustness over paramet-
ric counterparts. Moreover, the computation for nonparametric mass imputa-
tion can be implemented using off-the-shelf software packages. Although the
nonparametric imputation approaches for traditional missing data problems
have been considered in the literature, for example, Cheng (1994), statistical
inference after nonparametric mass imputation has not been investigated. To
fill in this important research gap, we establish theoretical properties of the pro-
posed nonparametric mass imputation estimators and develop consistent vari-
ance estimators. Our framework covers Kernel regression and generalized
additive models (GAMs) for imputation, but its extension to other nonparamet-
ric methods can be developed similarly.

The paper is organized as follows. In Section 2, the basic setup is intro-
duced. Section 3 covers the proposed methods by using the Kernel regression
technique. Proposed methods using generalized additive modeling and vari-
ance estimation using hybrid bootstrap and the approximate Bayesian method
are presented in Section 4. In Section 5, results from two limited simulation
studies are presented. In Section 6, we present a real-data application of the
proposed method to analyze a nonprobability survey sample by using National
Health Insurance Sharing Service (NHISS) and Korea National Health and
Nutrition Examination Survey (KNHANES) data. Some discussion is pre-
sented in Section 7. All technical details are contained in the Appendix.

2. BASIC SETUP

Suppose that we have two independent samples selected from the same target
population, denoted by sample A and sample B, where sample A is obtained
from probability sampling and sample B is a nonprobability sample, such as a
voluntary sample or a self-selected sample. In the nonprobability sample, the
sample inclusion probabilities are unknown, and therefore valid analysis of the
nonprobability sample is extremely difficult. To reflect the situation where the
most up-to-date information is obtained from the nonprobability sample, we
assume that the study variable of interest Y is observed only in the non-
probability sample B. The vector of auxiliary variable X is observed in both
samples. Table 1 presents the data structure of our setup.

Because the study variable is not measured for sample A, a natural approach
is to obtain the predicted values of the study variable based on the observed
auxiliary information in sample A. The prediction model is trained using the
full sample observations in sample B. Once the predicted values are created for
all elements in sample A, we can treat these predicted values as if they are real
observations and apply the Horvitz–Thompson estimation (Horvitz and
Thompson 1952) using the sampling weights, nonresponse adjusted weights,
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calibration weights, or other types of adjusted weights in sample A. This
method is called mass imputation for data integration. Mass imputation has
been developed in the context of two-phase sampling (Breidt, McVey, and
Fuller 1996; Kim and Rao 2012), but it is not fully investigated in the context
of survey integration for combining the probability and nonprobability
samples.

To formally describe the setup, suppose a finite population FN ¼ fðxi; yiÞ;
i ¼ 1; . . . ;Ng follows the super-population model:

yi ¼ mðxiÞ þ �i; (1)

where yi is a scalar study variable, xi is a dx-dimensional covariate, mðxiÞ is a
unknown function of xi, and the �i’s are independent errors that satisfy Eð�ijxiÞ
¼ 0 and Eð�2i jxiÞ ¼ vðxiÞ with vðxiÞ as a unknown function of xi, for i ¼ 1; . . . ;
N: For simplicity, we focus on estimating the population mean of y,
hN ¼ N�1 PN

i¼1 yi, although our framework is applicable to other parameters
such as domain means; see the simulation study in Section 5.

Given the finite population, suppose a probability sample A is selected by a
sampling design. Let Ii be the sampling indicator for unit i; that is, Ii ¼ 1 if unit
i is selected and 0 otherwise. The corresponding first- and second-order inclu-
sion probabilities are defined as pi ¼ EðIijFNÞ and pij ¼ EðIiIjjFNÞ for i 6¼ j,
where Eð�jFNÞ is the expectation taken with respect to the sampling distribu-
tion given the finite population. Then, the design weight is wi ¼ p�1

i : In addi-
tion, the nonprobability sample B is obtained from U ¼ f1; 2; . . . ;Ng with the
sampling indicator di; that is, di ¼ 1 if unit i is in sample B and 0 otherwise.
We assume that the indicators Ii and di are independent with each other. In con-
trast to sample A, where the sampling mechanism is known, the selection prob-
ability into sample B,

pBðx; yÞ ¼ Prðd ¼ 1jx; yÞ; (2)

is unknown, where pBðx; yÞ denotes an unknown function of x and y. We fur-
ther assume a noninformative sampling mechanism in the sense that pBðx; yÞ
¼ pBðxÞ: The noninformativeness assumption is a strong assumption, and there
is no way to check this assumption. It is not verifiable based on the observed
data. See our discussion in Section 7.

Table 1. Data Structure from Two Samples

Sample X Y Type

A � Probability
B � � Nonprobability
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When model (1) is a linear regression model mðxÞ ¼ xTb for some b, Kim
et al. (2018) considered a mass imputation estimator

bhMIE ¼ 1
N

X
i2A

wibmðxiÞ;

where bmðxiÞ ¼ xTi
bb; bb ¼ ð

P
i2Bxix

T
i Þ

�1P
i2Bxiyi, and they proposed a consis-

tent variance estimator of bhMIE under model (1) and the noninformative sam-
pling mechanism assumption for sample B. However, their proposed method
relies on a correctly specified model for m(x). In Section 3, we relax this strong
assumption and propose nonparametric and semiparametric mass imputation
using kernel smoothing and generalized additive modeling approaches.
Without particular specification, E and V denote the expectation and variance
under the randomness due to an imputation model, the marginal distribution of
x, and the random sampling processes of sample A and sample B, respectively.

