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Dynamic treatment regimes operationalize precision medicine as a sequence of
decision rules, one per stage of clinical intervention, that map up-to-date patient
information to a recommended intervention. An optimal treatment regime max-
imizes the mean utility when applied to the population of interest. Methods for
estimating an optimal treatment regime assume the data to be fully observed,
which rarely occurs in practice. A common approach is to first use multiple
imputation and then pool the estimators across imputed datasets. However, this
approach requires estimating the joint distribution of patient trajectories, which
can be high-dimensional, especially when there are multiple stages of inter-
vention. We examine the application of inverse probability weighted estimating
equations as an alternative to multiple imputation in the context of monotonic
missingness. This approach applies to a broad class of estimators of an optimal
treatment regime including both Q-learning and a generalization of outcome
weighted learning. We establish consistency under mild regularity conditions
and demonstrate its advantages in finite samples using a series of simulation
experiments and an application to a schizophrenia study.
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1 INTRODUCTION

Dynamic treatment regimes operationalize clinical decision making as a sequence of decision rules, one per stage of inter-
vention, that map current patient information to a recommended intervention.1,2 An optimal treatment regime maximizes
the mean utility if applied to select interventions in the patient population of interest.3-5 Optimal treatment regimes have
been estimated across a wide range of application areas including anticoagulation,6-8 cancer,9,10 mental disorders,11-13 and
HIV.14-16 In these and nearly all other biomedical application areas, the observed data are subject to missingness, which
can include missing measurements, treatments, and outcomes.3,17

There is a large body of literature on estimation of optimal treatment regimes using complete data. This body of
research includes: approximate dynamic programming methods like Q- and A-learning1,2,18-21 and its many variants;22-31

direct-search methods including outcome weighted learning;13,32-42 and model-based planning via g-computation.10,43-47

Because these methods require complete data, it is often necessary to employ methods to address missing data. A common
approach is to apply multiple imputation to complete the data, compute a given estimator of an optimal regime on each of
the imputed data sets, and then aggregate these estimators, for example, by averaging or voting.48-53 Although estimation
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of an optimal treatment regime is often but one part of a suite of secondary analyses, the requirement to develop a complete
dataset is convenient as it can be used for a variety of other analyses.

Despite its appealing features, multiple imputation can be problematic with complex longitudinal data arising in the
context of sequential decision problems because the data can be high-dimensional and subjects are often missing large
segments of data. Furthermore, multiple imputation requires estimating the joint distribution of patient trajectories and
constructing a high-quality imputation model in this context is difficult. If a misspecified model is used to impute large
amounts of missing data, the estimators may be biased and inferences inaccurate.54 We examine a class of augmented
inverse probability weighted estimators of the optimal treatment regime that applies to approximate dynamic program-
ming and to direct-search methods when the data have a monotone missingness pattern. The application of standard
arguments of semiparametric efficiency theory establishes a double robustness property for this class of estimators.55 We
show that augmented weighting performs favorably as compared to multiple imputation and to simple inverse probabil-
ity weighting in simulation examples. These results suggest that investigators should give serious consideration to using
weighting methods as an alternative to multiple imputation in the context of estimating optimal treatment regimes in
practice. This work fills the gap in using weighting estimator in the context of monotonic missingness in the dynamic
treatment regime literature. Moreover, a unified estimating equation framework is given that can be generalized to a
broader class of estimation methods in this setting.

The remainder of this article is organized as follows. In Section 2, we set notation and define an optimal treatment
regime using potential outcomes. In Section 3, we describe a class of estimators of an optimal treatment regimes for use
with complete data; this class includes Q-learning and outcome weighted learning as special cases. In Section 4, we derive
an augmented inverse probability weighted estimator for the proposed class of estimators that applies under a monotone
missingness pattern. In Section 5, we present simulation examples and an application to data from a sequential multiple
assignment randomized trial on schizophrenia. A brief discussion of future work is given in Section 6.

2 SETUP AND NOTATION

We consider longitudinal data arising from an observational study or a sequential multiple assignment randomized
trial.56-58 The complete data are assumed to be of the form {(X1i,A1i,X2i,A2i, … ,XTi,ATi,Yi)}n

i=1, which comprise n inde-
pendent replicates of (X1,A1,X2,A2,… ,XT ,AT ,Y ), where: T is the number of treatment stages, X1 ∈ Rp1 is baseline patient
information, and Xt ∈ Rpt is information collected during stage (t − 1) for t = 2,… ,T, At ∈ t = {−1, 1} is the treatment
assigned during stage t = 1,… ,T, and Y ∈  = R is the terminal outcome coded so that higher values are better. The
restriction to binary treatments is not necessary for approximate dynamic programming methods; however, most vari-
ants of outcome weighted learning require binary treatments59,60 so we impose this restriction to allow for a simple and
unified notation.

Define H1 =X1, and recursively define Ht = (Ht − 1,At − 1,Xt) for t = 2,… ,T. Thus, Ht is the information available to
the decision maker at time t = 1,… ,T. Let t denote the support of Ht, and for each ht ∈ t, define Ψt(ht) ⊆ t to be
the set of allowable treatments for a patient presenting with history Ht =ht at time t. A treatment regime in this context
is a sequence of maps, 𝝅 = (𝜋1, … , 𝜋T), with 𝜋t ∶ t → t and 𝜋t(ht) ∈ Ψt(ht) for all ht ∈ t and t = 1,… ,T. Under 𝝅,
a patient with history Ht =ht at time t would be recommended to receive treatment 𝜋t(ht). Let Π denote the space of all
feasible regimes. An optimal treatment regime, say 𝝅opt ∈ Π, maximizes the mean outcome if applied to the population
of interest. We formalize this definition using potential outcomes.61,62

For each t = 1,… ,T, define at = (a1, … , at). Let H∗
t (at−1) denote the potential history under treatment sequence

at−1, and let Y∗(aT) denote the potential outcome under treatment sequence aT . Therefore, the set of all potential
outcomes is

∗ = {H∗
t (at−1),Y∗(aT) ∶ at ∈ Ψt{H∗

t (at−1)}, t = 1, … ,T},

where we have defined H∗
1(a0) ≡ H1. Let 1(⋅) be the indicator function. The potential outcome under a regime

𝝅 ∈ Π is

Y∗(𝝅) =
∑
aT

Y∗(aT)
T∏

v=1
1[𝜋v{H∗

v (av−1)}=av].
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Define the value of regime 𝝅 to be V(𝝅) = EY∗(𝝅), that is, the marginal mean outcome if all subjects were assigned
treatment according to 𝝅. The optimal regime, 𝝅opt ∈ Π, satisfies V(𝝅opt) ≥ V(𝝅) for all 𝝅 ∈ Π. To identify 𝝅opt in terms
of the data-generating model, we make the following assumptions: (i) consistency, Ht = H∗

t (At−1) for t = 2,… ,T and Y =
Y∗(AT), (ii) strong ignorability, At ⟂ ∗|Ht for t = 1,… ,T, and (iii) positivity, P(At = at|Ht =ht) > 0 for all at ∈ Ψt(ht) and
t = 1,… ,T. These assumptions are standard in the dynamic treatment regimes literature.2,3,21,63 Hereafter, we implicitly
assume that these conditions hold.

