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Abstract
Many spatial phenomena exhibit interference, where exposures at one location
may affect the response at other locations. Because interference violates the sta-
ble unit treatment value assumption, standard methods for causal inference do
not apply. We propose a new causal framework to recover direct and spill-over
effects in the presence of spatial interference, taking into account that expo-
sures at nearby locations aremore influential than exposures at locations further
apart. Under the no unmeasured confounding assumption, we show that a gen-
eralized propensity score is sufficient to remove all measured confounding. To
reduce dimensionality issues, we propose a Bayesian spline-based regression
model accounting for a sufficient set of variables for the generalized propensity
score. A simulation study demonstrates the accuracy and coverage properties.We
apply the method to estimate the causal effect of wildland fires on air pollution
in the Western United States over 2005–2018.
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1 INTRODUCTION

Understanding spatial processes in the environmental and
health sciences has taken on new importance as we grap-
ple with emerging ecological and epidemiological issues.
Much of the research in these areas are associative in
nature despite the effects of interests being causal (Bind,
2019). This is not only a result of both the frequent necessity
of using observational data, but also the difficulty of imple-
menting causal inference tools on data that exhibit spatial
dependence and, in particular, interference. Interference
is the phenomenon in which exposures or treatments
at one location may affect the response at other loca-
tions. Naturally, with spatially dependent processes, an
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exposure may impact the response nearby, leading to
interference.
An example of spatial interference is the relationship

between wildland fires and air pollution. Treating wild-
land fires as the exposure and pollution as the response,
it is clear that the exposure can substantially impact the
response at the location of exposure and at distant loca-
tions. In this example, all available data are observational,
and therefore isolating average causal exposure effects
requires accounting for confounding variables. Even in the
ideal case where all potential confounders are observed
across locations, it is unclear how to condition on these
confounders without knowing their specific spatial rela-
tionshipswith the exposure and response. Conditioning on

Biometrics. 2022;1–12. wileyonlinelibrary.com/journal/biom 1

 15410420, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13745 by N
orth C

arolina State U
niversity, W

iley O
nline L

ibrary on [27/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-6487-7766
https://orcid.org/0000-0002-5473-120X
https://orcid.org/0000-0001-7703-707X
mailto:giffin.andrew@gmail.com
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/biom
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fbiom.13745&domain=pdf&date_stamp=2022-09-19


2 GIFFIN et al.

all locations, which is one way around this, is impractical
for all but the smallest studies.
The difficulty that arises from interference in the context

of spatially dependant processes is immediately apparent
from the vantage of the potential outcomes framework
developed by Rubin (1974). For a binary exposure without
interference, there are two unit-level potential outcomes
to consider. Under general exposure interference, there are
2𝑛 unit-level potential outcomes to consider, where 𝑛 is the
total number of units, because each exposure permutation
across all units represents a distinct exposure. In the case of
geostatistical models that contain uncountably many spa-
tial locations, the problem becomes evenmore intractable.
For this reason, beginning with Cox (1958), much of
the causal inference literature assumes away interfer-
ence. The no-interference assumption is usually invoked
as part of the stable unit treatment value assumption
(Rubin, 1980).
Relaxations to the no-interference assumption generally

involve placing assumptions on the form of interference.
Partial interference, a term coined by Sobel (2006), was
the first relaxation developed, specifically for modeling
vaccination exposures that are known to induce herd
immunity. This assumption defines disjoint groups or clus-
ters a priori that may exhibit interference, but precludes
interference between groups. This formof interferencewas
originally considered with experimental data by Halloran
and Struchiner (1991, 1995), but expanded to nonrandom-
ized data by Hudgens and Halloran (2008), Tchetgen and
VanderWeele (2012), Liu andHudgens (2014), and Papado-
georgou et al. (2019). The dual nature of this form of
interference allows for information on both the direct
exposure effects as well as the indirect or spill-over effects
from interference. Additionally, the deluge of network
data has resulted in a literature that allows for interfer-
ence along edges of a pre-specified graph (Aronow &
Samii, 2017; Athey et al., 2018; Forastiere et al., 2018,
2020; Karwa & Airoldi, 2018). In a method largely anal-
ogous to ours, Forastiere et al. (2018) use a generalized
propensity score method to estimate the effect of individ-
ual exposures, as well as the effects from “neighborhood”
interference—that is, interference effects from subjects
connected on the prespecified graph. Aronow and Samii
(2017) define an exposure mapping similar to that of
Manski (2013), which allows for arbitrary interference
forms.
Spatially indexed data have been analyzed using both

the partial interference and network interference strate-
gies. For naturally clustered spatial data, the partial inter-
ference assumption can be used, for example, as in Zigler
and Papadogeorgou (2021), Zigler et al. (2012), and Perez-
Heydrich et al. (2014). Spatial data can also be simplified
to the network setting. For areal data, this often entails

creating a graph with edges between neighboring units,
as in Verbitsky-Savitz and Raudenbush (2012). This, how-
ever, discards information about the distance between
units. Additional causal techniques for spatial data are out-
lined in Papadogeorgou et al. (2018), Papadogeorgou and
Dominici (2020), and Schnell and Papadogeorgou (2020).
Despite these advances, there has been little exploration

of strictly spatial forms of interference. To fill this gap in the
literature, we propose a new framework to recover causal
direct and spill-over effects in the presence of spatial inter-
ference, while taking into account the high dimensionality
of the problem. We develop a generalized propensity score
to account for spatial dependence in the distribution of
exposure (Hirano & Imbens, 2004; Imbens, 2000; Imai &
Van Dyk, 2004). To further reduce the size of the prob-
lem, we propose a model that accounts for a sufficient
set of summary variables rather than the full general-
ized propensity score. Notably, the exposure mapping of
Aronow and Samii (2017) can be given spatial form, but the
mapping is assumed to be known a priori.
The proposed approach has a number of advantages

over using a partial interference or network interfer-
ence assumption. The partial interference assumption is
only reasonable for limited cases when the data natu-
rally cluster a significant distance apart. Moreover, the
partial interference grouping must be specified a priori.
The network interference assumption requires that spill-
over treatments propagate along a prespecified network,
which can allow for spill-over effects that are not mono-
tonic over distance—a key feature of our spatial method.
Of particular note, Forastiere et al. (2018) use a general-
ized propensity score similar to ours over a network. Using
a “community detection” algorithm, the “neighborhood”
that contributes to the spill-over effect can be assessed
from the data, after which weighting between points can
be given with a prespecified “exposuremapping” function.
In contrast, our method simultaneously estimates the spa-
tial range and the weighting of the nearby points, using an
assumption that their spill-over effect is proportional to a
kernel of distance. Finally, the highly general methodol-
ogy of Aronow and Samii (2017) again assumes a known
exposure mapping, which would not allow estimating the
range of exposure. Our proposed method retains all spa-
tial information, and allows for the kernel range to be
estimated concurrently.