3. KERNEL SMOOTHING

Under noninformative sampling, Eðyijxi; di ¼ 1Þ ¼ EðyijxiÞ; that is, the mean
function is transportable. Motivated by Cheng (1994), we propose the follow-
ing mass-imputed estimator:

bhMIE ¼ 1
N

X
i2A

wibmðxiÞ; (3)

where

bmðxiÞ ¼
P

j2BKhðxi; xjÞyjP
j2BKhðxi; xjÞ

; (4)

with xi as a dx-dimensional covariate, Khðxi; xjÞ ¼ Kfh�1ðxi � xjÞg with K as a
multivariate kernel density function including uniform, standard normal, or tri-
angular density functions as special cases (Epanechnikov 1969) and h as the
bandwidth. Wang, Graubard, Katki, and Li (2020) considered using kernel
functions to improve external validity of epidemiologic cohort analyses

through weighting. To discuss asymptotic properties of bhMIE in (3), we con-
sider a sequence of finite populations and samples as described in Fuller
(2011). With regularity conditions defined in Appendix A.1, we have the
following theorem. The sketched proof of Theorem 1 can be found in
Appendix A.2.

Theorem 1. Under the regularity conditions specified in Appendix A.1,
the kernel-base mass imputation estimator in (3) satisfies
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bhMIE � ~hMIE ¼ opðn�1=2Þ; (5)

where

~hMIE ¼ 1
N

X
i2A

wimðxiÞ þ
1
N

X
i2B

gBðxiÞ yi � mðxiÞf g (6)

with

gBðxiÞ ¼
XN
j¼1

Khðxj; xiÞP
k2BKhðxj; xkÞ

� �
and n ¼ minðnA; nBÞ: In addition, we have

Eð~hMIE � hNÞ ¼ 0; (7)

and

Vð~hMIE � hNÞ ¼ VA þ VB; (8)

where

VA ¼ plimn;N!1
1
N2

XN
i¼1

XN
j¼1

ðpij � pipjÞ
mðxiÞ
pi

mðxjÞ
pj

( )
;

VB ¼ E
1
N2

X
i2B

fgBðxiÞg2fyi � mðxiÞg2
" #

:

According to Theorem 1, a consistent variance estimator of b� is

bV np ¼
1
N2

X
i2A

X
j2A

pij � pipj
pij

bmðxiÞ
pi

bmðxjÞ
pj

þ 1
N2

X
i2B

fbgBðxiÞg2be2i ; (9)

where bei ¼ yi � bmðxiÞ and

bgBðxiÞ ¼ X
j2A

wj
Khðxj; xiÞP
k2BKhðxj; xkÞ

� �
; (10)

which is a kernel-based estimator of f�BðxÞg�1, where �BðxÞ ¼
Prð� ¼ 1jxÞ. Instead of using (10), one could consider using bgBðxÞ
¼ fb�BðxÞg�1; in (9), where b�BðxÞ is a kernel-based estimator of Eð�jxÞ.
This choice would require additional bandwidth selection and lead to
more unstable results, so we do not pursue it further.

6 Chen, Yang, and Kim D
ow

nloaded from
 https://academ

ic.oup.com
/jssam

/advance-article/doi/10.1093/jssam
/sm

aa036/5983829 by D
 H

 H
ill Library - Acquis D

ept S user on 31 M
ay 2021



Remark 3.1. Instead of the linearization method, we can use a replication
method for variance estimation of the nonparametric mass imputation esti-
mator in (3). As an example, we use bootstrap. We first treat sample B as
a simple random sample to obtain bm ðkÞðxÞ, for each k ¼ 1; . . . ;L, where

bmðkÞðxÞ ¼
P

j2BKhðx; x�ðkÞj Þy�ðkÞjP
j2BKhðx; x�ðkÞj Þ

; (11)

where ðx�ðkÞj ; y�ðkÞj Þ are the bootstrap resample of fðxj; yjÞ : j 2 Bg, under
the “working” assumption that sample B is a simple random sample. The
bootstrap sample size is the sample size of sample B. Once bmðkÞð�Þ is
obtained from (11), we can compute

bhðkÞMIE ¼ 1
N

X
i2A

wðkÞ
i bmðkÞðxiÞ; (12)

where wðkÞ
i is the bootstrap weight for wi under the sampling design for

sample A. The bootstrap variance estimator of b�MIE is

bV boot ¼
1
L

XL
k¼1

bhðkÞMIE � bhMIE

� �2

:

By using techniques similar to those described in Kim et al. (2018), one
can show that the above bootstrap variance estimator is consistent under
certain regularity conditions.

Remark 3.2. The above kernel weighting framework covers k-nearest
neighbor imputation as a special case by adopting a special kernel func-
tion. The k-nearest neighbor approach to mass imputation can be de-
scribed in the following steps:
Step 1. For each unit i in sample A, find the k nearest neighbors from sample
B, with the index set J kðiÞ ¼ fið1Þ; . . . ; iðkÞg by using Euclidean distance
based on the covariate x. Impute the y value for unit i bybmðxiÞ ¼ k�1 Pk

j¼1 yiðjÞ.
Step 2. The k-nearest neighbor imputation estimator of hN is

bhknn ¼ 1
N

X
i2A

wibmðxiÞ:

To see the connection between bhknn and the kernel weighting estimator, we re-
express

bmðxÞ ¼
P

j2BKRxðx� xjÞyjP
j2BKRxðx� xjÞ

;
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where

KhðuÞ ¼
1
hp

K
u

h

� �
; KðuÞ ¼ 0:5Iðjjujj � 1Þ;

and the bandwidth h ¼ Rx is the random distance between x and its fur-
thest among the k nearest neighbors. Therefore, b�knn can be viewed as a
kernel estimator incorporating a data-driven bandwidth.

4. GENERALIZED ADDITIVE MODELING

To overcome the curse of dimensionality of the kernel smoothing approach,
we consider using GAM (Hastie and Tibshirani 1990) for mass imputation.