3 ESTIMATION WITH COMPLETE DATA

In this section, we review estimation of an optimal treatment regime when the data are completely observed. We consider a
class of estimators that are representable as solutions to a set of estimating equations. This class is quite broad and includes
most of the estimators commonly used in practice. To illustrate this point, we show in the Appendix that Q-learning and
a generalization of outcome weighted learning belong to this class.

We consider treatment regimes of the form 𝝅𝜷 = {𝜋1( ⋅ ; 𝜷1), … , 𝜋T( ⋅ ; 𝜷T)} in which the decision rules composing
the regime are indexed by parameters 𝜷 = (𝜷T

1 , 𝜷
T
2 , … , 𝜷T

T)T ∈ , where  is a normed linear space with norm || ⋅ ||.
For example, one might consider linear decision rules of the form 𝜋t(ht; 𝜷 t) = sign(𝜷T

t ht,0), where ht,0 is a feature vector
constructed from ht and sign(u) is 1 if u is positive and −1 otherwise. We do not exclude the case in which 𝜷 t includes
nuisance parameters so that 𝜋t(⋅ ∶ 𝜷 t) depends only on a subvector of 𝜷 t; however, we do not make any special distinction
for such nuisance parameters as it is not important for our purposes. We assume that an estimator 𝜷̂n = (𝜷̂T

1,n, … , 𝜷̂
T
T,n)T

of 𝜷 is constructed by solving the estimating equation

Pnmn(HT ,AT ,Y ; 𝜷) = 0 (1)

over 𝜷 ∈ , where Pn denotes the empirical measure, and mn ∶ T ×T ×  → RJ . The dependence of mn on n is to
allow for regularization or other factors that may vary with the sample size.29,34,37,64

Many estimators of an optimal treatment regime are based on backwards recursion. For these estimators, some com-
ponents of mn will depend on the partial history St ≜ (HT

t ,At)T for t = 1,… ,T rather than the complete data ST+1 ≜

(HT
T ,AT ,Y )T. For t = 1,… ,T define t to be the indices of mn such that mn,j depends on ST + 1 only through St, that is,

t = {1 ≤ j ≤ J ∶ mn,j(hT , aT , y; 𝜷) = m̃n,j(ht, at; 𝜷) for some m̃n,j ∶ t ×t → R},

and T+1 are the indices that rely on the complete data. Under this representation, the estimation equation in Equation
(1) can be equivalently expressed as

Pnm̃n,j(St; 𝜷) = 0 for all j ∈ t, t = 1, … ,T + 1. (2)

We will exploit this representation to use more of the observed data in constructing weighted complete case estimators
in Section 4.

Let 𝜷∗
n denote the population analog of 𝜷̂n, that is, the solution to Equation (2) with Pn replaced by P. We say that

𝜷̂n is consistent if ||𝜷̂n − 𝜷∗
n|| converges to zero in probability. Because our objective is not to propose new estimators

of an optimal treatment regime, we will assume that the estimating equation has been suitably constructed to ensure
consistency under the data-generating model in the complete data case and avoid stating specific conditions under which
such consistency holds. Giving such general conditions would be cumbersome; for example, the conditions under which
Q-learning with linear models is consistent are quite different from those under which kernel-based outcome weighted
learning is consistent.

4 ESTIMATION WITH INCOMPLETE DATA

4.1 Missingness mechanism

We assume that baseline covariate information and initial treatment assignment, (X1,A1), are always observed. This
assumption generally holds in practice because patients who do not receive an initial treatment assignment are often
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unenrolled from the study and excluded from subsequent analyses. We further assume that the missingness pattern is
nearly monotone; that is, any item missingness that violates this monotone pattern is sparse, and the missingness pattern
has been made monotone through artificial censoring or single imputation. Because patient dropout is the primary cause
for missing data in longitudinal studies, for example, SMARTS, this assumption is common in the literature.17

Let C ∈{1,… ,T + 1} denote the dropout time so that C = t if the patient dropped out after assignment of At
for t = 1,… ,T and C =T + 1 if the patient’s trajectory is fully observed, that is, if C = t for t = 1,… ,T, we observe
(X1,A1,… ,X t,At)= (Ht,At); if C =T + 1, we observe complete case (X1,A1,… ,XT ,AT ,Y )= (HT ,AT ,Y ). We further assume
that the data are missing at random65,66 so that 1C = t ⟂ (Xt + 1,At + 1,… ,XT ,AT ,Y )|Ht,At for all t = 1,… ,T.

The simplest strategy for adapting the estimating equations presented in Section 3 for missing data is through inverse
probability weighting of complete cases. Note that “complete case” for a term mn,j(St; 𝜷), where j ∈ t, is the one in which
St is observed and not necessarily the one for which the complete trajectory, ST + 1, is observed.

4.2 Inverse probability weighted estimating equations

Inverse probability weighted complete case (IPWCC) estimators re-weight the terms in the estimating equation for an opti-
mal regime by their respective probabilities of being observed.55,67 Define the discrete hazard of dropout at time t = 1,… ,T
to be 𝜆t(st) = P(C = t|C ≥ t, St = st). Thus, 𝜆t(st) is the probability of dropping out at stage t for a patient with covariate
and treatment history St = st. The survivor function at time t is thus Kt(st) = P(C > t|St = st) =

∏t
v=1{1 − 𝜆v(sv)}. Under

the MAR assumption, we can model the hazards using a binary regression model. For concreteness, we use a logistic
regression model so that

𝜆t(st;𝝍 t) = expit{gt(st;𝝍 t)},

where expit(u) ≜ exp(u)∕{1 + exp(u)}, 𝝍 t ∈ t ⊆ Rqt is a vector of parameters, and gt(st;𝝍 t) is continuously dif-
ferentiable in 𝝍 t for all st. Define 𝝍 ≜ (𝝍T

t , … ,𝝍T
T)

T ∈  ⊆ Rq, where q= q1 + … + qT . Define 𝜍t(c, st;𝝍 t) ≜
1c=t∇𝝍 t gt(st;𝝍 t) − 1c≥t∇𝝍 t gt(st;𝝍 t)expit{gt(st;𝝍 t)} to be the score function of the posited logistic regression model, and
let 𝝍̂ t,n be a solution to Pn𝜍t(C, St;𝝍 t) = 0. Let𝝍 t = (𝝍T

1 ,𝝍
T
2 , … ,𝝍T

t )
T so that 𝝍̂ t,n = (𝝍̂T

1,n, 𝝍̂
T
2,n, … , 𝝍̂T

t,n)T. The estimated
survivor function is Kt(st; 𝝍̂ t,n) =

∏t
v=1{1 − 𝜆v(sv; 𝝍̂ v,n)}.