2 POTENTIAL OUTCOMES,
INTERFERENCE, AND IDENTIFICATION

Assume that data are available at 𝑛 spatial locations 𝑠 ∈
{𝑠1, … , 𝑠𝑛} ⊂  ⊂ ℝ2. For spatial location 𝑠, define 𝑋𝑠 ∈
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GIFFIN et al. 3

ℝ𝑝 as the relevant covariates and 𝑌𝑠 ∈ ℝ1 the response.
We will consider both real-valued and binary exposures
𝐴𝑠. We use subscript  to refer to the full fields of ran-
dom variables, for example, 𝑋 = {𝑋𝑠 ∶ 𝑠 ∈ }. Variables
with subscript −𝑠 denote all locations in  excluding 𝑠.
Lowercase letters refer to realizations of the variables. For
notational convenience, in this section we assume a sin-
gle realization of the process. We also apply this model
for data with multiple time steps by assuming temporal
independence and that the model has the same structure
over time.
Without restrictions, the response 𝑌𝑠 is potentially a

function of 𝑋 and 𝐴 at all locations, greatly increasing
the number of potential outcomes. To make this manage-
able while still taking spatial interference into account,
we assume that the potential outcome 𝑌𝑠(𝑎) depends
on exposure field 𝑎 through two mechanisms; a direct
exposure, 𝑎𝑠, and an indirect/spill-over exposure, 𝑎𝜏,𝑠 =
∫
∖𝑠

𝜔𝜏(‖𝑠 − 𝑠′‖)𝑎𝑠′ d𝑠′, where 𝜔𝜏(⋅) ∶ ℝ
+ ↦ [0, 1] is a

kernel function with bandwidth 𝜏 > 0. This constitutes
a general class of interference structures, although we
will focus primarily on a Gaussian kernel form: 𝜔𝜏(𝑑) =
exp{−(𝑑∕𝜏)2}, which decays smoothly over space. This
choice of kernel, which is an assumption on how depen-
dency decays over space, will be relaxed in Section 7.
Because only finitely many locations are observed in
practice, the integral form of 𝑎𝜏,𝑠 must be approximated
with a sum. We approximate 𝑎𝜏,𝑠 with the form 𝑎𝜏,𝑠 =∑

𝑠′∈{𝑠1,…,𝑠𝑛}∖𝑠
𝜔𝜏(‖𝑠 − 𝑠′‖)𝑎𝑠′ .

Implicitly, we assume that for any 𝑠 and exposures 𝑎
and 𝑎′, 𝑌𝑠(𝑎) = 𝑌𝑠(𝑎

′
) if 𝑎𝑠 = 𝑎′𝑠 and 𝑎𝑠 = 𝑎′𝑠. This sim-

plified exposure allows us to parsimoniously define the
individual potential outcomes for all possible exposure
fields 𝑎 in terms of only the local direct and spill-over
exposures: 𝑌𝑠(𝑎𝑠, 𝑎𝜏,𝑠). This is a crucial assumption about
the effect of exposure, which substantially reduces the
dimension of the problem. In particular, it assumes that
any exposure at a given distance from location 𝑠 (where dis-
tance is interpretted by the kernel function) has the same
effect on the response. This can be thought of as a spatial
analog to the “stratified interference” assumption intro-
duced by Hudgens and Halloran (2008), in which only the
aggregated exposures within a cluster contribute to inter-
ference rather than the full set of individual exposures.
Identification of the exposure effects follows from the

following assumptions:

Assumption 1 (Unconfoundedness). For all 𝑎,𝑌𝑠(𝑎) =
𝑌𝑠(𝑎𝑠, 𝑎𝜏,𝑠) ⟂⟂ 𝐴 ∣ 𝑋.

Assumption 2 (Positivity). ∀ with pr(𝑋 =) > 0,
pr(𝐴 = 𝑎 ∣ 𝑋 =) > 0, ∀𝑎.

Assumption 3 (Consistency). The potential outcome
𝑌𝑠(𝑎𝑠, 𝑎𝜏,𝑠) = 𝑌𝑠 when 𝐴𝑠 = 𝑎𝑠, 𝐴𝑠 = 𝑎𝜏,𝑠.

For finite, with only the assumptions above, exposures
effects theoretically are identifiable. However, identifica-
tion requires the number of repeated field observations to
be at least 2𝑛, which is rare. Tomake the situation tractable,
we make one additional assumptions about our data:

Assumption 4 (Marginal StructuralModel). The potential
outcomes model take the form

𝑌𝑠
(
𝑎𝑠, 𝑎𝜏,𝑠

)
= 𝛽0 + 𝛿1𝑎𝑠 + 𝛿2𝑎𝜏,𝑠 + ℎ(𝑋)𝑠 + 𝜖𝑠, (1)

where ℎ(𝑋) is a general function of 𝑋, and 𝜖𝑠 is an error
process that is independent of 𝐴 and 𝑋.

We will focus exclusively on i.i.d. error, however, depen-
dence (e.g., spatial) can be incorporated into 𝜖𝑠. Here 𝛿1
and 𝛿2 quantify the direct and spill-over effects of exposure,
respectively. Specifically, 𝛿1 and 𝛿2 represent the causal
effect of a unit-increase in the direct and spill-over effects:

E{𝑌𝑠(1, 𝑎𝑠) − 𝑌𝑠(0, 𝑎𝑠)} = 𝛿1,

E{𝑌𝑠(𝑎𝑠, 𝑐 + 1) − 𝑌𝑠(𝑎𝑠, 𝑐)} = 𝛿2.

Similarly, 𝜏 quantifies the range of the spill-over effect.
Under Assumptions 1–4, the coefficients in (1) are

identifiable in the sense that

E {𝑌𝑠(𝑎) ∣ 𝑋} = E
{
𝑌𝑠(𝑎) ∣ 𝑋, 𝐴𝑠 = 𝑎𝑠, 𝐴 = 𝑎

}
= E

(
𝑌𝑠 ∣ 𝑋, 𝐴𝑠 = 𝑎𝑠, 𝐴 = 𝑎

)
. (2)

The first equality follows from Assumptions 1 and 2; the
second from Assumptions 3 and 4.
It is instructive to consider the dependence that is

created by Assumptions 1–4. 𝑋 is unrestricted, and is
therefore plausibly spatially correlated. Because the direct
exposure mechanism is a function of 𝑋, 𝐴 will likely
reflect any spatial structure in𝑋.𝑌may reflect both gen-
eral spatial dependence from 𝑋 as well as any induced
spatial dependence from 𝐴.

3 THE GENERALIZED PROPENSITY
SCORE IS A BALANCING SCORE

The identification formula (2) implies that we can estimate
𝛿1, 𝛿2, and 𝜏 using the regression model

𝑌𝑠 = 𝛿1𝐴𝑠 + 𝛿2𝐴𝜏,𝑠 + ℎ(𝑋)𝑠 + 𝜖𝑠,
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4 GIFFIN et al.

