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SUMMARY

Multiple imputation is popular for handling item nonresponse in survey sampling. Current multiple
imputation techniques with complex survey data assume that the sampling design is ignorable. In this
paper, we propose a new multiple imputation procedure for parametric inference without this assumption.
Instead of using the sample-data likelihood, we use the sampling distribution of the pseudo maximum
likelihood estimator to derive the posterior distribution of the parameters. The asymptotic properties of the
proposed method are investigated. A simulation study confirms that the new procedure provides unbiased
point estimation and valid confidence intervals with correct coverage properties whether or not the sampling
design is ignorable.

Some key words: Approximate Bayesian computation; Bayesian inference; Informative sampling; Item nonresponse;
Pseudo maximum likelihood estimator.

1. INTRODUCTION

Item nonresponse is frequently encountered in survey sampling and imputation is a popular tool for
handling item nonresponse. Multiple imputation, proposed by Rubin (1987, 1996) and further extended
by Rubin & Schenker (1986), has been used as a general method for estimating the precision of sample
estimates in the presence of imputed values. The technique has also been applied to a number of large-scale
surveys (Schenker et al., 2006). See Little & Rubin (2002) for a comprehensive overview.

An attractive feature of multiple imputation is that complete-data analyses can be applied straight-
forwardly to the imputed datasets and these multiple results are summarized by an easy-to-implement
combining rule for inference. In multiple imputation, M completed datasets are created. For each dataset,
the estimate θ̂I (k) of a population parameter θ (k = 1, . . . , M ) is computed. The overall estimate is the
average of these estimates, θ̂MI = M −1

∑M
k=1 θ̂I (k). The multiple imputation variance estimator of θ̂MI is

V̂MI = UM + (
1 + M −1

)
BM , where UM = M −1

∑M
k=1 V̂I (k) accounts for the within-imputation variance,

BM = (M − 1)−1 ∑M
k=1(θ̂I (k)− θ̂MI)

2 accounts for the between-imputation variance, and V̂I (k) is the variance
estimator computed from the kth dataset, treating imputed values as if they were observed values.

Current practice for multiple imputation assumes that the sampling design is ignorable (Rubin, 1976)
or noninformative (Pfeffermann & Sverchkov, 1999), so the sample distribution equals the population
distribution. The asymptotic properties of multiple imputation under ignorable sampling designs have
been investigated extensively, for example by Rubin (1987), Schenker & Welsh (1988), Kott (1995), Wang
& Robins (1998), Kim et al. (2006), and Yang & Kim (2016). When the sampling design is nonignorable,
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however, the sample distribution may not equal the population distribution and ignoring the sampling design
can lead to biased estimation (Scott, 1977; Pfeffermann, 1993; Pfeffermann et al., 1998). In particular, the
multiple imputation estimator can be biased even when a design-unbiased analysis method is applied to
the imputed data. The usual recommendation in this case is to augment the imputation model by including
the design information in the model, so that the sampling design becomes ignorable under the augmented
model. While such an augmented model approach is promising, all the information related to the sampling
design is not always available to data analysts. Also, the sample obtained from complex sampling often
undergoes calibration, nonresponse adjustment, poststratification, raking and weight trimming adjustment.
It is not clear how to incorporate such components into the imputation model.

In this paper, we develop a new multiple imputation method for complex sampling that does not use the
augmented model approach. To achieve this, we propose a new data augmentation algorithm to carry out
Bayesian inference, where we use the sampling distribution of the pseudo maximum likelihood estimator
to derive the posterior distribution of the parameters. The proposed approach is a version of approximate
Bayesian computation using the posterior distribution of parameters conditional on summary statistics
(Fearnhead & Prangle, 2012; Soubeyrand & Haon-Lasportes, 2015). Our approach differs from the tradi-
tional Bayesian imputation approach in that we do not necessarily specify the full sample-data likelihood.
The proposed multiple imputation method is similar in spirit to the calibrated Bayesian approach (Little,
2012) as the resulting inference is based on a design-based inference framework while maintaining the
advantage of Bayesian analysis.