Define the complete case weights at level t = 2,… ,T + 1 and j ∈ t under parameters 𝝍 to be wcc
j (c, st−1;𝝍 t−1) =

1c>(t−1)∕Kt−1(st−1;𝝍 t−1). The IPWCC estimator of an optimal treatment regime based on Equation (2) solves

Pnwcc
j (C, St−1; 𝝍̂ t−1,n)m̃n,j(St; 𝜷) = 0, j ∈ t, t = 1, … ,T + 1,

with the understanding that wcc
j (c, s0;𝝍0) ≡ 1 for j ∈ 1. The preceding equations along with those for 𝝍 could be

expressed as a single stacked estimating equation by concatenating the score equation for the logistic regression mod-
els onto mn. Let Pnm̌n(ST+1; 𝜷,𝝍) = 0 denote this joint estimating equation. It follows from the derivations given in the
Appendix that both the Q-learning and outcome weighted learning estimators can thus be constructed under a mono-
tone missingness pattern using IPWCC by means of the preceding estimating equation. The following result can be used
to establish consistency of the IPWCC estimator when combined with standard conditions for Z-estimators, for example,
the estimating equation has a unique isolated minimizer.68 The proofs are relegated to Appendix.

Theorem 1. Assume that the survivor function is correctly specified so that Kt(st) = Kt(st;𝝍∗
t ) for all t and st, for some

𝝍∗ ∈  and that the 𝝍̂n → 𝝍∗ in probability. If 𝜷∗
n satisfies ||Pmn(ST+1; 𝜷∗

n)|| = o(1), then ||Pm̌n(ST+1; 𝜷∗
n, 𝝍̂n)|| = op(1).

4.3 Augmented inverse probability weighted estimating equations

Using semiparametric efficiency theory for monotone coarsening, of which monotone missingness is a special case, we
derive an augmented inverse probability weighted complete case (AIPWCC) estimator.55,69 Define for each t = 1,… ,T, the
conditional mean dn,t(st) ≜ E{mn(ST+1; 𝜷∗)|St = st} for which we posit parametric models dn,t(st;𝜶t) indexed by𝜶t ∈ Rvt .
Let 𝜶 = (𝜶T

1 , … ,𝜶T
T)

T. An estimator of dn,t can thus be obtained by regressing mn(ST+1; 𝜷̂n) on dn,t(St;𝜶t) restricted to
patients with C =T + 1, which gives 𝜶̂t,n and subsequently d̂n,t(st) = dn,t(st, 𝜶̂t,n) for each t = 1,… ,T. Let 𝜆t(st;𝝍 t) and
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Kt(st;𝝍 t) be as defined in the previous section. For each t = 2,… ,T + 1, j ∈ t, and r = 1,… ,t − 1, define the augmentation
weights

waug
r,j (c, sr;𝝍 r) =

1c=r − 𝜆r(sr;𝝍 r)
Kr(sr;𝝍 r)

.

The AIPWCC estimating equations are

Pn

{
wcc

j (C, St−1; 𝝍̂ t−1,n)m̃n,j(St; 𝜷) +
t−1∑
r=1

waug
r,j (C, Sr; 𝝍̂ r,n)dn,r,j(Sr; 𝜶̂r,n)

}
= 0, for all j ∈ t, t = 1, … ,T + 1.

To obtain a single set of estimating equations, one could concatenate the estimating equations for 𝝍 and 𝜶 to those given
above. Let Pnm̆n(ST+1; 𝜷,𝝍 ,𝜶) = 0 denote the joint estimating equations. Explicit forms of these estimating equations for
both Q-learning and outcome weighted learning are provided in the Supplemental Material.

Theorem 2. Assume that the hazard functions for dropout are correctly specified so that 𝜆t(st) = 𝜆t(st;𝝍∗
t ) for all st for

some𝝍∗
t ∈ t and 𝝍̂n → 𝝍∗ in probability or that the regression functions are correctly specified so that dn,t(st) = dn,t(st;𝜶∗

t )
for some 𝜶∗

t ∈ 𝒶t and 𝜶̂n → 𝜶∗ in probability. If 𝜷∗
n satisfies ||Pmn(ST+1; 𝜷∗

n)|| = o(1), then ||Pm̆n(ST+1; 𝜷∗
n, 𝝍̂n, 𝜶̂n)|| = op(1).

Thus, the AIPWCC estimator is doubly robust.

Remark 1. When the dimension of the trajectory space is high, the solutions to the estimating equations may be unstable.
In these cases, regularization may be necessary to stabilize the solution and to reduce over-fitting..70,71 In our simulation
experiments, we regularize the estimating equation using an adaptive ridge penalty; that is, given a preliminary estima-
tor 𝜷̂0

n of 𝜷∗ based on the unpenalized estimating equation, we compute 𝜷̂𝜆n
n as the solution to Pnm̆n(ST+1; 𝜷, 𝝍̂n, 𝜶̂n) +

𝜆n𝜷∕|𝜷̂n| = 0, where the division is taken elementwise and 𝜆n ≥ 0 is a tuning parameter.

5 SIMULATION AND DATA APPLICATION

5.1 Simulation studies

We compare the performances of IPWCC, AIPWCC, and multiple imputation (MI) in terms of the value of the estimated
optimal regime; these methods are applied with monotone missing data and the estimation is done using either Q-learning
or outcome weighted learning. Data are simulated to mimic a two-stage SMART with binary treatments at each stage.
The complete data are generated as follows:

X1 = (X11, … ,X1p)T,X1k ∼ Bernoulli(0.5), k = 1, … , p;
A1 ∼ Uniform{−1, 1};
X2|X1 = x1,A1 = a1 ∼ p{(𝚪0 + 𝚪1a1)x1, 𝜏

2Ip};
A2 ∼ Uniform{−1, 1};
Y |X1 = x1,A1 = a1,X2 = x2,A2 = a2 ∼  {𝜇Y (x1, a1, x2, a2), 𝜎2

Y}, (3)

where 𝜇Y (x1, a1, x2, a2) = 𝛾20 + 𝛾21a1 + 𝜸T
22x1a1 + 𝜸T

23x2 + (𝜙20 + 𝜙21a1 + 𝝓T
22x2)a2. Thus, the model is indexed by the

matrices 𝚪0,𝚪1 ∈ Rp×p, coefficients 𝛾20, 𝛾21, 𝜸22, 𝜸23, 𝜙20, 𝜙21,𝝓22, and variance components 𝜏2, 𝜎2
Y > 0.

For the missingness mechanism, we consider hazard functions of the form

P(C = t|C ≥ t,Ht,At) = 𝜆t(Ht,At) = expit{(1,Xt1,At ⋅ Xt2)T𝝍 t}, t = 1, 2.