if ℎ(⋅) is known and 𝜖𝑠 is a mean zero error process. In
most cases, though, ℎ(𝑋) is not known. The standard
causal inference strategy at this point is to condition on
𝑋 itself, if known. However, even when 𝑋 is known,
in the context of spatial analysis it is high dimensional.
Specifically, for unit 𝑠 it does not suffice to condition on𝑋𝑠,
but requires conditioning on 𝑋 at all locations. With both
high-dimensional confounders as well as our assumptions
about the exposure mechanism, the natural path forward
is to condition on the propensity of exposure (Rosenbaum
& Rubin, 1983).
In a setting without interference, and thus only direct

exposure effects, the standard propensity score 𝑒𝑠 for
binary exposures is defined as 𝑒𝑠(𝑋) = 𝑃(𝐴𝑠 = 1 ∣ 𝑋).
This is easily extended to real valued exposures using
the form 𝑒𝑠(𝑋) = 𝑓(𝐴𝑠 = 𝜂 ∣ 𝑋), 𝜂 ∈ ℝ. In both cases, 𝑒𝑠
simply summarizes the conditional distribution of expo-
sure. The propensity score is an example of a balancing
score: a function of the covariates that, once conditioned
on, induces independence between the exposure and
covariates. If all confounders are included in 𝑋, then 𝑒𝑠,
rather than 𝑋, may be conditioned on for unbiased expo-
sure effects. When 𝑋 is high dimensional, as in our
motivating example, this is a substantial dimension reduc-
tion.
Under interference, with exposure components 𝑎𝑠 and

𝑎𝜏,𝑠, the propensity score approach can still be utilized, by
defining the propensity of exposure to be a summary of the
conditional distribution of (𝐴𝑠, 𝐴𝑠). To this end, we define
𝑔𝜏,𝑠 to be the joint propensity of 𝐴𝑠 and 𝐴𝜏,𝑠:

𝑔𝜏,𝑠(𝑋) = 𝑓
(
𝐴𝑠 = 𝜂, 𝐴𝜏,𝑠 = 𝜈 ∣ 𝑋

)
, 𝜂, 𝜈 ∈ ℝ. (3)

We refer to the bivariate density function 𝑔𝜏,𝑠 as the gen-
eralized propensity score (Bia et al., 2014; Hirano and
Imbens, 2004; Imbens, 2000; Imai & Van Dyk, 2004;
Kluve et al., 2012; Lechner, 2001). Importantly, this form
of 𝑔𝜏,𝑠 allows for 𝐴 to be correlated, which may cause
dependence between 𝐴𝑠 and 𝐴𝜏,𝑠.
The key insight is that 𝑔𝜏,𝑠 is a balancing score. This

implies that, paired with our no unmeasured confounders
assumption, the observed exposures and potential out-
comes are independent conditional on 𝑔𝜏,𝑠. This is the
strategy that we use to recover unbiased estimates of our
key coefficients 𝛿1 and 𝛿2. Theorem 1 shows this formally,
by extending the analogous result for propensity scores for
continuous exposures by Hirano and Imbens (2004) to our
score 𝑔𝜏,𝑠.

Theorem 1 (𝑔𝜏,𝑠 is a balancing score). Given Assumptions
1–4, then for all locations 𝑠 and spill-over exposure levels 𝜈,

𝑌𝑠(𝑎) = 𝑌𝑠
(
𝑎𝑠, 𝑎𝜏,𝑠 = 𝜈

)
⟂⟂

(
𝐴𝑠, 𝐴𝜏,𝑠

)
∣ 𝑔𝜏,𝑠(𝑋).

The proof is provided in the supporting information.
By Theorem 1, it suffices to adjust for 𝑔𝜏,𝑠 to remove

confounding bias. That is,

E
{
𝑌𝑠(𝑎) ∣ 𝑔𝜏,𝑠(𝑋)

}
= E

{
𝑌𝑠 ∣ 𝑔𝜏,𝑠(𝑋), 𝐴𝑠 = 𝑎𝑠, 𝐴𝜏,𝑠 = 𝑎𝜏,𝑠

}
.

This suggests that we can adjust for confounding by
incorporating 𝑔𝜏,𝑠 into the regression model.

4 MODELING THE GENERALIZED
PROPENSITY SCORE

Estimating 𝑔𝜏,𝑠 is difficult. It is a bivariate distribution
function over 𝑋, and non-parametric estimation of even
univariate density functions suffers from dimensionality
issues. To overcome this, wemake the following dimension
reduction assumption.

Assumption 5 (𝑔𝜏,𝑠 is a parametric distribution). 𝑔𝜏,𝑠
is a bivariate parametric density with parameters 𝑍𝑠 =
(𝑍

(1)
𝑠 , … , 𝑍

(𝐾)
𝑠 ) that are a functions of 𝜏 and 𝑋.

That is, the distribution of (𝐴,𝐴𝜏,𝑠) can be completely
summarized by the parameters 𝑍𝑠.

Example 1. If 𝐴 are independent and Gaussian, then
𝐴𝜏,𝑠 is itself Gaussian. Setting 𝑍1𝑠 , … , 𝑍4𝑠 to be the mean
and variance of both 𝐴𝑠 and 𝐴𝜏,𝑠 completely summarizes
its distribution.

Corollary 1. Given Assumptions 1–5, then for all locations
𝑠

𝑌𝑠(𝑎) = 𝑌𝑠(𝑎𝑠, 𝑎𝜏,𝑠) ⟂⟂ (𝐴𝑠, 𝐴𝜏,𝑠) ∣ 𝑍𝑠.

Corollary 1 follows immediately from Theorem 1 and
states that conditioning on 𝑍𝑠 is equivalent to condition-
ing directly on the distribution 𝑔𝜏,𝑠, and so our Theorem 1
result of unconfoundedness given 𝑔𝜏 extends to the consid-
erablymore tractable situation of unconfoundedness given
𝑍.
Identification of 𝛿1 and 𝛿2 follows from the conditional

independence in Corollary 1. Let ∗ denote true values;
variables without ∗ being estimated values. Based on

E
{
𝑌𝑠(𝑎) ∣ 𝑍𝑠

}
= 𝛽∗0 + 𝛿∗1𝑎𝑠 + 𝛿∗2𝑎𝜏,𝑠 + E

{
ℎ(𝑋)𝑠 ∣ 𝑍𝑠

}

= E
{
𝑌𝑠(𝑎) ∣ 𝐴 = 𝑎, 𝑍𝑠

}

= E
(
𝑌𝑠 ∣ 𝐴 = 𝑎, 𝑍𝑠

)

= E
(
𝛽0 + 𝛿1𝐴𝑠 + 𝛿2𝐴𝜏,𝑠 ∣ 𝐴 = 𝑎, 𝑍𝑠

)
,

(4)
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GIFFIN et al. 5

we must have 𝛿1 = 𝛿∗1 and 𝛿2 = 𝛿∗2 .
In practice, we will condition on the components of

𝑔𝜏,𝑠 using B-splines, by including them directly in the
regression:

E
(
𝛽0 + 𝛿1𝐴𝑠 + 𝛿2𝐴𝜏,𝑠 ∣ 𝐴 = 𝑎, 𝑍𝑠

)
≈ 𝛽0 + 𝛿1𝐴𝑠 + 𝛿2𝐴𝜏,𝑠 + spl

(
𝑍𝑠

)

≈ 𝛽0 + 𝛿1𝐴𝑠 + 𝛿2𝐴𝜏,𝑠 + spl1

(
𝑍
(1)
𝑠

)
+⋯+ spl𝑞

(
𝑍
(𝐾)
𝑠

)
.

(5)

This allows for completely arbitrary dependence between
𝑍 and 𝑌. The second line of (5) implicitly assumes that
the spline components enter additively, an assumption that
can be tested. In the presence of nonadditivity, a tensor
product of the components should be used that allows
for general interactions, but at great computational cost
(Wood, 2006).