In GAM, we assume that yi given xi ¼ ðx1;i; . . . ; xp;iÞ follows an exponential
family distribution with

q�1fmðxiÞg ¼ f1ðx1;iÞ þ f2ðx2;iÞ þ � � � fpðxp;iÞ; (13)

where qð�Þ is an inverse link function (see two examples below), and each fkð�Þ
is a smooth function of xk;i, for k ¼ 1; . . . ; p. Because the function fkðxkÞ is not
restricted to a linear relationship of y and xk, (13) specifies a flexible specifica-
tion of the dependence of y on x.

Example 4.1. For a continuous outcome, the Gaussian density function is

f ðyjxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2y

q exp ½� y� mðxÞf g=ð2r2yÞ�;

where qð�Þ in (13) is an identity function.

Example 4.2. For a binary outcome, the logistic density function is

f ðyjxÞ ¼ fmðxiÞgyif1� mðxiÞg1�yi ;

where qð�Þ in (13) is a logit function.

There are several challenges in fitting model (13). First, fkðvÞ is an infinite-
dimensional parameter, estimation of which often relies on some approxima-
tion. Second, we need to decide how smooth fkðvÞ should be to achieve the
bias-variance trade-off in the estimation stage.

A common way to resolve the first challenge is to approximate fkðvÞ by
splines. More specifically, let BmðvÞ be the basis spline functions for m ¼ 1;
. . . ;M (Ruppert, Wand, and Carroll 2009). We approximate fkðvÞ by fkðvÞ
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¼
PM

m¼1 c
k
mBmðvÞ with spline coefficients ckm. This leads to an approximation

of model (13):

q�1fbmðxiÞg ¼
Xp
k¼1

XM
m¼1

ckmBmðxk;iÞ: (14)

A large value of M allows for increased model complexity and an increased
chance of overfitting; a small M may result in an inadequate model. One strat-
egy is to choose a relatively largeM and then penalize the model complexity in
the estimation stage (Eilers and Marx 1996). Let the vector of spline coeffi-
cients be cTk ¼ ðck1; . . . ; ckMÞ and cT ¼ ðcT1 ; . . . ; cTp Þ. The corresponding likeli-
hood function of c is

LðcÞ ¼
Y
i2B

f ðyijxi; cÞ; (15)

where f ðyjx; cÞ is the conditional density function of an exponential family dis-
tribution, see Examples 4.1 and 4.2, with (14). The estimate bc is obtained by
maximizing the penalized likelihood:

�2lðcÞ þ
Xp
k¼1

kkc
T
k Skck; (16)

where lðcÞ ¼ logLðcÞ is the log-likelihood function of c, Sk is a matrix with
the (m, l)th component

Ð
Bm

00ðvÞB0
l0ðvÞdv, and cTk Skck regularizes fk to be

smooth for which the degree of smoothness is controlled by kk. Given the
smoothing parameter kT ¼ ðk1; . . . ; kpÞ; the penalized likelihood function in
(16) is optimized by a penalized version of the iteratively reweighted least
squares algorithm (Nelder and Baker 1972) to obtain bc.

Regarding the choice of k; we note that k controls the trade-off between
model complexity and overfitting, which can be estimated separately from
other model coefficients using generalized cross-validation or estimated simul-
taneously using restricted maximum likelihood estimation (Wood 2006).

Once the model is fitted, we can create an imputed value for each element i
in Sample A as

bmgamðxiÞ ¼ q
Xp
k¼1

XM
m¼1

bckmBmðxi;kÞ
( )

:

The mass imputation estimator based on the GAM is

bhgam ¼ 1
N

X
i2A

wibmgamðxiÞ:
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4.1. Hybrid Bootstrap for Variance Estimation

Variance estimation of bhgam is challenging because the penalty term in (16)
regularizes the variance of bc at the expense of introducing a bias. Therefore,
we expect that the linearization method for variance estimation would not
work well for bhgam. We propose a hybrid method that is obtained by combining
bootstrap and Bayesian inference. From a Bayesian framework, we have the
posterior distribution of c as

cjdata � Nfbc; ðBTWBþ
Xp
k¼1

kkSkÞ�1r2g; (17)

asymptotically, where B is the matrix with the ithe row
fB1ðx1;iÞ; . . . ;BMðx1;iÞ; . . . ;B1ðxk;iÞ; . . . ;BMðxk;iÞg, W is a diagonal matrix
with Wii ¼ ½ _qfmðxiÞg2VfmðxiÞg��1 and _qðxÞ ¼ dqðxÞ=dx; see Wood (2006).
We propose a replication method for variance estimation of bhgam. In particular,
we use the bootstrap method as follows:

Step 1. For each b ¼ 1; . . . ; L; we sample c�ðbÞ from (17) and obtain ob-
tain bmðbÞ

gamðxÞ, where

bmðbÞ
gamðxÞ ¼ gf

Xp
k¼1

XM
m¼1

bc�ðbÞkm Bmðxi;kÞg: (18)

The sampling c�ðbÞ from (17) can be implemented easily from the “mgcv”
package in R, see Wood (2019).

Step 2. We can compute

bhðbÞgam ¼ 1
N

X
i2A

wðbÞ
i bmðbÞ

gamðxiÞ; (19)

where wðkÞ
i is the bootstrap weight for wi under the sampling design for

sample A.

The bootstrap variance estimator of bhgam is then obtained by

bV gam ¼ 1
L

XL
b¼1

bhðbÞgam � bhgam� �2

:

Instead of the hybrid approach of combining bootstrap and Bayesian inference,
one can also develop a fully Bayesian approach, which is covered in the
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following section.