We vary the parameters 𝝍1 and 𝝍2 to obtain 35% and 65% missingness. The actual parameter values are provided in the
Supplemental Materials. All simulation experiments use training sets of size n= 1000 and 500 Monte Carlo replications.

In our implementation of Q-learning, we use linear models of the form set Qt(Ht,At; 𝜷 t) = 𝜷T
t Bt,0, where B1,0 =

(1,XT
1 ,A1,XT

1 A1)T and B2,0 = (1,XT
1 ,A1,XT

1 A1,A2,A1A2,XT
2 A2)T. For outcome weighted learning, we use linear decision
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F I G U R E 1 Relative value of
Q-learning with IPWCC estimator,
AIPWCC estimator, and MI when the
missingness model is correctly specified.
The length of the corresponding vertical
bar is the Monte Carlo standard
deviation of the relative value estimates
[Colour figure can be viewed at
wileyonlinelibrary.com]

rules of the form ft(Ht; 𝜼t) = 𝜼T
t Ht,0, where H1,0 = (1,XT

1 )T and H2,0 = (1,XT
1 ,A1,XT

1 A1,XT
2 ). These rules are estimated

using logistic loss, also known as the entropy loss, as the convex surrogate.72,73

To illustrate the double-robustness property of the AIPWCC estimator, we consider both correctly and incorrectly
specified models for the hazard functions. In the correctly specified case, we fit a logistic regression model at each stage
with the correct features, that is, (1,Xt1,AtXt2) for t = 1,2. For the incorrectly specified model, we fit a logistic regression
model with features (1,X1,X11X12) at stage 1 and (1,X2

21,X
2
22) at stage 2. The conditional mean model is not correctly

specified throughout.
We evaluate the performance of an estimated optimal regime, 𝝅̂, in terms of its relative value, which is defined as

RV(𝝅̂) = V(𝝅̂) − V(𝝅0)
V(𝝅opt) − V(𝝅0)

,

http://wileyonlinelibrary.com
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F I G U R E 2 Relative value of
outcome weighted learning with IPWCC
estimator, AIPWCC estimator, and MI
when the missingness model is correctly
specified. The length of the
corresponding vertical bar is the Monte
Carlo standard deviation of the relative
value estimates [Colour figure can be
viewed at wileyonlinelibrary.com]

where 𝝅0 is the stochastic policy that assigns treatments at each stage using a fair-sided coin flip. The reason for using
the relative value, for instance, instead of the raw value, is to allow for comparison across a range of generative models,
for example, different problem dimensions. The requisite values are estimated using Monte Carlo methods with 40 000
simulated patients.21

We approximate the roots of the estimating equations using R package nleqslv with multiple starts. We implement
MI using R package MICE with default settings and 10 imputed datasets.74 The conditional expectation model in the
AIPWCC estimator is fitted using ridge regression and tuned using the 5-fold cross-validation estimator of the value under
the optimal regime.

The results for the correctly specified hazard models with Q-learning and outcome weighted learning are displayed
in Figures 1 and 2, respectively. It can be seen that both the IPWCC and AIPWCC estimators generally outperform MI

http://wileyonlinelibrary.com
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F I G U R E 3 Relative value of Q-learning
with IPWCC estimator, AIPWCC estimator, and
MI when the missingness model is misspecified.
The length of the corresponding vertical bar is
the Monte Carlo standard deviation of the
relative value estimates [Colour figure can be
viewed at wileyonlinelibrary.com]

when the dimension of the covariates at each stage, p, is large. The results for the incorrectly specified hazard models
estimated using Q-learning and outcome weighted learning are displayed in Figures 3 and 4, respectively. The results are
qualitatively similar though the robustness of the AIPWCC shows improved performance relative to the IPWCC in some
scenarios.

5.2 CATIE trial analysis

We use data from the CATIE schizophrenia study75 to illustrate the proposed methods. The CATIE study is a SMART,
which enrolled 1460 schizophrenia patients. This dataset was chosen in part because it was used as an illustrative case
study with MI by others.17,76-78

As done elsewhere in the literature, we compare two treatments of primary clinical interest at each stage: Per-
phenazine (coded -1) and Olanzapine (coded 1). The dataset consisting of 506 patients receiving these treatments , 46% of
whom followed the entire course (ie, they are complete cases), 34% dropped out after stage 1, and 20% dropped out after

http://wileyonlinelibrary.com
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F I G U R E 4 Relative value of
outcome weighted learning with IPWCC
estimator, AIPWCC estimator, and MI
when the missingness model is
misspecified. The length of the
corresponding vertical bar is the Monte
Carlo standard deviation of the relative
value estimates [Colour figure can be
viewed at wileyonlinelibrary.com]

stage 2. The missingness pattern is shown in Figure 5. Item missingness was sparse (less than 2% of the observed data)
and singly imputed using mean imputation.

The positive and negative syndrome scale (PANSS) score is the standard medical scale for measuring symptom sever-
ity in schizophrenia. This score is a time-varying variable and was measured at each stage: baseline (PANSS0); stage 1
(PANSS1); and stage 2 (PANSS2). A higher PANSS score is associated with more severe symptoms, so we use 100-PANSS2
as the final outcome to match our convention of higher values representing better clinical outcomes. We include four
baseline covariates in our analyses: PANNS0, baseline PANSS; EXACER, an indicator that the patient has been recently
hospitalized; SEX; and TD, an indicator that the patient has Tardive Dyskinesia, a serious movement disorder associated
with some antipscyhotic medications. In addition, we include PANNS1, first stage PANSS, in our second stage models.
As in the simulation study, we used linear models for the Q-functions of Q-learning and linear decision rules for outcome
weighted learning.

http://wileyonlinelibrary.com
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T A B L E 1 Cross-validated value estimates of the optimal regimes estimated using different methods for
CATIE study

Q-MI Q-IPW Q-AIPW OWL-MI OWL-IPW OWL-AIPW

V̂(𝜋̂opt) 35.406 40.684 41.147 48.220 49.366 48.164

We compared the following six approaches: Q-learning with MI (Q-MI), Q-learning with IPWCC (Q-IPW), Q-learning
with AIPWCC (Q-AIPW), outcome weighted learning with MI (OWL-MI), outcome weighted learning with IPWCC
(OWL-IPW), and outcome weighted learning with AIPWCC (OWL-AIPW). The cross-validated value for each approach
is reported in Table 1. With the CATIE data, outcome weighted learning generally performed favorably to Q-learning. In
terms of adjustment for missing data, MI appears to be worse than AIWPCC/IPWCC with Q-learning but about the same
with outcome weighted learning.