5 BAYESIAN INFERENCE AND
COMPUTATIONAL ALGORITHM

The identification results (4) and (5) allow unbiased esti-
mation of 𝛿1 and 𝛿2 using a regression of the observed
response onto the direct and spill-over exposures as well
as the spline estimates of𝑍𝑠(𝜏). Implementing this involves
three steps: Step 1 parametrizes and estimates the propen-
sities 𝑔𝜏,𝑠 of direct and spill-over exposure. Step 2 estimates
a preliminary posterior for the range parameter 𝜏, which
must be done in a separate step for reasons discussed
below. Step 3 estimates final posterior distributions for all
parameters via Markov chain Monte Carlo sampling. This
is illustrated in Figure 1.
The propensities of direct exposure that are tackled in

Step 1 are first estimated by regressing 𝐴𝑠 onto 𝑋. This
requires parametrizing the form of 𝑓(𝐴), and identifying a
correctly specified propensity score. The form of this score
can vary in complexity. The simplest case is that of a local
exposure assignment mechanism, that is, the distribution
of 𝐴𝑠 is influenced by 𝑋𝑠 only. This would simply entail a
regression on local covariates. A moderately complex case
would allow for nearby𝑋 to inform the propensity of expo-
sure. A very general case would allow 𝐴 to be spatially
dependent, conditional on 𝑋. That is, 𝐴𝑠 would depend
directly on nearby 𝐴.
Estimating the spill-over propensity component of Step

1 is similar. First, a family of parametric distributions must
be identified. One intuitivemethod of doing this is to select
several candidate distributions based on the form of 𝐴𝑠,
and select among them by simulating values of 𝐴𝑠. For
example, if 𝐴𝑠 is binary, then the potential candidates for
the distribution of 𝐴 must be nonnegative and allow for
point mass at zero. Obvious contenders are zero-inflated

F IGURE 1 Schematic plot for computation of the proposed
method. Here 𝑓(⋅) refers to a generic probability density/mass
function, and 𝑠𝑝𝑙 refers to a B-spline basis

lognormal and zero-inflated Gamma distributions. A nat-
ural way to select between them is to simulate from the
estimated propensities of 𝐴𝑠, to get simulated 𝐴𝑠 values
using different reasonable 𝜏. The empirical distributions
of these simulated 𝐴𝑠 will often suggest one family of
distributions. With a chosen distribution in hand, the
parameters 𝑍 at each location can be estimated directly
from the field 𝑋 and 𝜏. Because these parameters will
be conditioned on by entering into a splined regression, it
is advantageous that their values have reasonable spread.
To this end, one-to-one transformations of the parameters
such as log and logit are helpful.
Step 2 involves identifying a plausible set of 𝜏 values to

be used in Step 3. Because 𝑍(𝜏) represents a propensity
score, estimating 𝜏 directly in the final model is problem-
atic. It is clear from the definition of a propensity score that
the response 𝑌 should not provide any information on the
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6 GIFFIN et al.

propensity of exposure. However, estimating a response
model that includes 𝑍(𝜏) directly does just that, since 𝑌
can influence 𝑍(𝜏) through 𝜏. This problem is articulated
in McCandless et al. (2010), Saarela et al. (2015), Saarela
et al. (2016) Zigler et al. (2013), and Zigler (2016), while
steps can be taken to mitigate feedback from 𝑌 to 𝑍 issues
remain.
Our solution to this issue takes inspiration from the

standard two-step propensity score treatment in which
propensity scores are first estimated and treated as fixed,
and then conditioned on in an outcomemodel. Because 𝜏 is
unknown, estimating 𝑍(𝜏) in advance is impossible. How-
ever, estimating the model with feedback shown below
does give approximate estimates of 𝜏. From this approxi-
mate posterior of 𝜏, a set of reasonable 𝜏 values (𝜏1, … , 𝜏𝑇)

covering the plausible range of 𝜏 can be identified. Then
𝑍(𝜏1), … , 𝑍(𝜏𝑇) can be pre-computed and conditioned on
simultaneously in the response model in Step 3. Because
each of these 𝑍(𝜏𝑡) are computed before the response
model, the feedback issue is resolved.
Therefore, in Step 2 we estimate

𝑌𝑠 = 𝛽0 + 𝛿1𝐴𝑠 + 𝛿2𝐴𝜏,𝑠 +

𝐾∑
𝑘=1

spl𝑘

(
𝑍
(𝑘)
𝑠 (𝜏)

)
+ 𝜖𝑠, (6)

where 𝜖𝑠 is distributed independent Normal(0, 𝜎2). An
attempt to cut the feedback from𝑌 to𝑍 is made by estimat-
ing 𝜏 in the Metropolis step using only 𝐴𝜏 while holding
𝑍(𝜏) fixed. A recommended plausible set for 𝜏 might then
be {�̂�, �̂� ± 2𝑠, �̂� ± 4𝑠}, where �̂� and 𝑠 are the posterior mean
and standard deviation of 𝜏 in (6).
Finally in Step 3 each fixed 𝑍(𝜏𝑡) enters the final model

as

𝑌𝑠 = 𝛽0 + 𝛿1𝐴𝑠 + 𝛿2𝐴𝜏,𝑠 +

𝑇∑
𝑡=1

𝐾∑
𝑘=1

spl𝑡𝑘

(
𝑍
(𝑘)
𝑠 (𝜏𝑡)

)
+ 𝜖𝑠.

(7)

This model produces accurate posteriors on all variables.
Although each 𝜏𝑡 is fixedwithin the𝑍 terms, 𝜏 can still vary
within𝐴𝜏,𝑠. For the spline terms in (6)–(7), we use B-spline
expansions taken at fixed intervals over the variables’ range
of values (Eilers & Marx, 1996; Ngo &Wand, 2004). Before
running the regression, we remove any redundant 𝑍(𝑘)𝑠

that are collinear. Specifically, the spline columns that
the R “lm” function selects to remove due to collinear-
ity when running the analogous regression, we remove
as well (R Core Team, 2018). All regression coefficients
are estimated using Gibbs sampling; 𝜏, which now enters
only through 𝐴𝜏, uses a Metropolis step. If Assumptions
1–5 hold, we recover unbiased estimate of the exposure

effects. Comparing the forms of the assumed true model
(1) and the estimated model (7) shows that we have essen-
tially replaced the unknown ℎ(𝑋)with flexible functions
of 𝑍.