2. METHODOLOGY

Suppose that the finite population FN = {(xi, yi) : i ∈ UN } with UN = {1, . . . , N } is a random sample
from an infinite population ζ with joint density f (y | x)f (x), where f (y | x) = f (y | x; θ) for some
θ ∈ � ⊂ R

d and f (x) is completely unspecified. From the realized finite population, we select a sample
A ⊂ UN by a probability sampling design. Each unit in the sample is associated with a sampling weight
ωi, which is determined by some design variables. Often, only the sampling weight is made available to
the public for confidentiality reasons. The sampling weight can be obtained from complex weighting such
as poststratification. We assume that Ŷn = ∑

i∈A wiyi is asymptotically design-unbiased for Y = ∑N
i=1 yi

and that the variance estimator, V̂n = ∑
i∈A

∑
j∈A �ijyiyj, is design-consistent for var(Ŷn).

From the sample, suppose that xi is always observed but yi is subject to missingness. Let δi take the value
1 if yi is observed and 0 otherwise. Let Xn = {xi : i ∈ A}, Yn = {yi : i ∈ A}, and Yn = (Yobs, Ymis), where
Yobs and Ymis are the observed and missing parts of Yn, respectively. We assume missingness at random in
the sense that pr(yi ∈ B | xi, δi = 1) = pr(yi ∈ B | xi) for any measurable set B and for all xi, which is
assumed at the population level and can be called population missingness at random according to Berg
et al. (2016). The missingness mechanism here is conceptualized as a function of inherent characteristics
of the units in the population and it does not depend on the sample design. If the missingness mechanism
is viewed as a process amenable to scientific examination (Schafer, 1997), it is natural to define such
mechanisms at the population rather than the sample level. This would hold if xi contains all predictors for
both yi and δi. In practice, we may rely on subject-matter knowledge to collect a rich set of variables so
that this assumption holds at least approximately. Extension of our method to population missingness not
at random will be a topic of future study. Under population missingness at random, the imputed estimator
ŶI = ∑

i∈A wi{δiyi + (1 − δi) y∗
i } is approximately design-model unbiased for Y if y∗

i , the imputed value
for yi, satisfies E(y∗

i − yi | xi) = 0.
In classical multiple imputation, the imputed values are generated as follows:

Step 1. Generate θ∗ from the posterior density,

θ∗ ∼ p(θ | Xn, Yobs) =
∫

Ls(θ | Xn, Yn)π(θ) dYmis∫ ∫
Ls(θ | Xn, Yn)π(θ) dYmis dθ

, (1)
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where Ls(θ | Xn, Yn) is the sample-data likelihood of (Xn, Yn) viewed as the function of θ and π (θ) is the
prior density of θ .

Step 2. For each unit with δi = 0, generate yi from the imputation model evaluated at θ∗, y∗
i ∼

f (yi | xi; θ∗).

To generate θ∗ from (1), the data augmentation algorithm (Tanner & Wong, 1987) can be used, which
iterates the following two steps until convergence:

I-step. Given the parameter value θ∗, generate y∗
i ∼ f (yi | xi; θ∗) for δi = 0.

P-step. Given the imputed values y∗
i , generate

θ∗ ∼ p(θ | Xn, Y ∗
n ) = Ls(θ | Xn, Y ∗

n )π(θ)∫
Ls(θ | Xn, Y ∗

n )π(θ) dθ
, (2)

where Y ∗
n = (Yobs, Y ∗

mis) uses the imputed values generated from the I-step.