6 DISCUSSION

Missing data are essentially unavoidable with SMARTS and other longitudinal study designs commonly used to estimate
optimal treatment regimes. Multiple Imputation has been shown to be an effective tool for accommodating missing data
in such studies. However, in some settings, imputation can involve modeling complex processes, which may be prone
to misspecification and high variance. We examined the use of inverse probability weighted methods and showed such
methods are consistent for a broad class of estimators of an optimal treatment regime. Furthermore, in empirical exper-
iments, these methods outperformed imputation with the gap in performance widening with the increasing trajectory
dimension as well as with the increasing amount of missingness. Thus, we recommend that such weighting methods be
given serious consideration by researchers estimating optimal treatment regimes from randomized or observational stud-
ies. Alternatively, it may be beneficial to forgo choosing between imputation and weighting and instead combine them.17

We leave such a hybrid approach to future work.
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APPENDIX

Q-learning with complete data
Q-learning is an approximate dynamic programming algorithm that has been applied to estimate optimal treatment
regimes in a variety of biomedical and engineering applications.19,21,79-81 The basis for Q-learning is the dynamic
programming characterization of an optimal regime. Define QT(hT , aT) = E(Y |HT = hT ,AT = aT), and recursively for
t =T − 1,T − 2,… ,1 define Qt(ht, at) = E{max at+1∈Ψt+1(Ht+1)Qt+1(Ht+1, at+1)|Ht = ht,At = at}. It follows from dynamic
programming that the optimal regime satisfies 𝜋opt

t (ht) = arg max at∈Ψt(ht)Qt(ht, at).82 Let Qt(ht, at; 𝜷 t) denote a posited
class of models for Qt(ht,at) indexed by 𝜷 t ∈ t for t = 1,… ,T. The induced class of treatment regimes is thus of the form
𝜋t(ht; 𝜷 t) = arg max at∈Ψt(ht)Qt(ht, at; 𝜷 t).83 If t = Rpt and Q(ht, at; 𝜷 t) is differentiable in 𝜷 t for all ht, at ∈ t ×t, then
𝜷̂T,n solves

Pn{Y − QT(HT ,AT; 𝜷T)}∇𝜷T QT(HT ,AT; 𝜷T) = 0, (A1)

and for t =T − 1,T − 2,… ,1 the estimators 𝜷̂ t,n solve

Pn{ max
at+1∈Ψt(Ht+1)

Qt+1(Ht+1, at+1; 𝜷̂ t+1,n) − Qt(Ht,At; 𝜷 t)}∇𝜷 t Qt(Ht,At; 𝜷 t) = 0. (A2)
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Thus, the estimator 𝜷̂n is obtained by solving Pnmn(𝜷) = 0, where mn is constructed by stacking Equations (A1) and (A2)
for T − 1,… ,1 so that 𝜷̂n is a root of

Pn

⎡⎢⎢⎢⎢⎢⎢⎣

{Y − QT(HT ,AT; 𝜷T)}∇𝜷T QT(HT ,AT; 𝜷T)
{ max

aT∈ΨT (HT )
QT(HT , aT ; 𝜷T) − QT−1(HT−1,AT−1; 𝜷T−1)}∇𝜷T−1 QT−1(HT−1,AT−1; 𝜷T−1)

⋮

{ max
a2∈Ψ2(H2)

Q2(H2, a2; 𝜷2) − Q1(H1,A1; 𝜷1)}∇𝜷1 Q1(H1,A1; 𝜷1)

⎤⎥⎥⎥⎥⎥⎥⎦
.

The estimated optimal decision at stage t is thus 𝜋̂n,t(ht) = arg max at∈Ψt(ht)Qt(ht, at; 𝜷̂ t,n). Similar expressions can be
obtained for nonparametric variants of Q-learning.13,22,25 For the purpose of illustration, we briefly describe kernel ridge
regression for Q-learning. Suppose that t ⊆ Rpt for all t = 1,… ,T. For each t, let Kt ∶ Rpt × Rpt → R be symmetric and
positive definite and write Ht to denote the corresponding reproducing kernel Hilbert space with norm || ⋅ ||Ht

.84-87 To
approximate QT within HT , one solves for each a ∈ {−1, 1}

Q̂T,n(⋅, a) = arg min
fa∈HT

Pn1AT=a{Y − fa(HT)}2 + 𝜆T,a,n||fa||2
HT
, (A3)

where 𝜆T,a,n ≥ 0 is a tuning parameter. For each a ∈ {−1, 1} define IT,a = {i ∶ AT,i = a} to be the subset of patients to
receive treatment a at time T and define Z

T
T,a(hT) = {KT(HT,i,hT)}i∈IT,a . It follows that Q̂T,n(hT , aT) = Z

T
T,aT

(hT)𝜷̂T,a,n,
where 𝜷̂T,a,n is a solution of Pn1AT=aT{Y − (1 + 𝜆̃T,a,n)ZT

T,aT
(HT)𝜷T,a}ZT,aT (HT) = 0. Note that in the previous estimating

equation, we have replaced𝜆T,a,n by 𝜆̃T,a,n to reflect in re-writing the estimator the penalty has been scaled by the number of
subjects receiving treatment aT . Constructing Zt,at (ht) analogously for t =T − 1,T − 2,… ,1, one can construct estimators
Q̂t,n(ht, at) = Z

T
t,at

(ht)𝜷̂ t,a,n where 𝜷̂ t,a,n is a solution of

Pn1At=at{ max
at+1∈Ψt+1(HT+1)

Q̂t+1,n(Ht+1, at+1) − (1 + 𝜆̃t,a,n)ZT
t,at
𝜷 t,a}Zt,at (Ht) = 0.

The preceding estimating equations can be stacked to obtain a single estimating equation; see Zhang et al13 for additional
details.

Outcome weighted learning with complete data
Direct-search methods, also known as value-search methods, estimate an optimal treatment regime by maximizing an
estimator of the marginal mean outcome over a pre-specified class of regimes.32,33,35,40,88 Outcome weighted learning
(OWL) comprises a subclass of these methods, which rely on the use of a convex surrogate to carry out the proposed
maximization (see below for details). Outcome weighted learning was introduced for single-stage decisions by Zhao
et al34 and has since been generalized to multistage decisions37 and undergone a number of other modifications and
refinements.36,38,41,60,89,90

We consider a variant of outcome weighted learning that uses a convex relaxation of the augmented inverse prob-
ability weighted estimator of the marginal mean outcome.35,41,72 We use a backwards recursive procedure37 to extend
the single-stage procedure proposed by Zhao et al.72 to multiple-stages; while this is our not main methodological
contribution, it may of be interest in its own right.40,91

We describe the estimator as a sequence of models fit, each indexed by their own parameters, before stacking the mod-
els and parameters into a single estimating equation. To ease bookkeeping and clarify development, we begin by using
𝜼 = (𝜼T

1 , … , 𝜼T
T)

T solely to index the decision rules and use 𝜽 = (𝜽T
1 , … ,𝜽T

T)T to index nuisance models; we later pool
these into a single collection of parameters, 𝜷 = (𝜷T