6 SIMULATION STUDY

We examine the performance of this method using sim-
ulated data, which take inspiration from the wildfire/air
pollution data in Section 7. Since we use a binary expo-
sure in Section 7 to indicate the presence of a fire, we
use 𝐴𝑠 ∈ {0, 1} here. In addition, we assume 𝐴𝑠 at dif-
ferent locations is independent conditional on local 𝑋𝑠.
This precludes the more complex cases of independence
conditional on 𝑋 or conditional dependence. Doing
this allows for more straightforward modeling of 𝑔𝜏,𝑠, as
shown in 6.1.
We generate the data as follows. Fields 𝑋, 𝐴, and

𝑌 are generated on 𝑛1∕2 × 𝑛1∕2 grids, with 𝑛 = 25, 100

on the unit square [0, 1] × [0, 1]. We generate 𝑁 = 100

independent repeated observations of the fields for each
dataset. Thus each complete dataset involves 𝑛 × 𝑁 dif-
ferent data points. The single covariate 𝑋𝑠 ∈ ℝ1 is a
mean zero, variance one, Gaussian process and with
isotropic exponential covariance and spatial range 0.6. The
binary direct exposure 𝐴𝑠 is determined locally and dis-
tributed independently Bernoulli{expit(𝑋𝑠 − 3)}. The spill-
over exposure takes the form 𝐴𝜏,𝑠 =

∑
𝑠′
𝜔𝜏(‖𝑠 − 𝑠′‖)𝐴𝑠′ ,

with 𝜔𝜏 a Gaussian kernel with 𝜏 = 0.3. Several con-
founders ℎ(𝑋)𝑠 are investigated: a weighted average
𝑊𝑠 is taken of the 𝑋 values using a Gaussian kernel
with 𝜏 = 0.5 and weights normalized to sum to 1. Sim-
ulations are run with ℎ(𝑋) set to 𝑊𝑠, −(𝑊𝑠)

3, and
exp(𝑊𝑠). Additionally, a final ℎ(𝑋) is included, which
consists of two small Gaussian kernels (𝜏 = 0.15), that are
centered two grid cells diagonally to the northeast and
southwest of 𝑠, respectively: 𝐴𝑠 =

∑
𝑠′∈{𝑠1,…,𝑠𝑛}∖𝑠

{𝜔𝜏(‖𝑠 −
𝑠′ + 𝑢‖)𝑎𝑠′ + 𝜔𝜏(‖𝑠 − 𝑠′ − 𝑢‖)𝑎𝑠′ }, where 𝑢 = (1∕9, 1∕9) is
the distance between adjacent points and 𝜔𝜏 is a Gaus-
sian kernel. This is included to assess sensitivity to
anomalous ℎ(𝑋).
Lastly, 𝑌𝑠 follows the form of (1), with 𝛽0 = 0, 𝛿1 = 𝛿2 =

1, and 𝜖𝑠 independently distributed standard normal. Each
setting is repeated 500 times.

6.1 Estimation

Following the three steps outlined in Section 5, we first
parametrize and estimate 𝑔𝜏,𝑠. Because 𝐴𝑠 is assumed to
be conditionally independent given 𝑋𝑠, we can estimate 𝑍
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GIFFIN et al. 7

components for the distributions of𝐴 and𝐴 separately.𝐴𝑠

is binary, so we assume it has a Bernoulli distribution with
the correctly specified propensity in which logit{E(𝐴𝑠)} is
affine in𝑋𝑠. Its distribution is then captured with the stan-
dard propensity score𝑍(1)𝑠 = pr(𝐴𝑠 = 1 ∣ 𝑋𝑠). Estimates are
obtained with a simple logistic regression from𝐴𝑠 onto𝑋𝑠,
with 𝑍(1)𝑠 set to the log of the fitted values.
We then choose a parametric form for the distribution

of 𝐴𝜏,𝑠. From our estimated 𝑍(1)𝑠 , we use different plausi-
ble 𝜏 values to generate simulated A, which we then use
to get an empirical distribution of simulated 𝐴. Examina-
tion of these distributions leads us to choose a zero-inflated
lognormal distribution for 𝐴𝑠:

pr
(
𝐴 = 0 ∣ 𝑋𝑠

)
= 𝑝0, pr

(
𝐴 = 𝑣 ∣ 𝐴 > 0,𝑋𝑠

)
=

1

𝑣𝜎
√
2𝜋

exp

{
−
(log 𝑣 − 𝜇)2

2𝜎2

}
.

Rather than use the three parameters 𝑝0, 𝜇, and 𝜎2 for our
𝑍
(2)
𝑠 ,𝑍(3)𝑠 , and𝑍(4)𝑠 , we choose threemore stable one-to-one

transformations: logit(𝑝0), log{E(𝐴)}, and log{Var(𝐴)}.
In place of Step 2 the (𝜏1, … , 𝜏𝑇) values used are

{0.25, 0.35, 0.45, 0.55}, which surround but do not contain
the true 𝜏 = 0.3. Rather than re-estimate these values with
each simulation repetition, we use this set to ensure com-
parability across repetitions. Finally, Step 3 uses Markov
chain Monte Carlo to estimate all variables in (7). Further
details are provided in the Supporting Information.
In addition to the proposed generalized propensity score

model, we estimate three comparison models: (i) the ora-
cle model, E(𝑌𝑠) = 𝐴𝑠 + 𝐴𝜏,𝑠 + ℎ(𝑋)𝑠, is the true model
that includes otherwise unknown ℎ(𝑋) as a covariate,
(ii) the local only model, E(𝑌𝑠) = 𝐴𝑠 + 𝐴𝜏,𝑠 +

∑
𝑗
spl𝑗(𝑋

𝑗
𝑠 ),

conditions on local covariates using splines, and (iii) the
naive model, E(𝑌𝑠) = 𝐴𝑠 + 𝐴𝜏,𝑠, simply regresses the out-
come onto the exposures, but does not incorporate any
causal conditioning.

6.2 Simulation results

Tables 1 and 2 show the simulation bias and coverage for
the 10 × 10 grids. The Naive model does very poorly in all
scenarios, indicating substantial confounding between 𝐴

and 𝑌. The generalized propensity score model performs
substantially better than both the Local only and the Naive
models, although, intuitively, the Local only model does
show reasonable direct effect estimates. In most cases, the
generalized propensity score model performs comparably
to the Oracle model. Results for the 5 × 5 grids are similar.
A sensitivity analysis that examines robustness to incor-
rectly specified error and poorly fitting propensity score
models is given in Web Appendix D.

7 ESTIMATING THE CAUSAL EFFECT
OFWILDLAND FIRES ON AIR
POLLUTION

Wildland fires release harmful particles and gasses impact-
ing air quality near the fire and downwind (Larsen et al.,
2018). Fine particulate matter smaller than 2.5 𝜇m (PM2.5)
have been linked to adverse cardiorespiratory health out-
comes (Brook, 2007; Corrigan et al., 2018; Dominici et al.,
2006; Rappold et al., 2012;Weber et al., 2016). For these rea-
sons, understanding the causal effect of wildland fires on
air pollution across space is of significant interest. Specifi-
cally, we are interested in the time-averaged causal effect of
wildfires on ambient PM2.5 concentrations across Western
United States from 2005 to 2018.

7.1 Data

The response 𝑌 consists of 24-hour average PM2.5 con-
centrations measured in 𝜇g/m3 at 416 measurement sites,
some of which are plotted in Figure 2. Observations are
collected every one, three or six days depending on the sta-
tion. The data are publicly available and provided by the
Environmental Protection Agency (Environmental Protec-
tion Agency, 2019). For each location, the long-term mean
is subtracted.
The dates and locations of fires are compiled from

a mix of satellite data and incident reports reported to
the recently closed Geospatial Multi-Agency Coordination
(GeoMAC) Wildland Fire Support program (Geospatial
Multi-Agency Coordination, 2019). Moving forward these
datasets will be available through the National Inter-
agency Fire Center (National Interagency Fire Center,
2020). Because the focus of our analysis is on PM2.5 only
fires larger than 1000 acres are included in the analysis.
Among the 3,930 fires, 34.8% of fires are missing either a
start or end date. For these fires, we impute missing values
by modeling fire duration as a linear function of log(area
burned).
Finally, 11 confounders 𝑋1,… , 𝑋11 are included in the

exposure balancing score. These include the four compo-
nents of the National Fire Danger Rating System (energy
release component, burning index, ignition component,
and spread index) that are used to monitor daily risk
of fire in the United States. The other variables used
in the balancing score include elevation, daily temper-
ature, relative humidity, wind speed, precipitation level,
the Keetch–Byram drought index, and the numeric day of
the year. These variables are compiled and made available
through the Wildland Fire Assessment System (Wildland
FireAssessment System, 2019). A snapshot of the exposure,
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8 GIFFIN et al.