4.2. Approximate Bayesian Method for Variance Estimation

We introduce an approximate Bayesian approach to data integration, under the
setup of Section 2. To fix ideas, we first consider a mass imputation using para-
metric model f ðyjx; aÞ first and then discuss nonparametric imputation. Under
a parametric model f ðyjx; aÞ with a prior distribution on a as pðaÞ, a posterior
distribution of a can be obtained from sample B as follows:

pðajdataBÞ ¼
LBðaÞpðaÞÐ
LBðaÞpðaÞda

; (20)

where LBðaÞ ¼
‘

i2Bf ðyijxi; aÞ is the likelihood function of a from sample B
and dataB ¼ fðxi; yiÞ; i 2 Bg. Using the posterior distribution in (20), we can
create mass imputation from the posterior predictive distribution.

pðyijxi; dataBÞ ¼
ð
f ðyijxi; aÞpðajdataBÞda:

Now, if yi were observed from sample A, using the idea of Wang, Kim, and
Yang (2018), the posterior distribution of hN with the prior pðhÞ would be ap-
proximately computed by

pðhjbhAÞ ¼ gðbhAjhÞpðhÞÐ
gðbhAjhÞpðhÞ ; (21)

where gðbhAjhÞ is the density of the sampling distribution of bhA ¼ N�1P
i2Awi

yi and is often approximated by

bhA � h

fbV ðbhAÞg1=2 L!Nð0; 1Þ;

where bV ðbhAÞ is the design-consistent variance estimator of bhA.
The proposed Bayesian approach for parametric mass imputation can be

summarized as follows:

Step 1. Generate M posterior values of a, denoted by a�ð1Þ; . . . ; a�ðMÞ,
from (20).

Step 2. For each j ¼ 1; . . . ;M, generate y�ðjÞi from f ðyijxi; a�ðjÞÞ for all
i 2 A.

Step 3. Using y�ðjÞi generated from Step 2, generate the posterior value of h

from (21) with bhA replaced by bh�ðjÞI ¼ N�1P
i2Awiy

�ðjÞ
i and bV ðbhAÞ computed
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by the j-th imputed data. We can use the M posterior values of h to make
Bayesian inference about h.

For the nonparametric mass imputation using GAM, we must change the
posterior step using (17). Once the parameters for GAM are generated from
the posterior step, we can use f ðyjx; c�Þ to obtain the imputed values, where
f ðyjx; cÞ is defined in (15). (Step 3) remains the same.

5. SIMULATION STUDIES

5.1 Simulation Study One

In this section, we assess the finite-sample performance of the proposed esti-
mators via simulation from two artificial statistical models. We use the follow-
ing models to generate two finite populations of size N¼ 10,000.

(1) Model I: The yi’s are independently generated from
Nð0:3þ 2x1i þ 2x2i; 1Þ, where x1i �i:i:d Nð2; 1Þ and x2i �i:i:d Nð2; 1Þ.

(2) Model II: The yi’s are independently generated from
Nð0:3þ 0:5x21i þ 0:5x22i; 1Þ, where x1i �

i:i:d Nð2; 1Þ and x2i �i:i:d Nð2; 1Þ.

From each of the two finite populations, we generate two independent sam-
ples. We use simple random sampling of size nA ¼ 500 to obtain sample A. In
selecting sample B of size nB ¼ 500 and 1,000, we create two strata, where
Stratum 1 consists of elements with x1i � 2 and Stratum 2 consists of ele-
ments with x1i > 2. The population size for each of the two strata is about
5,000. Within each stratum t 2 f1; 2g, we select nt units by simple random
sampling, independently between the two strata, where n1 ¼ 0:7nB and
n2 ¼ 0:3nB. We assume that the stratum information is unavailable at the time
of data analysis. Thus, the sampling mechanism for sample B is unknown for
data analysis, but it satisfies the noninformativeness assumption. Using the two
samples, we compute six estimators of finite population mean h1N ¼ N�1PN

i¼1 yi and finite population domain mean h2N ¼ f
PN

i¼1 Iðx1i > 2Þg�1PN
i¼1 yiIðx1i > 2Þ. The six estimators are listed as follows:

(1) The sample mean from sample A (Mean A): bhA ¼ n�1
A

P
i2Ayi.

(2) The naive estimator (sample mean) from sample B (Mean B):bhB ¼ n�1
B

P
i2Byi.

(3) The parametric mass imputation estimator (PMIE): bhPMIE ¼ n�1
A

P
i2Abyi

with byi ¼ bb0 þ bb1x1i þ bb2x2i; where ðbb0;
bb1;

bb2Þ are the estimated regres-
sion coefficients obtained from sample B.

(4) The pseudo-weighted estimator (PWE) proposed by Elliott and Valliant
(2017).

(5) The proposed nonparametric mass imputation estimator (NPMIEK) using
a Kernel regression in (4). Both x1 and x2 are used as the predictors in
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kernel smoothing function. Multivariate Gaussian kernel density function
is used.

(6) The proposed nonparametric mass imputation estimator (NPMIEG) by us-
ing a GAMs in (13).

In computing NPMIEK, the optimal bandwidth is selected by 10-fold cross-
validation from sample B, which minimizes the mean squared prediction error.
The sample mean of sample A serves as a gold standard estimator. Results are
based on 1,000 repeated simulation runs. Table 2 presents the Monte Carlo rel-
ative bias (RB), relative standard error (RSE), and relative root mean squared
error of the six point estimators for estimating population mean and domain
mean.

The Mean A estimator is a gold standard, but it is not applicable in the setup
of data integration. It is used as a benchmark for comparison. For population
mean estimation, the Mean B estimator is seriously biased due to the sampling
mechanism for sample B. PMIE shows good performance in Model I, as y is
linearly related to x1 and x2. However, in Model II where the linear relationship
among x1, x2, and y fails, the PMIE is slightly biased, and the bias does not de-
crease with an increased sample size for sample B. The PWE has small RBs un-
der both models, but it has larger RSEs and relative root mean square errors
(RRMSEs) than do other estimators, besides the Mean B estimator. The
NPMIEK and NPMIEG are also biased modestly in both models, but the biases
decrease as the sample size for sample B increases. NPMIEK shows slightly
larger biases than does NPMIEG in both models. In terms of RRMSE, the
PMIE and NPMIEG are the smallest under model I because the linear model is
correctly specified. Under model II, the NPMIEG has smaller RRMSEs than
does the PMIE, as its biases are smaller. The NPMIEK has smaller biases than
does the PMIE and RSEs and RRMSEs that are comparable to those of the
PMIE. Note that the mass imputation estimator can have a smaller MSE than
the gold standard. This possibility can be explained by the fact that the mass im-
putation estimator can effectively incorporate all of the available information
from both samples. In this simulation, NPMIEG performs slightly better than
NPMIEK. For domain mean estimation, the Mean B estimator shows small
RBs, since within the stratum the sampling process for sample B is simple ran-
dom sampling and the pseudo-inclusion probabilities are all equal in stratum 2.
Our proposed estimators NPMIEK and NPMIEG show better performance in
terms of balancing RBs and RSEs than do PMIE and PWE. The PWE method
shows big RBs, which is consistent with the results in Chen et al. (2019).