1 , … , 𝜷T
T)T, to match the notation used in our general framework. For

simplicity, we assume linear decision rules of the form 𝜋t(ht; 𝜼t) = sign(𝜼T
t ht,0), where ht,0 is known feature vector con-

structed from ht. Furthermore, let QT(hT , aT ;𝜽T) be a posited model for QT(hT , aT) = E(Y |HT = hT ,AT = aT). For each
𝜼T , define VT(hT , 𝜼T) = QT{hT , 𝜋T(hT ; 𝜼T)} with corresponding posited model VT(hT , 𝜼T ,𝜽T) = QT{ht, 𝜋T(hT; 𝜼T);𝜽T}.
Define

QT−1(hT−1, aT−1, 𝜼T ,𝜽T) = E{VT(HT , 𝜼T ,𝜽T)|HT−1 = hT−1,AT−1 = aT−1},
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thus QT−1(hT−1, aT−1, 𝜼T ,𝜽T) is the mean outcome for a patient presenting with HT − 1 =hT − 1, treated with AT − 1 = at − 1,
and subsequently treated according to 𝜋T(⋅; 𝜼T) assuming that the model QT(hT , aT ;𝜽T) is correct.

Let QT−1(hT−1, aT−1, 𝜼T ,𝜽T;𝜽T−1) be a posited model for QT−1(hT−1, aT−1, 𝜼T ,𝜽T). Using an underbar to denote future,
for example, 𝜼

t
= (𝜼T

t , … , 𝜼T
T)

T, define

VT−1(hT−1, 𝜼T−1
,𝜽T−1) = QT−1{hT−1, 𝜋T−1(hT−1; 𝜼T−1), 𝜼T ,𝜽T;𝜽T−1},

to be the expected outcome for a patient presenting with HT − 1 =hT − 1 and treated according to 𝜋T−1(⋅; 𝜼T−1) and 𝜋T(⋅; 𝜼T)
at times T − 1 and T under the models indexed by 𝜽T−1. Recursively, for t =T − 2,… ,1 define

Qt(ht, at, 𝜼t+1
,𝜽t+1) = E{Vt+1(Ht+1, 𝜼t+1

,𝜽t+1)|Ht = ht,At = at},

and let Qt(ht, at, 𝜼t+1
,𝜽t+1;𝜽t) denote a posited model. Subsequently, define

Vt(ht, 𝜼t
,𝜽t) = Qt{ht, 𝜋t(ht; 𝜼t), 𝜼t+1

,𝜽t+1;𝜽t}.

Thus, for any regime 𝝅𝜼 indexed by 𝜼 = 𝜼
1

the marginal mean outcome under the models indexed by 𝜽 = 𝜽1 is V(𝝅𝜼) =
EV1(H1, 𝜼,𝜽). This construction is the basis for Q-learning with policy-search;13,92 however, we will not be using the
Q-functions in this way. Our purpose in deriving them is to include them as augmentation terms in a doubly robust
estimator of the incremental (stagewise) regret.

We assume that Qt(ht, at, 𝜼t+1
,𝜽t+1;𝜽t) is continuously differentiable in 𝜽t for all ht, at, 𝜼t+1

,𝜽t+1. For each 𝜼, let 𝜽̂n(𝜼) =
{𝜽̂1,n(𝜼2

), 𝜽̂2,n(𝜼3
), … , 𝜽̂T−1,n(𝜼T), 𝜽̂T,n} be a root of the estimating equation

Pn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{Y − QT(HT ,AT;𝜽T)}∇𝜽T QT(HT ,AT;𝜽T)
{VT(HT , 𝜼T ,𝜽T) − QT−1(HT−1,AT−1, 𝜼T ,𝜽T ;𝜽T−1)}∇𝜽T−1 QT−1(HT−1,AT−1, 𝜼T ,𝜽T;𝜽T−1)

⋮

{Vt+1(Ht+1, 𝜼t+1
,𝜽t+1) − Qt(Ht,At, 𝜼t+1

,𝜽t+1;𝜽t)}∇𝜽t Qt(Ht,At, 𝜼t+1
,𝜽t+1;𝜽t)

⋮

{V2(H2, 𝜼2
,𝜽2) − Q1(H1,A1, 𝜼2

,𝜽2;𝜽1)}∇𝜽1 Q1(H1,A1, 𝜼2
,𝜽2;𝜽1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A4)

where we note that 𝜼1 does not affect 𝜽̂n(𝜼); however, to estimate the performance of 𝝅𝜼 with the estimated Q-functions
one would use PnQ1{H1, 𝜋1(H1; 𝜼1), 𝜼2

, 𝜽̂2,n(𝜼3
); 𝜽̂1,n(𝜼2)}, which can be seen to depend on all of 𝜼.

The second set of estimating equations are based on a backwards recursive representation of an augmented inverse
probability weighted estimator of the incremental regret. As noted previously, the estimated Q-functions derived
above serve as augmentation terms. Define ΔT(HT ,AT;𝜽T) = QT(HT ,AT;𝜽T) − QT(HT ,−AT;𝜽T) and Δ̂T,n(HT ,AT) =
ΔT(HT ,AT; 𝜽̂T,n). Define the estimated incremental regret at stage T as

JT,n(𝜼T;𝜽T) = Pn1sign{WT (HT ,AT ,𝜽T )}AT≠𝜋T (HT ;𝜼T )|WT(HT ,AT ,Y ,𝜽T)|
= Pn1sign{WT (HT ,AT ,Y ,𝜽T )}AT𝜼

T
T HT,0<0|WT(HT ,AT ,Y ,𝜽T)|, (A5)

where

WT(HT ,AT ,Y ,𝜽T) =
{Y − QT(HT ,−AT;𝜽T) − {1 − P(AT|HT)}ΔT(HT ,AT;𝜽T)}

P(AT|HT)
.

Define ĴT,n(𝜼T) = JT,n(𝜼T; 𝜽̂T,n). It can be shown that ĴT,n(𝜼T) is, up to an additive constant that does not depend on 𝜼T , a
doubly robust estimator for the difference between: (i) the marginal mean outcome for a patient receiving treatment as
per protocol (ie, under the data-generating model) for the first T − 1 time points, followed by treatment under an optimal
regime and (ii) the marginal mean outcome for a patient receiving treatment per protocol for the first T − 1 time points
followed by treatment under 𝜋T(⋅; 𝜼T).91 Thus, ĴT,n(𝜼T) is a measure of the loss incurred by treatment of patients at time T,
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who had theretofore been treated per protocol, with 𝜋T(⋅; 𝜼T) rather than an optimal treatment. Because of the indicator
function, direct minimization of Equation (A5) over 𝜼T is a mixed integer program,93 which is NP-hard in general and thus
typically requires the use of either specialized software or the use of heuristics.35,40 A distinguishing feature of outcome
weighted learning is the relaxation of Equation (A5) by replacing the indicator function with a convex function. Given a
convex function L ∶ R → R, called a convex surrogate, backwards recursive outcome weighted learning uses the objective

JL
T,n(𝜼T;𝜽T) = PnL[sign{WT(HT ,AT ,Y ,𝜽T)}AT𝜼

T
THT,0]|WT(HT ,AT ,Y ,𝜽T)|,

which can be seen to be a convex function of 𝜼T for each 𝜽T . Define ĴL
T,n(𝜼T) = JL

T,n(𝜼T; 𝜽̂T,n). We define 𝜼̂T,n to be the
solution to ∇𝜼T ĴL

T,n(𝜼T) = 0, where the gradient can be replaced with a sub-gradient if L is not differentiable.94 Thus, the
estimated optimal rule at stage T is 𝜋̂T(⋅; 𝜼̂T,n).