TABLE 1 Simulation bias for 10 × 10 grids multiplied by 1000, with standard errors

𝒉(𝑿)𝒔 Model 𝜹𝟏 𝜹𝟐 𝝉

𝑊𝑠 Oracle 0.2 (1.8) −0.7 (0.9) 0.1 (0.2)
Generalized propensity score 1.4 (1.9) 0.5 (1) 0 (0.2)
Local Only 2.6 (2) −72.1 (1.1) 69.1 (0.4)
Naive 236.7 (1.9) 52.7 (1.5) 79.2 (0.5)

−(𝑊𝑠)
3 Oracle 0.1 (1.8) −0.7 (0.9) 0.1 (0.2)

Generalized propensity score 1.1 (1.9) −0.1 (1) 0.1 (0.2)
Local Only 1 (2.1) 28.5 (1.3) −39.7 (0.4)
Naive −205.9 (2.8) −104.1 (1.6) −53.1 (0.6)

exp(𝑊𝑠) Oracle 0.3 (1.8) −0.6 (0.9) 0.1 (0.2)
Generalized propensity score 1.5 (1.9) 0.9 (1.1) 0.1 (0.3)
Local Only 2.8 (2.3) −101.4 (2.1) 120.7 (1.4)
Naive 381.3 (2.8) 105.3 (2.3) 114.2 (1.3)

2 circles Oracle −0.9 (1.8) 0.5 (0.9) 0.1 (0.2)
Generalized propensity score −0.9 (2) −0.1 (1.2) 0.5 (0.3)
Local Only 0.1 (2.1) −39 (1.2) 62.5 (0.4)
Naive 244.1 (2) 94.1 (1.5) 72.4 (0.5)

TABLE 2 Simulation coverage for 10 × 10 grids, with standard errors

𝒉(𝑿)𝒔 Model 𝜹𝟏 𝜹𝟐 𝝉

𝑊𝑠 Oracle 95 (1) 94.6 (1) 93.6 (1.1)
Generalized propensity score 93.8 (1.1) 94.4 (1) 93.6 (1.1)
Local Only 93.2 (1.1) 8.8 (1.3) 0 (0)
Naive 0 (0) 27.6 (2) 0 (0)

−(𝑊𝑠)
3 Oracle 95.2 (1) 94.6 (1) 93.8 (1.1)

Generalized propensity score 95.2 (1) 93.8 (1.1) 92.8 (1.2)
Local Only 93.8 (1.1) 77.2 (1.9) 0 (0)
Naive 2 (0.6) 6 (1.1) 0 (0)

exp(𝑊𝑠) Oracle 95.4 (0.9) 94.2 (1) 93.8 (1.1)
Generalized propensity score 93 (1.1) 90.2 (1.3) 90.2 (1.3)
Local Only 90.8 (1.3) 4.6 (0.9) 0 (0)
Naive 0 (0) 8.2 (1.2) 0 (0)

2 circles Oracle 95.6 (0.9) 95 (1) 93.4 (1.1)
Generalized propensity score 94.6 (1) 89.8 (1.4) 90.4 (1.3)
Local Only 95.2 (1) 47.4 (2.2) 0 (0)
Naive 0.2 (0.2) 4 (0.9) 0 (0)

response, energy release component, ignition component,
Keetch-Byram drought index, and relative humidity are
shown in Figure 2.
Our analysis treats each daily air observation as the cen-

ter of a 9 × 9 grid, with a height and width of 9 degrees
latitude/longitude. For each such grid, only the center grid
cell has a response 𝑌𝑠 value. However, all 81 grid cells
have covariates 𝑋𝑗

𝑠 and direct exposure 𝐴𝑠 values. Each
grid cell receives direct exposure 𝐴𝑠 = 1 if there was at
least one fire in the cell on that particular day; 0 other-
wise. Each𝑋𝑗

𝑠 value is taken to be themean of the observed

covariates in each cell/day combination. For cell/days with
no observed values, a value is imputed from nearby cells
using a kernel smoother as implemented in the “fields”
R package (Nychka et al., 2014). The end result is 592,274
observed grids, each of which contains 9 × 9 grids for 𝐴

and𝑋𝑗

, 𝑗 = 1, … , 11, aswell as a centered𝑌𝑠 value. Finally,
any grid cells whose centers extend outside of the Western
United States are disregarded and excluded from analysis.
In this context, the direct effect of exposure consists of the
causal effect on𝑌𝑠 froma fire in the same grid cell (𝐴𝑠 = 1),
whereas the indirect effect consists of the causal effect on
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GIFFIN et al. 9

F IGURE 2 Data snapshot on July 1, 2012. Energy Release Component (ERC) and Ignition Component (IC) are two of National Fire
Danger Rating System Components; KBDI refers to the Keetch-0Byram drought index. (a) Fires are shown as cross-hatched circles and PM2.5

locations are shown as solid circles. This figure appears in color in the electronic version of this article, and any mention of color refers to that
version

𝑌𝑠 from 𝐴𝑠′ in other cells (𝑠 ≠ 𝑠′). As in the simulation
study, each of these grids is treated as independent. In addi-
tion to the generalized propensity scoremodel, we estimate
a model that conditions on the local covariates only, using
splines. Though pre-processing and imputing the covari-
ates 𝑋(𝑗) is inescapable given shape of the data, we do not,
strictly speaking, account for this imputation (and likely
smoothing) in our analysis. This potentially reduces the
accuracy of our propensity score, and thereby increases the
uncertainty in our final estimates. Our standard errors also
do not reflect this potential uncertainty.
We use the same form of 𝑔𝜏,𝑠 as given in Section 6. 𝐴𝑠 at

different locations are assumed to be conditionally inde-
pendent given 𝑋𝑠, which allows us to estimate separate
components for 𝐴𝑠 and 𝐴𝜏,𝑠. The propensity component
logit{E(𝐴𝑠)} is estimated as a linear model of 5-element B-
splines of 𝑋1

𝑠 , … , 𝑋11
𝑠 , and the propensity of 𝐴 is assumed

to be zero-inflated lognormal. Conditioning on local 𝑋𝑠

only is justified because we posit that local 𝑋𝑠 contains the
vast majority of information about the propensity of fire,
with distant locations givingminimal information. Finally,
we note that though the data are longitudinal, we assume
i.i.d. error. Beyond including the numeric day of the year
as a covariate, each 9 × 9 grid is considered independent
over time.
Before proceeding, we briefly review the key assump-

tions that our methodmakes, and why they are reasonable

for this application. We assume all relevant confounders
are stored in 𝑋. To ensure this is approximately accurate,
we have included as many potential confounders as pos-
sible. Our analysis assumes the errors are independent
over time and space. To satisfy this assumption, we have
removed station-level means and included day of the year
effects and several relevant covariates to the mean model.
Finally, we make the assumption that the exposures 𝐴
are independent given 𝑋𝑠. This is reasonable because the
chance of a fire locally is determined by the conditions
locally, and notwithin neighboring cells. The cells used are
large enough that the spread of fire from cell to cell will
be rare.