Here the I-step is the imputation step and the P-step is the posterior sampling step. Under an ignorable
sampling design, the sample-data likelihood can be based on the population model, i.e., Ls(θ | Xn, Yn) =∏

i∈A f (yi | xi; θ). To achieve sampling design ignorability, all design features should be built into the
imputation model. Researchers have investigated multiple imputation for different sampling schemes, and
argued that the imputation model should include random cluster effects for cluster samples, fixed stratum
effects for stratified samples, and the size variable for probability-proportional-to-size sampling (Rubin,
1996; Yuan & Little, 2007; Chen et al., 2010). While such an augmented model approach can make the
sampling design ignorable in principle, specifying the correct augmented model is difficult (Reiter et al.,
2006). Furthermore, multiple imputation using the augmented model approach can still result in biased
estimation because the missingness mechanism can become nonignorable if the augmented covariates
share an unobserved common cause with the missingness mechanism (Berg et al., 2016). See Setting II in
the simulation study.

We consider an alternative approach that does not use the sample-data likelihood Ls(θ) in (1) and does
not require the sampling mechanism to be ignorable. To describe the proposed approach, we first consider
the pseudo maximum likelihood estimator of θ in f (y | x; θ) under complete response by solving

∑
i∈A

wiS(θ ; xi, yi) = 0, (3)

where S(θ ; x, y) = ∂ log f (y | x; θ)/∂θ is the score function of θ . The pseudo maximum likelihood
estimator is widely adopted in survey sampling, as it can provide consistent parameter estimators even
under nonignorable sampling designs (Godambe & Thompson, 1986; Pfeffermann, 1993; Chambers &
Skinner, 2003, Ch. 2; Korn & Graubard, 2011, Ch. 3). The sampling variance of θ̂ is estimated by the
linearization formula (Binder, 1983; Kim & Park, 2010). Under the regularity conditions discussed in
Fuller (2009), var(θ̂ | θ)−1/2(θ̂ − θ) → N (0, I ) in distribution as n → ∞, where var(θ̂ | θ) is the
covariance matrix of θ̂ .

Next, using the idea of approximate Bayesian computation, we can construct a new posterior density
of θ conditional on θ̂ = θ̂ (Xn, Yn), which can be written as

pg(θ | Xn, Yn) = g(θ̂ | θ)π(θ)∫
g(θ̂ | θ)π(θ) dθ

, (4)

where g is the sampling distribution of θ̂ and π (θ) is a prior density of θ . Under the existence of missing
data, instead of using (2), we propose using the following P-step in the data augmentation algorithm:
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New P-step. Given the imputed values y∗
i , generate

θ∗ ∼ pg(θ | Xn, Y ∗
n ) = g(θ̂∗ | θ)π(θ)∫

g(θ̂∗ | θ)π(θ) dθ
, (5)

where θ̂∗ = θ̂ (Xn, Y ∗
n ) is the solution to (3) using the imputed values generated from the I-step.

Roughly speaking, in the original P-step, the likelihood function of θ is based on the sample data (Xn, Yn),
whereas in the new P-step, the likelihood function of θ is replaced by the sampling distribution of the
pseudo maximum likelihood estimator θ̂ (Xn, Yn). The new data augmentation algorithm implies that the
posterior density based on the observed data is

pg(θ |Xn, Yobs) =
∫

g(θ̂ |θ)π(θ) dYmis∫ ∫
g(θ̂ |θ)π(θ) dYmis dθ

. (6)

Once M imputed datasets are generated from the above data augmentation method, we can apply Rubin’s
formula to combine estimates from each dataset.