We also compute the proposed bootstrap variance estimator and the corre-
sponding confidence intervals with 95 percent nominal coverage rates (CRs).
Table 3 presents the performance of the variance estimators and confidence
intervals. The proposed variance estimator shows negligible RBs for all scenar-
ios, and the coverage probabilities for our proposed methods are close to the
nominal rate in all scenarios. Under Model I, the CRs for the PMIE method are
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comparable with the results for our proposed methods. Under Model II, the
CRs for the PMIE method are lower than our proposed methods. The CR for
the PMIE method for domain estimation is extremely low since the model
assumptions are violated. NPMIEG performs slightly better than NPMIEK be-
cause of its smaller biases of the point estimators.

Table 2. Monte Carlo RB, Monte Carlo RSE, and RRMSE of the Six Point
Estimators of Population Mean and Domain Mean, Based on 1,000 Monte Carlo
Samples

Model I Model II

nB Estimator RB RSE RRMSE RB RSE RRMSE
(%) (%) (%) (%) (%) (%)

Population mean estimation
Mean A 0.03 1.63 1.63 �0.01 2.65 2.65
Mean B �7.65 1.35 7.77 �12.07 2.27 12.28

500 PMIE 0.00 1.64 1.64 �1.10 2.64 2.86
PWE �0.01 1.74 1.74 �0.01 3.17 3.17
NPMIEK �0.15 1.66 1.67 �1.08 2.65 2.86
NPMIEG 0.00 1.65 1.65 �0.08 2.63 2.63
Mean A 0.01 1.59 1.59 0.01 2.72 2.72
Mean B �7.67 0.98 7.73 �12.04 1.55 12.14

1000 PMIE 0.00 1.56 1.56 �1.07 2.50 2.72
PWE 0.05 1.62 1.62 0.14 2.81 2.82
NPMIEK �0.10 1.57 1.57 �0.68 2.66 2.75
NPMIEG 0.00 1.56 1.56 �0.02 2.66 2.66

Domain mean estimation
Mean A �0.03 1.67 1.67 0.00 2.76 2.76
Mean B �0.03 2.03 2.03 0.00 3.63 3.63

500 PMIE �0.06 1.72 1.72 �2.86 2.78 3.99
PWE 2.65 2.09 3.37 6.19 4.03 7.38
NPMIEK �0.51 1.79 1.86 �1.47 2.86 3.22
NPMIEG �0.06 1.72 1.72 �0.08 2.79 2.79
Mean A 0.04 1.64 1.64 0.00 2.84 2.84
Mean B 0.02 1.44 1.44 �0.02 2.47 2.47

1000 PMIE 0.02 1.57 1.57 �2.84 2.49 3.78
PWE 2.77 1.65 3.22 6.25 2.87 6.88
NPMIEK �0.28 1.61 1.63 �0.93 2.77 2.92
NPMIEG 0.02 1.57 1.57 0.00 2.75 2.75
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5.2 Simulation Study Two

In this section, we conduct another Monte Carlo simulation study based on
2017–2018 US National Health Nutrition and Examination Survey
(NHANES) data. The 2017–2018 NHANES is a stratified multistage house-
hold survey that oversampled certain minority groups, including Hispanic or
Black and Asian populations. The target population is the noninstitutionalized
civilian population, including all people living in households and excluding in-
stitutional group quarters and those persons on active duty with the military.
The primary objective of NHANES is to produce a broad range of descriptive
health and nutrition statistics for sex, race and Hispanic origin, and age group
of the US population. For more information about the design and objectives of
NHANES, please see https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.
aspx/sample-design.

In this simulation study, we first create a subset of the original 2017–2018
NHANES data by removing cases with missing values on the following varia-
bles: age, body mass index (BMI), and diastolic blood pressure. This resulted
in a data file of 6,230 cases. For simplicity, we treat the subset sample as the fi-
nite population for Monte Carlo simulation. We consider Diastolic blood pres-
sure as the outcome variable and Age and BMI as predictors. The scatter plots
of Diastolic blood pressure versus Age and Diastolic blood pressure versus
BMI are presented in figure 1. There seems to be a nonlinear relationship be-
tween the outcome variable and predictors. We consider a Monte Carlo sample
size of B¼ 1,000. For each Monte Carlo sample, we generate two independent
samples. We use simple random sampling of size nA ¼ 500 to obtain sample
A. In selecting sample B of size nB ¼ 500, we create two strata, where Stratum
1 consists of elements with Age less than or equal to 40 and Stratum 2 consists
of elements with Age greater than 40. The population sizes for the two strata

Table 3. Monte Carlo RB of Standard Error Estimators, CRs of 95 Percent
Confidence Intervals, and ALs of the Confidence Intervals of Population Mean
and Domain Mean, Based on 1,000 Monte Carlo Samples with a Sample of Size
500

Model I Model II

Parameter Estimator RB CR AL RB CR AL
(%) (%) (%) (%) (%) (%)

PMIE �3.22 93.7 51.6 �1.62 92.9 53.9
Mean NPMIEK �3.43 93.7 52.1 1.03 93.5 55.5

NPMIEG �3.07 94.2 52.0 �0.09 94.5 54.5
PMIE �6.53 93.6 62.3 �1.90 81.0 73.6

Domain mean NPMIEK �1.97 93.0 67.8 2.65 91.0 79.0
NPMIEG �3.56 94.5 64.2 �0.91 94.0 74.6
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are 3,015 and 3,082. Within each stratum t 2 f1; 2g, we select nt units by sim-
ple random sampling, independent between the two strata, where n1 ¼ 0:7nB
and n2 ¼ 0:3nB. We assume that the stratum information is unavailable at the
time of data analysis. Using the two samples, we compute six estimators con-
sidered in simulation study one for estimating the finite population mean of
Diastolic blood pressure and the corresponding domain mean for cases with
Age greater than 40.