7.2 Results

Table 3 shows the results. The causal direct effect esti-
mate given by the generalized propensity score model is
1.03 𝜇g/m3 of PM2.5, or 11.9% of the annual mean PM2.5

observed throughout. The range parameter 𝜏 is estimated
to be 1.53 degrees of latitude/longitude, suggesting that
fires impact up to roughly 3 degrees away. The estimate of
0.13 for 𝛿2 represents the height of spill-over kernel at its
peak. All of 𝛿1, 𝛿2, and 𝜏 are highly significant. The esti-
mated direct effect from the local-only model is 12% larger
than the estimate from the generalized propensity score
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10 GIFFIN et al.

TABLE 3 Posterior mean (95% credible interval)

Direct Effect (𝜹𝟏) Spill-over Effect (𝜹𝟐) Bandwidth (𝝉)
Local Only 1.15 (1.05,1.25) 0.11 (0.09, 0.12) 17.37 (8.28, 42.12)
Generalized propensity score 1.03 (0.93, 1.14) 0.13 (0.03, 0.25) 1.53 (1.17, 2.88)

F IGURE 3 Causal effect of a fire on PM2.5 by distance, as measured in degrees of latitude and longitude. The left axis shows the raw
causal increase in PM2.5; the right axis shows this as a percentage of annual mean PM2.5 levels

model, and the local-only model has an implausibly large
and imprecise estimate of 𝜏.
Figure 3 illustrates the implied causal effect of fire at

different distances from the generalized propensity score
model. Taking the center of a grid cell as our vantage
point, the direct effect of one or more fires in the same
grid cell has a time-averaged causal increase of 1.03 𝜇g/m3

of PM2.5, which corresponds to the step from 0 to 0.5
in the east/west or north/south direction; slightly more
than 0.5 when at an angle. As the fire gets progressively
further away, the causal effect decays smoothly until it
approaches 0 roughly 3 grid cells away. Intuitively this
kernel extending out from 0 is completely determined
by 𝜏 and 𝛿2: 𝜏 corresponds to the width of the kernel;
𝛿2 is the height of the kernel at its peak. Because a sig-
nificant amount of the fire exposure data was imputed,
the analysis was repeated without including fires that
had missing start or end dates. This was done by setting
𝐴𝑠 = 0 for these fires. This analysis gave broadly simi-
lar results: 𝛿1 = 1.18 (1.05, 1.31), 𝛿2 = 0.19 (0.07, 0.34),
�̂� = 1.26 (1.08, 1.56). The fact that the estimates for 𝛿1 and
𝛿2 are higher here may indicate that some fire-days in
the original analysis may have been erroneously imputed,
diluting the estimated exposure effects.
The wildfire analysis makes several simplifications that

are important to consider. First, treating 𝐴𝑠 as binary sac-

rifices information on the number and size of fires in a
given grid cell. Extending thismethod to incorporate infor-
mation on the size of the fire would preserve information.
Moreover, we assume 𝜏, 𝛿1, and 𝛿2 are fixed, although it
is possible that they naturally vary across different fires
and locations. However, there is not enough information
in the data to identify these differences. Additionally, we
do not consider time-varying effects, as we focused on
the contribution to time-averaged PM2.5 levels. Another
important simplification is the treatment of separate days
as independent. There are temporal trends in the exposure,
response, and covariates, and our assumption of indepen-
dence may inflate the amount of information that our data
appear to have. To test the sensitivity to the form of the ker-
nel function in the definition of the indirect exposure, we
refit the wildfire data with two additional kernels. How-
ever, the direct and spill-over effect estimates are similar
for all kernels. These alternative results are provided in
Web Appendix D.

8 DISCUSSION

The generalized propensity score method presented here
establishes a new framework to recover causal direct and
spill-over effects in the presence of spatial interference, as
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GIFFIN et al. 11

well as estimate the range of the interference. The inher-
ent dimensionality issues of the problem are dealt with via
a novel propensity score approach, which uses a Bayesian
spline-based regression model and a dimension reduction
approximation to make the problem tractable. However,
there are several critical yet strong assumptions that must
hold for our method to perform well. The method hinges
on a correctly specified propensity score 𝑔𝜏,𝑠(𝑋) as well
as a correctly specified potential outcomes model in (1).
This includes accommodating conditionally dependent
𝐴, and correctly characterizing the spatial dependence
on 𝐴𝑠 from nearby 𝑋. Moreover, the no unmeasured con-
founders assumption is always a strong, but necessary,
assumption for causal inference on observational data. In
practice, considerable effort should be made to include
any potential confounders for this reason. We rely cru-
cially on the assumption that the distribution of exposures
(𝐴𝑠, 𝐴𝑠) can be encapsulated with the parameters 𝑍𝑠 of
the propensity score 𝑔𝜏,𝑠. This will rarely be completely
accurate in practice, so effort should be made to select
an appropriate parametric form for 𝑔𝜏,𝑠. We assume that
the exposure effects and range are constant across space
and time, due to the difficulty of generalizing this assump-
tion. However, allowing for spatially varying exposure
effects and particularly range are a promising direction for
future research.
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Web Appendix A

Proof of Theorem 1:

Claim 1: gτ is a balancing score.

Proof 1 By the definition of a propensity score, gτ,s(XD) has the property that pr{(As = η, Ãs =

ν) | XD, gτ,s} = pr{(As = η, Ãs = ν) | XD} which implies XD ⊥⊥ (As, Ãs) | gτ,s. And thus gτ,s

is a balancing score for our covariates XD. As noted by Hirano & Imbens (2004) this balancing

is a characteristic of gτ,s, and does not rely on any unconfoundedness in the response yet.

Claim 2: for all levels ν,

pr
[
As = η, Ãτ,s = ν | Ys(as = η, ãs = ν), gτ,s(η, ν,XD)

]
= pr{As = η, Ãs = ν | gτ,s(η, ν,XD)}.

(To ease notation, now let As = (As, Ãτ,s) and as = (as, ãτ,s).)

1



Proof 2 We can then write

pr
{
As = (η, ν) | gτ,s(η, ν,XD)

}
= fAs

{η, ν | gτ,s(η, ν,XD)}

=

∫
fAs
{η, ν | XD, gτ,s(η, ν,XD)} dFXD {XD | gτ,s(η, ν,XD)}

=

∫
fAs

(η, ν | XD) dFXD {XD | gτ,s(η, ν,XD)}

=

∫
gτ,s(η, ν,XD) dFXD {XD | gτ,s(η, ν,XD)}

= gτ,s(η, ν,XD),

pr
[
As = (η, ν) | Ys

{
as = (η, ν)

}
, gτ,s(η, ν,XD)

]
= fAs

[ν | gτ,s(η, ν,XD), Ys {as = (η, ν)}]

=

∫
fAs

[η, ν | XD, gτ,s(η, ν,XD), Ys {as = (η, ν)}] dFXD [XD | Ys {as = (η, ν)} , gτ,s(η, ν,XD)]

=

∫
fAs

(η, ν | XD) dFXD [XD | Ys {as = (η, ν)} , gτ,s(η, ν,XD)]

=

∫
gτ,s(η, ν,XD) dFXD [XD | Ys {as = (η, ν)} , gτ,s(η, ν,XD)]

= gτ,s(η, ν,XD).