Estimators of the optimal decision rules at stages t =T − 1,T − 2,… ,1 solve analogous estimating equations, which
are defined recursively as follows. For t =T − 1 define

ΔT−1(HT−1,AT−1; 𝜼T ,𝜽T−1) = QT−1{HT−1,AT−1, 𝜼T ,𝜽T;𝜽T−1} − QT−1{HT−1,−AT−1, 𝜼T ,𝜽T;𝜽T−1},

and define Δ̂T−1,n(HT−1,AT−1) = ΔT−1{HT−1,AT−1; 𝜽̂T−1,n(𝜼̂T,n)}, where 𝜽̂T−1,n(𝜼̂T,n) = {𝜽̂T−1,n(𝜼̂T,n), 𝜽̂T}. Subsequently,
define the relaxed loss function

JL
T−1,n(𝜼T−1

;𝜽T−1) = PnL[sign{WT−1(HT ,AT ,Y ,𝜽T−1, 𝜼T)}AT−1𝜼
T
T−1HT−1,0]|WT−1(HT ,AT ,Y ,𝜽T−1, 𝜼T)|,

where the weights are given by

WT−1{HT ,AT ,Y ,𝜽T−1, 𝜼T} =
1AT=𝜋T (HT ;𝜼T )Y

P(AT|HT)P(AT−1|HT−1)

−
QT−1{HT−1,−AT−1; 𝜼T ,𝜽T−1}

P(AT−1|HT−1)
−

{1 − P(AT−1|HT−1)}ΔT−1,n(HT−1,AT−1; 𝜼T ,𝜽T−1)
P(AT−1|HT−1)

−
1AT=𝜋T (HT ;𝜼T )

P(AT|HT)P(AT−1|HT−1)

{1AT=𝜋T (HT ;𝜼T ) − P(AT|HT)
P(AT|HT)

}
QT,n{HT , 𝜋T(HT; 𝜼T);𝜽T}.

Define ĴL
T−1,n(𝜼T−1) = JT−1{𝜼T−1, 𝜼̂T,n, 𝜽̂T−1,n(𝜼̂T,n)}, and let 𝜼̂T−1,n be a solution to ∇𝜼T−1 ĴL

T−1,n(𝜼T−1) = 0. For a generic
t < T − 1, define

Δt(Ht,At;𝜽t, 𝜼t+1
) = Qt(Ht,At, 𝜼t+1

,𝜽t+1;𝜽t) − Qt(Ht,−At, 𝜼t+1
,𝜽t+1;𝜽t),

and define Δ̂t,n(Ht,At) = Δ{Ht,At; t,n(𝜼̂t+1,n
), 𝜼̂

t+1,n
}, where 𝜽̂t,n(𝜼̂t+1,n

) = {𝜽̂t,n(𝜼̂t+1,n
), 𝜽̂t+1,n(𝜼̂t+2,n

), … , 𝜽̂T,n}. Subse-
quently, define

JL
t (𝜼t

,𝜽t) = PnL[sign{Wt(HT ,AT ,Y , 𝜼t+1
,𝜽t)}At𝜼

T
t Ht,0]|Wt(HT ,AT ,Y , 𝜼t+1

,𝜽t)|,
where the weights are given by

Wt(HT ,AT ,Y , 𝜼t+1
,𝜽t) =

Y
∏T

s=t+1 1As=𝜋s(Hs;𝜼s)∏T
s=t P(As|Hs)

−
Qt(Ht,−At, 𝜼t+1

,𝜽t+1;𝜽t)

P(At|Ht)
−

{1 − P(At|Ht)}Δt,n(Ht,At, 𝜼t+1
,𝜽t)

P(At|Ht)

−
T∑

r=t+1

[∏r−1
s=t+1 1As=𝜋(Hs;𝜼s)∏r−1

s=t P(As|Hs)

{1Ar=𝜋r(Ht ;𝜼r) − P(Ar|Hr)
P(Ar|Hr)

}
Qr{Hr, 𝜋r(Hr; 𝜼r); 𝜼r+1

,𝜽r+1;𝜽r}

]
.

Define ĴL
t,n(𝜼t) = Jt

t{𝜼t, 𝜼̂t+1,n
, 𝜽̂t,n(𝜼̂t+1,n

)}, and let 𝜼̂t,n be a solution to ∇𝜼t Ĵ
L
t,n(𝜼t) = 0.
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The joint estimating equations for 𝜷 = (𝜼T,𝜽T)T are obtained by stacking Equation (A4) and the estimating equations
∇𝜼t Jt(𝜼t

,𝜽t) = 0 for t = 1,… ,T.

Proof of Theorem 1
By stacking the estimating equations for 𝝍 and IPWCC estimating equations for 𝜷, we construct a Z-estimator (𝝍̂n, 𝜷̂n)
that solves

Pn

⎡⎢⎢⎢⎢⎢⎣

1C=T∇𝝍T gT(ST;𝝍T) − 1C≥T∇𝝍T gT(ST;𝝍T)expit{gT(ST;𝝍T)}
⋮

1C=1∇𝝍1 g1(S1;𝝍1) − 1C≥1∇𝝍1 g1(S1;𝝍1)expit{g1(S1;𝝍1)}
wcc(C, ST;𝝍) ⋅ mn(HT ,AT ,Y ; 𝜷)

⎤⎥⎥⎥⎥⎥⎦
= Pnm̌n(ST ,Y ;𝝍 , 𝜷) = 0,

where wcc(C, ST;𝝍) and mn(HT ,AT ,Y ; 𝜷) are constructed by aggregating wcc
j (C, St−1;𝝍 t−1) and m̃n,j(St; 𝜷) in the order of

j ∈ T+1 ∪ T ∪ … ∪ 1 respectively; the ⋅ notation is the elementwise product operator for vectors.
Assume that the following standard regularity conditions for Z-estimator hold.