The results of point estimation are presented in table 4. The Mean A estima-
tor performs the best in both scenarios since it is the gold standard and assumes
that one observes study variable in probability sample A. For estimating the
population mean, the Mean B estimator shows a large RB because it is only
based on sample B. NPMIEK and NPMIEG show smaller RB than do PMIE
and PWE, since the underlying relationship between the study variable and
predictors is not linear. NPMIEK, NPMIEG, PMIE, and PWE have compara-
ble RSE and RRMSE. For estimating domain mean, the Mean B estimator
shows small bias, since the sampling design within the domain is simple ran-
dom sampling and the pseudo-inclusion probabilities are all equal in stratum 2.
PMIE and PWE show greater RB, RSE, and RRMSE than do NPMIEK and
NPMIEG.

In addition, we also compare the performance of our proposed bootstrap
variance estimators in terms of RB, CR, and average lengths (ALs) with
PMIE. The results are presented in table 5. All RBs are small (less than 2 per-
cent in terms of absolute value). For both scenarios, NPMIEK and NPMIEG
show better CRs than does PMIE. PMIE shows very low CR, especially for es-
timating the domain mean.
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Figure 1. Scatter plot of study variable versus predictors.
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6. REAL DATA APPLICATION

We consider a real data application using a probability sample from the
KNHANES and a nonprobability sample from NHISS. The KNHANES is a
national survey that studies the health and nutritional status of Koreans and has
been conducted annually since 1998. Both surveys are conducted by the Korea
Centers for Disease Control and Prevention. The KNHANES is a nationally
representative cross-sectional survey that includes approximately 10,000 indi-
viduals each year as a survey sample and collects information on social-
economic status, health-related behaviors, quality of life, healthcare utilization,
anthropometric measures, biochemical and clinical profiles for

Table 5. Monte Carlo RB of Standard Error Estimators, CRs of 95 Percent
Confidence Intervals, and ALs of the Confidence Intervals of Population Mean
and Domain Mean, Based on 1,000 Monte Carlo Samples with Sample Size 500
and NHANES Data

Parameter Estimator RB (%) CR (%) AL

PMIE 0.93 94.2 3.13
Mean NPMIEK �0.15 95.0 2.96

NPMIEG 1.29 95.5 3.11
PMIE 0.74 89.8 4.92

Domain mean NPMIEK �1.69 94.1 4.26
NPMIEG 1.71 95.1 4.53

Table 4. Monte Carlo RB, Monte Carlo RSE, and RRMSE of the Six Point
Estimators of Population Mean and Domain Mean, Based on 1,000 Monte Carlo
Samples and NHANES Data

Parameter Estimator RB (%) RSE (%) RRMSE (%)

Mean A �0.04 1.02 1.03
Mean B �3.04 1.02 3.21

Mean PMIE 0.29 1.17 1.20
PWE �0.22 1.12 1.14
NPMIEK 0.07 1.12 1.12
NPMIEG �0.01 1.16 1.16
Mean A 0.01 1.19 1.19
Mean B �0.03 1.59 1.59

Domain mean PMIE 1.03 1.72 2.01
PWE �1.19 1.72 2.09
NPMIEK �0.06 1.53 1.53
NPMIEG 0.07 1.57 1.58
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noncommunicable diseases, and dietary intakes with three component surveys:
health interview, health examination, and nutrition survey. More details of the
KNHANES can be found in Kweon, Kim, Jang, Kim, Kim, et al. (2014). The
nonprobability sample from NHISS provides health-related information col-
lected from National Health Screening Program (NHSP) in South Korea. The
NHSP was launched with the goal of improving the overall health of the South
Korean citizens and preventing costly chronic diseases. All beneficiaries are el-
igible for screening once every year or two, depending on their demographic
or occupational status. The specific screening items are stipulated by the imple-
mentation standards, which include various blood tests and cancer screening.
The total number of eligible beneficiaries is about 16 million, and approxi-
mately 75 percent participated in the screening. The data that we used in the
present study are from the subset corresponding to the blood test results that
are associated with metabolic syndrome from the 2014 program. The variables
in this data set are demographics, such as sex and age, and clinical measure-
ments, such as total glycerides (mg/dL), total cholesterol (mg/dL), high-
density lipoprotein cholesterol (HDL, mg/dL), and medical diagnosis of ane-
mia. The data set is made publicly available after anonymization and random
selection of 1 million observations (National Health Insurance Data Sharing
Service, https://nhiss.nhis.or.kr/bd/ab/bdabf006cv.do). More thorough data can
be purchased with a paid subscription and expert panel review.