Remark 1. Under an ignorable sampling design, the posterior density pg(θ | Xn, Yn) in (4) equals the
classical posterior density in (2). To see this, let ls(θ) = n−1

∑
i∈A log f (yi | xi; θ) be the loglikelihood

of θ . Since the sampling design is ignorable, the maximum likelihood estimator θ̂ obtained from ls(θ) is
consistent for θ . By a Taylor expansion,

Ls(θ | Xn, Yn) = exp{ls(θ)} ∼= exp
{

ls(θ̂) + l̇s(θ̂)(θ − θ̂ ) − 1

2
(θ − θ̂ )TIs(θ̂)(θ − θ̂ )

}
,

where l̇s(θ) = ∂ls(θ)/∂θT, Is(θ) = −∂2ls(θ)/(∂θ∂θT), and An
∼= Bn means that An − Bn = op(1). Since θ̂

satisfies l̇s(θ̂) = 0, we have Ls(θ | Xn, Yn) ∼= exp{ls(θ̂)} × exp{−(θ − θ̂ )TIs(θ̂)(θ − θ̂ )/2}. Thus, writing
g(θ̂ | θ) ∝ exp{−(θ − θ̂ )TIs(θ̂)(θ − θ̂ )/2}, we have Ls(θ | Xn, Yn) ∼= g(θ̂ | θ)K(Xn, Yn) for some K(Xn, Yn)

that does not depend on θ , which proves the equivalence between (2) and (4). The statistic θ̂ = θ̂ (Xn, Yn) is
essentially a sufficient statistic for θ . In general, g(θ̂ | θ) can be well approximated by a normal distribution
with mean θ and variance var(θ̂ | θ) for large samples.

Remark 2. The proposed multiple imputation procedure extends readily to the case with multivariate
variables that are subject to item nonresponse. Let Yobs,i and Ymis,i be the observed and missing items for
unit i. In the new procedure, the P-step remains the same, which uses the posterior density of θ given θ̂ .
The I-step now generates Y ∗

mis,i ∼ f (Ymis,i | Yobs,i; θ∗), which can be obtained by Bayes formula according
to different missing patterns. If f (Ymis,i | Yobs,i; θ) is not in a closed form, Monte Carlo methods are needed
in this step.

3. MAIN RESULT

To discuss the asymptotic properties of our procedure, we first assume a sequence of finite populations
and samples with finite fourth moments as in Isaki & Fuller (1982). The finite population is a random sample
from a superpopulation model ζ as presented in § 2. We assume the following regularity conditions:

Condition 1. Sufficient conditions for asymptotic normality of the pseudo maximum likelihood
estimator hold for the sequence of finite populations and samples.

Condition 2. The prior density π is positive and satisfies a Lipschitz condition over �, i.e., there exists
C1 < ∞ such that |π(θ1) − π(θ2)| � C1‖θ1 − θ2‖.
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Condition 3. Let Bn be the ball of centre θ0 with radius rn ∼ nτ−1/2 for 0 < τ < 1/2. For any θ ∈ Bn,
the variance estimator V̂ (θ̂) satisfies var(θ̂ | θ) = V̂ (θ̂){1 + op(1)} and (θ̂ − θ)Tvar(θ̂ | θ)−1(θ̂ − θ) =
(θ̂ − θ)TV̂ (θ̂)−1(θ̂ − θ){1 + op(1)} as n → ∞.

Sufficient conditions for Condition 1 are discussed, for example, in Chapter 1 of Fuller (2009). Condi-
tion 2 is satisfied for classical prior densities, e.g., a flat prior over a bounded domain. Condition 3 is not
straightforward. For illustration, we discuss a set of sufficient conditions under simple random sampling
with var(θ̂ | θ) = n−1I (θ)−1 and V̂ (θ̂) = n−1I (θ̂)−1, where I (θ) is the Fisher information matrix. Assume
I (θ) and xTI (θ)x satisfy the following Lipschitz conditions over �. There exists C2 < ∞ such that for any
θ1, θ2 ∈ �, ‖I (θ1)|−|I (θ2)‖ � C2‖θ1 −θ2‖. For any x, there exists C3(x) < ∞ such that for any θ1, θ2 ∈ �,
|xTI (θ1)x − xTI (θ2)x| � C3(x)‖θ1 − θ2‖. We further assume that there exists C4 < ∞ such that for any x1

and x2, |C3(x1) − C3(x2)| � C4‖x1 − x2‖. Thus, |(θ̂ − θ)Tvar(θ̂ | θ)−1(θ̂ − θ) − (θ̂ − θ)TV̂ (θ̂)−1(θ̂ − θ)|
is bounded by O(rn/n) for any θ ∈ Bn, implying Condition 3. Sketch proofs of Lemma 1 and Theorem 1
are given in the Supplementary Material.