1. Pm̌n(ST ,Y ;𝝍 , 𝜷) exists for all 𝝍 , 𝜷 ∈  × ; there exists 𝝍∗, 𝜷∗
n ∈  ×  such that ||Pm̌n(ST ,Y ;𝝍∗, 𝜷∗

n)|| = o(1), and||Pm̌n(ST ,Y ;𝝍 , 𝜷)|| ≠ o(1) for 𝝍 ≠ 𝝍∗, 𝜷 ≠ 𝜷∗
n.

2. Each function in m̌n(⋅) is continuous in  ×  and bounded by an integrable function of the data that does not depend
on (𝝍 , 𝜷).

We show the consistency of 𝜷̂n given that 𝜆t(st) = 𝜆t(st;𝝍∗
t ). Assuming the correctness of the hazard models, it follows

that Kt(st) = Kt(st;𝝍∗
t ) for all t and st, for some 𝝍∗ ∈  and that the 𝝍̂n → 𝝍∗ in probability. We only need to show

E{wcc
j (C, St−1;𝝍∗

t−1)m̃n,j(St; 𝜷)} = E{m̃n,j(St; 𝜷)}, j ∈ t, t = 1, … T + 1.

Take the double expectation with the inner expectation condition on St and by MAR assumption, we have

E

{
1C>t−1

Kt−1(St−1)
m̃n,j(St; 𝜷)

}
= E

[
E

{
1C>t−1

Kt−1(St−1)
m̃n,j(St; 𝜷)

|||| St

}]
= E

[
m̃n,j(St; 𝜷)

E(1C>t−1|St)
Kt−1(St−1)

]
= E{m̃n,j(St; 𝜷)}

Therefore, if 𝜷∗
n satisfies ||Pmn(ST+1; 𝜷∗

n)|| = o(1), we have ||Pm̌n(ST+1; 𝜷∗
n, 𝝍̂n)|| = op(1).

Proof of Theorem 2
We prove Theorem 2 by showing the consistency in either one of two scenarios: (i) the missingness model is correctly
specified, that is, 𝜆t(st) = 𝜆t(st;𝝍∗

t ) for all st for some𝝍∗
t ∈ t and 𝝍̂n → 𝝍∗ in probability; (ii) the conditional expectation

is correctly specified, that is, dn,t(st) = dn,t(st;𝜶∗) for some 𝜶∗ ∈ 𝒶.
By stacking together the AIPWCC estimation equation for 𝜷, estimating equation for 𝝍 and 𝜶, we form a uni-

fied Z-estimator representation Pnm̆n(ST+1; 𝜷,𝝍 ,𝜶) = 0. Under same regularity conditions as in proof of Theorem 1 for
general Z-estimator, it is sufficient to show for t = 1,… ,T + 1, one has

E

{
wcc

j (C, St−1; 𝝍̂ t−1,n)m̃n,j(St; 𝜷) +
t−1∑
r=1

waug
r,j (C, Sr; 𝝍̂ r,n)dn,r,j(Sr; 𝜶̂r,n)

}
= E{m̃n,j(St; 𝜷)} for all j ∈ t.s (A6)

By lemma 10.4 of Tsiatis,55 we have

1 − 1C>t

Kt(St)
=

t∑
r=1

[
1C=r − 𝜆r(Sr, 𝜓r)1C≥r

Kr(Sr,𝝍 r)

]
, for all t = 1, … ,T. (A7)
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Therefore

1C>t−1

Kt−1(St−1,𝝍 t−1)
m̃n,j(St; 𝜷) = m̃n,j(St; 𝜷) +

{
1C>t−1

Kt−1(St−1;𝝍 t−1)
− 1

}
m̃n,j(St; 𝜷),

and the AIPWCC estimation equation on the left of Equation (A6) can be rearranged as

m̃n,j(St; 𝜷) −
t−1∑
r=1

1C=r − 𝜆r(Sr; 𝝍̂ r,n)1C≥r

Kr(Sr; 𝝍̂ r,n)
{m̃n,j(St; 𝜷) − dn,r,j(Sr; 𝜶̂r,n)}.

As we assume that the first term ||Pm̃n,j(St; 𝜷)|| = o(1), now it is sufficient to show that

E

[
1C=r − 𝜆r(Sr; 𝝍̂ r,n)1C≥r

Kr(Sr; 𝝍̂ r,n)
{m̃n,j(St; 𝜷) − dn,r,j(Sr; 𝜶̂r,n)}

]
= 0, (A8)

for r = 1,… ,t − 1 for a specific t = 1,… ,T + 1.
We first prove for scenario 1 where the hazards models are correctly specified so that 𝝍̂n → 𝝍∗. Define a sequence

of random vectors Gr = (ST
t , 1C=1, … , 1C=r−1)T for r = 1,… t − 1. By the law of iterated expectations, we take conditional

expectation on Gr. Noting that the only unknown random variable is 1C = r given Gr, we have

E

[
E(1C=r|Gr) − 𝜆r(Sr)1C≥r

Kr(Sr)
{m̃n,j(St; 𝜷) − dn,r,j(Sr; 𝜶̂r,n)}

]
.

Because of MAR assumption, we have

E{1C=r|Gr} = P(C = r|C ≥ r, St)1C≥r = P(C = r|C ≥ r, Sr)1C≥r = 𝜆r(Sr)1C≥r.

Thus, we prove that Equation (A8) holds.
Now we consider scenario 2—the conditional expectation models are correctly specified so that dn,t(st) = dn,t(st;𝜶∗

t ).
Rewrite the left-hand side of Equation (A8) as

E

[
1C=r

Kr(Sr; 𝝍̂ r,n)
{m̃n,j(St; 𝜷) − dn,t(St)}

]
− E

[
𝜆r(Sr, 𝝍̂ r)1C≥r

Kr(Sr; 𝝍̂ r)
{m̃n,j(St; 𝜷) − dn,t(St)}

]
.

Applying the law of iterated expectation again, we take conditional expectation of the first term in the above equation on
(1C=r, ST

r )T. This leads to

E

{
1C=r

Kr(Sr;𝝍 r)
[E{m̃n,j(St; 𝜷)|1C=r, Sr} − E{m̃n,j(St; 𝜷)|Sr}]

}
.

By MAR, we have P(St|1C = r,Sr}=P(St|Sr}, that is, E{m̃n,j(St; 𝜷)|1C=r, Sr} = E{m̃n,j(St; 𝜷)|Sr}. This implies the first term
in is zero. Similarly, we take conditional expectation of the second term on (1C≥r, ST

r )T and obtain

E

{
𝜆r(Sr, 𝜓r)1C≥r

Kr(Sr,𝝍 r)
[E{m̃n,j(St; 𝜷)|1C≥r, Sr} − E{m̃n,j(St; 𝜷)|Sr}]

}
.

By MAR again, we have P(St|1C ≥ r,Sr)=P(St|Sr), which implies the second term in is zero.
Therefore, we show that Equation (A8) holds under the two scenarios and the doubly robust conclusion follows.