In our real-world application, we treat the KNHANES subsample data for
blood test as the probability sample A with sample size 4,929 after removing
the missing values for key items. To reduce the computational burden, we first
draw a simple random sample with size 5,000 from the original NHISS data
and treat the subsample as the nonprobability sample B for our analysis. We
consider the following variables as predictors: Sex, Age, Hemoglobin (HGB),
Triglyceride (TG), and High-density Lipoprotein Cholesterol (HDL, mg/dL).
Age has 27 categories as following: 1 for “20 to 24,” 2 for “25 to 26,” 3 for
“:27 to 28,”. . .,27 for “75 or higher.” Total Cholesterol (TCHOL) is considered
the outcome variable of interest. TCHOL is a variable in both KNHANES and
NHISS, so we can evaluate the performance of different approaches by com-
paring the estimates with weighted estimates calculated from KNHANES. The
estimated means of predictors from sample KNHANES and sample NHISS
data are presented in table 6. There is some discrepancy between the two sam-
ples. For example, the estimated prevalence of “Male” from KNHANES is
about 42.7 percent, while the estimated prevalence of “Male” is 51.7 percent
for NHISS. The parameters of interest are the population mean of TCHOL and
the domain mean of TCHOL for the “Male” group.

We consider the six estimators presented in Section 5 and use weighted
mean with probability sample A (Mean A) as the benchmark to calculate the
Biases. For NPMIEK, we use kernel smoothing-based mass imputation for
“Male” and “Female” groups separately. Within each group, Age, HGB, TG,
and HDL are used as the predictors in kernel density function. Multivariate
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Gaussian kernel density function is used. We also calculate standard errors for
mass imputation estimators PMIE, NPMIEK, and NPMIEG. The results are
presented in table 7. As shown in table 7, our proposed nonparametric mass
imputation estimators NPMIEK and NPMIEG have smaller RBs than do other
estimators. The boostrap standard errors for NPMIEG are similar to those of
PMIE, and NPMIEK has slightly larger standard errors.

7. DISCUSSION

As demonstrated in this paper, mass imputation is a promising tool for data in-
tegration, as long as the same imputation model holds for both the probability
sample and the nonprobability sample. The mass imputation estimator is able
to reduce the selection bias of the naive estimator, which is based solely on the
nonprobability sample. In the simulation studies, we use domains that corre-
spond exactly with one of the implicit sampling strata for the sample B. Note
that domains that cut across implicit sampling strata in sample B are also typi-
cally of analytic interest in practice and may produce different results from
those in our simulations. In practice, more complex models with many covari-
ates can be implemented for estimating the pseudo-inclusion probabilities in
Elliott and Valliant (2017). To determine the predictors for our proposed non-
parametric modeling process, one can first conduct univariate analysis and
only select predictors that are significantly correlated with the study variables
of interest. Then, colinearity analysis can be performed to further reduce the di-
mension of predictors. Furthermore, dimension reduction techniques, such as a
single index model, can also be used. Moreover, by implementing non/semipara-
metric models, we mitigate the potential bias due to parametric model misspeci-
fication. However, there is no guarantee that the noninformative sampling or

Table 6. Estimated Population Means of Predictors from KNHANES and NHISS

Covariates KNHANES NHISS

Sex (male%) 42.7 51.7
Age 14.4 14.0
HGB 14.1 14.1
TG 136.4 130.5
HDL 51.1 55.2

Table 7. RBs (Percent) of Estimated Population Mean and Domain Mean for
TCHOL (the Bootstrap Standard Errors are within Parentheses)

Parameter Mean B PMIE PWE NPMIEK NPMIEG

Mean 4.04 3.33 (0.63) 3.10 2.14 (0.82) 2.20 (0.64)
Domain mean 3.95 4.26 (0.86) 3.17 2.77 (1.06) 2.62 (0.85)
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transportability assumption holds in practice. In this case, one possible solution
is to obtain a validation subsample from the original probability sample and col-
lect information for the study variable of interest to assess the validity of the
mass imputation estimator. Use of a validation subsample is essentially a two-
phase sampling problem and involves extra costs. Another option is to develop
an explicit model for the selection mechanism for the nonprobability sample and
develop mass imputation even when the noninformative sampling assumption
does not hold. Model specification and parameter estimation under nonignorable
nonresponse models can be used in this scenario. These extensions will be pre-
sented elsewhere. In practice, instead of using our proposed nonparametric mass
imputation approaches, one can also use other machine learning-based mass im-
putation approaches, such as regression trees or random forests. The machine
learning-based approaches may work better with more complex model structures
with many interaction terms, for instance. The comparison of our proposed
methods with such methods will be an interesting future research topic.

APPENDIX

A.1: Regularity Conditions

We specify regularity conditions for Theorem 1 here.

(C1) f(x) and pBðxÞ have bounded partial derivatives with respect to x up to an
order t with t � 2; 2t > dx almost surely, where f(x) is the density of x,
pBðxÞ ¼ Prðr ¼ 1jxÞ and dx is the dimension of x.

(C2) The kernel function K(s) is a probability density function such that
(a) It is bounded and has compact support.
(b)

Ð
Kðs1; . . . ; sdxÞds1 . . . dsdx ¼ 1:

(c)
Ð
sliKðs1; . . . ; sdxÞds1 . . . dsdx ¼ 0 for any i ¼ 1; . . . ; dx and

1 � l < q:
(d)

Ð
sqi Kðs1; . . . ; sdxÞds1 . . . dsdx 6¼ 0:

(C3) nh2dx ! 1; n1=2hq ! 0; as n ! 1 and N ! 1:
(C4) 1 > pBðxÞ > d > 0 almost surely.
(C5) Efm2ðxÞg < 1 and m(x) has continuous partial derivative @mðxÞ=@x

and Ef@mðxÞ=@xg < 1:
(C6) pBðxÞ has continuous partial derivative @pBðxÞ=@x with Ef@pBðxÞ=

@xg < 1:

Conditions (C1)–(C3) are common conditions used for nonparametric
problems, see also (Wang and Chen 2009). n1=2hq ! 0 is used in condition
(C3) to control the bias due to kernel smoothing, and nh2dx ! 1 is used to
produce a consistent estimator of the conditional distribution and control the
convergence rate of response probability estimation. Condition (C4) is used to
avoid extreme propensity scores. Conditions (C5) and (C6) are standard con-
ditions to control the moments and continuity.
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A.2: Sketched Proof of THEOREM 1