LEMMA 1. Under Condtions 1–3, conditional on the full sample data,

pg(θ | Xn, Yn) → N {θ̂ , V̂ (θ̂)} (7)

in distribution as n → ∞ almost surely.

The asymptotic result in (7) can be called the Bernstein–von Mises theorem (van der Vaart, 1998,
Ch. 10) for the posterior density (4) induced by the sampling distribution g(θ̂ | θ). By Lemma 1,

Eg(θ | Xn, Yn) = θ̂{1 + op(1)}, varg(θ | Xn, Yn) = V̂ (θ̂){1 + op(1)} (8)

almost surely, where the reference distribution is the posterior density (4).

THEOREM 1. Under Conditions 1–3 and the population missingness-at-random assumption, ignoring
smaller-order terms,

p lim
M→∞

θ̂MI = Eg(θ | Xn, Yobs), p lim
M→∞

V̂MI = varg(θ | Xn, Yobs),

where the conditional expectations are with respect to posterior density (6).

By Lemma 1 and Theorem 1, V̂ −1/2
MI (θ̂MI − θ) → N (0, 1) in distribution as n → ∞ and M → ∞.

We now discuss inference for an induced parameter γ = γ (θ), such as γ = ∫ 1
−∞ f (y; θ) dy. In this

case, the posterior distribution of γ = γ (θ) is directly obtained from the distribution of γ (θ∗), where θ∗

is generated from pg(θ | Xn, Yobs) in (6). Under certain regularity conditions, the posterior density of γ ,
pg(γ | Xn, Yobs), converges to the normal distribution with mean γ (θ̂) and variance γ ′(θ̂)2V̂ (θ̂) almost
surely by the continuous mapping theorem (Mann & Wald, 1943). If γ ′(θ) is bounded, it is straightforward
to show that the corresponding properties in Theorem 1 hold for γ̂MI and the corresponding variance
estimator.

4. SIMULATION STUDY

In this simulation study, we assess the finite-sample performance of the proposed multiple imputation
procedure. We consider the outcome to be continuous or binary, combined with nonignorable or ignorable
sampling.

In the first set-up, we consider a continuous outcome which follows the following superpopulation
model, yi = β0 + β1xi + εi, where xi ∼ N (0, 1), εi ∼ N (0, σ 2), and θ = (β0, β1, σ 2) = (−0·5, 0·5, 1).



226 J. K. KIM AND S. YANG

Table 1. Monte Carlo biases and standard errors of the point estimators of η =
N−1 ∑N

i=1 yi, along with the Monte Carlo coverage (%) of 95% confidence intervals based
on 5000 simulated samples

Setting I. Ignorable II. Nonignorable
Model Method Bias SE Coverage Bias SE Coverage

(×102) (×102) (%) (×102) (×102) (%)

Hajek 0 40 95 0 33 95
Linear Traditional MI 0 45 95 4 38 83
Model Proposed MI 0 45 95 0 40 95

Hajek 0 18 95 0 12 95
Logistic Traditional MI 0 20 95 3 14 41
Model Proposed MI 0 19 95 0 13 95

MI, multiple imputation with imputation size 100; SE, standard error.