Combining these gives Claim 2, which then implies our result.

Web Appendix B

Bayesian estimation details for simulation:

Uninformative priors are used for all parameters except τ which receives a mildly informative

prior. Markov chain Monte Carlo iterations begin at maximum likelihood values for all parameters

except τ , which requires an initial estimate. A burn-in length of 7,500 iterations is used, after

which we sample 22,500 iterations. Gibbs sampling is used for all parameters except τ , which

we transform and sample using Metropolis sampling, with an adaptive tuning scheme during the

2



burn-in. Specifically, we use a normal proposal distribution for log(τ − 1
d
), where d is the number

of grid cells along each axis. This prevents the τ samples from becoming pathologically small,

in which case the kernel cannot reach the neighboring cells and δ2 becomes arbitrary large. The

comparison models are estimated with similar parameter settings.

For convenience, define β as the vector of β0, δ1, δ2, and the spline coefficients; let µs =

β0 +δ1As+δ2Ãs+
∑J

j=1 b
(0)
j B

(0)
j (es)+

∑T
t=1

∑q
k=1

∑J
j=1 b

(k)
j,t B

(k)
j,t {Z

(k)
s (τt)}; let M be the matrix

with columns 1(nN), AvecD , Ã(τ)vec, and the B-splines bases; and let Σ0 = diag(1000, . . . , 1000).

We then specify

Ys | τ,β, σ2
ε ∼ Normal, {µs(τ,β), σ2

ε I},

log(τ − 1/d) ∼ Normal(−1, 1),

σ2
ε ∼ InverseGamma(0.001, 0.001),

β ∼ Normal(0, Σ0),

β | τ, σ2
ε ∼ Normal{(Σ−10 +MTM/σ2

ε )
−1MTY vec

D /σ2
ε , (Σ−10 +MTM/σ2

ε )
−1},

σ2
ε | β, τ ∼ InverseGamma{0.001 + (nN)/2, 0.001 + (Y vec

D −Mβ)>(Y vec
D −Mβ)/2},

log(τ − 1/d) | β, σ2
ε ∝ NormalY (µvec, σ2

ε I)× Normallog(τ−1/d)(0, 100).

Web Appendix C: Simulation sensitivity analysis

To see how robust the method is to incorrect response form and poor-fitting propensity scores,

we conduct a small sensitivity analysis. Our method assumes an i.i.d. standard normal error, but

the “true” error term is alternated between correctly specified i.i.d. standard normal error, as well

incorrectly specified i.i.d. error with a centered exponential distribution and spatially dependent

error generated from a Gaussian process with the same spatial range as the exposure (τ = 0.3).

All “true” error terms have mean zero and variance one. We also alternate between having our

method utilize a propensity score with a zero-inflated lognormal and exponential distribution. The

former likely has a better fit to the distribution of Ã, whereas the exponential distribution has fewer

3



parameters and likely has a worse fit. Because we do not generate the Ã data with a propensity

score, we cannot call these correctly/incorrectly specified. For all settings the “2 circles” h(XD) is

used and 500 repetitions run.

Tables 3 and 4 give the bias and coverage under these different scenarios. The point estimation

appears largely robust to the deviations from the original settings. Bias does not appear markedly

worse in any of the settings, with the exception of the exponential propensity score/incorrectly

specified exponential error term, in which δ1 has some negative bias. The coverage tends to be

reasonable for all settings with i.i.d. error. However, coverage is decidedly low for δ2 and τ under

the spatial error settings. Of course, if exploratory analysis suggests the residuals are dependent,

then spatial basis functions, covariates or correlation could be added to the Bayesian hierarchical

model to improve uncertainty quantification.

Table 3: Simulation bias (standard errors) under alternative propensity score forms and
correctly/incorrectly specified response form. Simulations use 10× 10 grids and the “2 circles”
h(XD) as described above. The zero-inflated lognormal (ZILN) propensity score is the
recommended propensity score; the exponential propensity score is assumed to be a poor fit for
the distribution of Ã. The method assumes i.i.d. standard normal error. All “true” error terms
have mean zero and variance one. Bias and standard errors are multiplied by 1,000.

Setting δ1 δ2 τ

ZILN prop. score, i.i.d. normal error -0.9 (2) -0.1 (1.2) 0.5 (0.3)

ZILN prop. score, i.i.d. exponential error 1.1 (1.9) -0.4 (1.1) 0.3 (0.3)

ZILN prop. score, spatial normal error -1.3 (2) -1.7 (1.9) 0.5 (0.6)

Exponential prop. score, i.i.d. normal error -1.5 (2) 1.8 (1.2) -0.2 (0.3)

Exponential prop. score, i.i.d. exponential error -5.8 (1.9) -0.8 (1.2) 0.1 (0.3)

Exponential prop. score, spatial normal error 0.1 (1.9) 0.1 (1.8) 0.6 (0.6)

Web Appendix D

Wildfire analysis under alternative kernels:

To test the sensitivity to the form of the kernel function in the definition of the indirect ex-

posure, we refit the wildfire data with two additional kernels. The Gaussian kernel is defined as

4



Table 4: Simulation coverage (standard errors) under alternative propensity score forms and
correctly/incorrectly specified response form. Simulations use 10× 10 grids and the “2 circles”
h(XD) as described above. The zero-inflated lognormal (ZILN) propensity score is the
recommended propensity score; the exponential propensity score is assumed to be a poor fit for
the distribution of Ã. The method assumes i.i.d. standard normal error. All “true” error terms
have mean zero and variance one.

Setting δ1 δ2 τ

ZILN prop. score, i.i.d. normal error 94.6 (1) 89.8 (1.4) 90.4 (1.3)

ZILN prop. score, i.i.d. exponential error 96.2 (0.9) 92 (1.2) 91.8 (1.2)

ZILN prop. score, spatial normal error 94.6 (1) 70.2 (2) 52 (2.2)

Exponential prop. score, i.i.d. normal error 94.6 (1) 87.4 (1.5) 90.4 (1.3)

Exponential prop. score, i.i.d. exponential error 94.2 (1) 90.2 (1.3) 90.8 (1.3)

Exponential prop. score, spatial normal error 94.8 (1) 69.8 (2.1) 57.4 (2.2)

exp{−(d/τ)2}; the exponential kernel is defined as exp(−d/τ); and the uniform kernel is defined

as 1(d ≤ τ), where d is euclidean distance. However, the direct and spill-over effect estimates are

similar for all kernels.

Table 5: Posterior mean (95% interval) exposure effects for generalized propensity score model,
with alternative kernels.

Kernel Direct Effect (δ1) Spill-over Effect (δ2) Bandwidth (τ )

Gaussian 1.03 (0.93,1.14) 0.13 (0.03, 0.25) 1.53 (1.17, 2.88)

Exponential 1.04 (0.94, 1.15) 0.04 (0.01, 0.12) 4.04 (1.19, 15.51)

Uniform 1.03 (0.92, 1.13) 0.06 (0.03, 0.08) 2.33 (1.73, 2.51)
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