For simplicity, we assume q¼ 2 and dx ¼ 1 in the following proof. A similar
proof can be obtained for other cases. Define gðxÞ ¼ pBðxÞf ðxÞ and bgðxÞ
¼ N�1P

j2BKhðxi; xjÞ as its kernel estimator with Khðxi; xjÞ ¼ h�dxKf
h�1ðxi � xjÞg; then we have

bhMIE � hN ¼ 1
N

X
i2A

wibmðxiÞ � hN

¼ 1
N

X
i2A

wimðxiÞ � hN þ 1
N

X
i2A

wi bmðxiÞ � mðxiÞf g

¼ 1
N

X
i2A

wimðxiÞ � hN þ 1
N

X
i2A

wi

N�1P
j2BKhðxi; xjÞ yj � mðxjÞ

	 

gðxiÞ

þ 1
N

X
i2A

wi bmðxiÞ � mðxiÞf g gðxiÞ � bgðxiÞ
gðxiÞ

þ 1
N

X
i2A

wi

N�1P
j2BKhðxi; xjÞ mðxjÞ � mðxiÞ

	 

gðxiÞ

¼ T1 þ T2 þ T3 þ T4:

(A.2.1)

Define fij ¼ wiIidjKhðxi; xjÞfyj � mðxjÞgg�1ðxiÞ; then we have

T2 ¼
1
N2

XN
i¼1

XN
j¼1

wiIidjKhðxi; xjÞ yj � mðxjÞ
	 


g�1ðxiÞ

¼ 1
NðN � 1Þ

X
i 6¼j

Hðzi; zjÞ þ opðn�1=2Þ;
(A.2.2)

where zi ¼ ðxi; yi; di; IiÞ and

Hðzi; zjÞ ¼
1
2
½wiIidjKhðxi; xjÞ

yj � mðxjÞ
	 


gðxiÞ

þ wjIjdiKhðxj; xiÞ
yi � mðxiÞf g

gðxjÞ
� :¼ 1

2
fij þ fji
� �

:

(A.2.3)

According to (B.2) and (B.3), we know that
P

i 6¼jHðzi; zjÞfNðN � 1Þg�1 is
the U-statistic. Let s ¼ ðxj � xiÞh�1; by nh2 ! 1; nh4 ! 0 and according to
Taylor expansion, we have

EðfijjziÞ ¼
wiIi
gðxiÞ

E djK
xj � xi

h

� �
yj � mðxjÞ

	 

jzi

n o
¼ 0; (A.2.4)
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provided Eðyjjxj; djÞ ¼ mðxjÞ; and

EðfjijziÞ ¼ di yi � mðxiÞf gE wjIjKhðxj; xiÞg�1ðxjÞjzi
	 


¼ di yi � mðxiÞf gE h�1K
xj � xi

h

� �
g�1ðxjÞjzi

n o
¼ di yi � mðxiÞf gh�1

Ð
K

xj � xi
h

� �
g�1ðxjÞf ðxjÞdxj

¼ di yi � mðxiÞf g
Ð
KðsÞg�1ðxi þ hsÞf ðxi þ hsÞds

¼ dip�1
B ðxiÞ yi � mðxiÞf g þ Oðh2Þ:

(A.2.5)

According to (A.2.2)–(A.2.5) and by the theory of U-statistics, see (Serfling
1980), Chapter 5, we have

T2 ¼
1
N

XN
i¼1

dip
�1
B ðxiÞ yi � mðxiÞf g þ opðn�1=2Þ: (A.2.6)

In addition, by using an argument similar to that in (Wang and Chen 2009), it
can be shown that T3 ¼ opðn�1=2Þ and T4 ¼ opðn�1=2Þ: Together with (A.2.1)
and (A.2.6), we have

bhMIE � hN ¼ 1
N

X
i2A

wimðxiÞ � hN þ 1
N

X
i2B

p�1
B ðxiÞ yi � mðxiÞf g þ opðn�1=2Þ:

(A.2.7)

In addition, we have

~hMIE � hN ¼ 1
N

X
i2A

wimðxiÞ � hN þ 1
N

X
j2B

gBðxjÞ yj � mðxjÞ
	 


¼ 1
N

X
i2A

wimðxiÞ � hN þ 1
N2

X
j2B

XN
i¼1

Khðxi; xjÞ
N�1

P
k2BKhðxi; xkÞ

� �
yj � mðxjÞ

	 

¼ T1 þ

1
N

XN
i¼1

N�1P
j2BKhðxi; xjÞ yj � mðxjÞ

	 

bgðxiÞ

¼ T1 þ
1
N

XN
i¼1

N�1P
j2BKhðxi; xjÞ yj � mðxjÞ

	 

gðxiÞ

þ 1
N

XN
i¼1

N�1P
j2BKhðxi; xjÞ yj � mðxjÞ

	 

gðxiÞ � bgðxiÞf gbgðxiÞgðxiÞ

¼ T1 þ T�
2 þ T�

3 :

(A.2.8)
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By using techniques similar to those used in the proof of T2 in (A.2.6), it can
be shown that

T�
2 ¼ 1

N

XN
i¼1

dip
�1
B ðxiÞ yi � mðxiÞf g þ opðn�1=2Þ: (A.2.9)

In addition, by using an argument similar to that in (Wang and Chen 2009), it
can be shown that T�

3 ¼ opðn�1=2Þ: Therefore, according to (A.2.8), (A.2.9),
and (A.2.7), we have

~hMIE � hN ¼ 1
N

X
i2A

wimðxiÞ � hN þ 1
N

X
i2B

p�1
B ðxiÞ yi � mðxiÞf g þ opðn�1=2Þ

¼ bhMIE � hN þ opðn�1=2Þ:
(A.2.10)

Therefore, we have

bhMIE � ~hMIE ¼ opðn�1=2Þ:
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