We first generate finite populations of size N = 50000. The response indicator of yi is generated from
δi ∼ Ber(φi), where

logit φi = 1 + 0·5xi + 0·5ui, (9)

with ui ∼ N (0, 1), and ui is independent of xi and εi. By construction, y ⊥⊥ δ | x, i.e., missingness
at random holds at the population level. For the sampling mechanism, we use Poisson sampling with
Ii ∼ Ber(πi). We consider two settings: Setting I with logit(1 − πi) = 4 + 0·5xi, and Setting II with
logit(1 − πi) = 3·66 + 0·33ui − 0·1yi. Since in Setting II, ui is a common cause for δi and Ii, and yi is a
cause for Ii, we have yi �/ δi | (xi, wi, Ii = 1), i.e., the missingness mechanism becomes nonignorable at the
sample level under the augmented model.

In the second set-up, we consider a binary outcome which follows a logistic regression superpopulation
model, yi ∼ Bin(pi), where pi = exp(β0 + β1xi)/{1 + exp(β0 + β1xi)}, xi ∼ N (0, 1), and θ = (β0, β1) =
(−0·5, 0·5). The response indicator of yi is generated in the same way according to (9). For the sampling
mechanism, in Setting I, logit(1 −πi) = 4 + 0·5xi, and in Setting II, logit(1 −πi) = 3·66 + 0·33ui − 0·5yi.
The average sample sizes range from 1000 to 1600 and the average response rates are around 65%. In the
Supplementary Material, we also investigate scenarios where the average sample sizes range from 160 to
200. The results are similar.

We consider estimating η, the population mean of y, with the following estimators: (i) the Hajek
estimator, applied to the full sample, assuming all observations are available, which serves as a benchmark
for comparison; (ii) the traditional multiple imputation estimator; and (iii) the proposed multiple imputation
estimator. For (ii), for the continuous outcome, we assume the imputation model f (y | x, w; θ) to be a linear
regression model of y on x and w, where w = 1/π is the design weight. For the binary outcome, we assume
the imputation model f (y | x, w; θ) to be a logistic regression model. For (iii), we use the correctly specified
superpopulation model, and the sampling distribution g(θ̂ | θ) in (5) is a normal distribution, with mean
θ and variance V (θ̂). Here, θ̂ is the pseudo maximum likelihood estimator of θ , which is obtained by
solving (3). For the design-consistent estimator of V (θ̂), we use V̂ (θ̂) = τ̂−1V̂ (S)(τ̂−1)T, where τ̂ =∑

i∈A wiṠ(θ̂ ; xi, yi), Ṡ(θ ; x, y) = ∂S(θ ; x, y)/∂θT, and V̂ (S) = ∑
i∈A(w

2
i − wi)ŜiŜT

i , with Ŝi = S(θ̂ ; xi, yi).
For both (i) and (ii), the priors for regression coefficients are independent normal distributions with mean 0
and variance 106, the prior for σ 2 is uniform over the interval [0, 106], and the complete-sample estimator
of the population mean of y, for each imputed dataset, is η̂ = (

∑
i∈A wi)

−1
∑

i∈A wiyi, while the variance
estimator of η̂ is V̂ (η̂) = (

∑
i∈A wi)

−2 × ∑
i∈A(w

2
i − wi)(yi − η̂)2.

Table 1 shows the simulation results over 5000 Monte Carlo samples. In Setting I, both multiple impu-
tation methods provide valid inference because the sampling design is ignorable and the sample-data
likelihood function can be derived directly from the density function in the superpopulation model. How-
ever, in Setting II, the traditional method is biased, because y ⊥⊥ δ | (w, x, I = 1) is violated in Setting II.
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As a result, in Setting II, the coverage of the confidence interval for the traditional method is quite poor. The
proposed method is essentially unbiased and has good coverage, confirming our theoretical results. It does
not lose efficiency compared to the traditional method in Setting I under the ignorable sampling design,
even though the parameters are generated by an approximated Bayesian computation approach, because
the complete-sample estimator of η is a design-weighted estimator, which is not necessarily self-efficient
(Meng, 1994). In this case, using a more efficient approach to generating parameters may not result in a
more efficient multiple imputation estimator of η.
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