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a b s t r a c t

We consider estimation for parameters defined through moment conditions when data
are missing not at random. The missingness mechanism cannot be determined from the
data alone, and inference under missingness not at random may be sensitive to unveri-
fiable assumptions about the missingness mechanism. To add protection against model
misspecification, we posit multiple models for the response probability and propose
a weighting estimator with calibrated weights. Assuming the conditional distribution
of the outcome given covariates is correctly modeled, we show that if any one of
the multiple models for the response probability is correctly specified, the proposed
estimator is consistent for the true value. A simulation study confirms that our estimator
has multiple robustness when the outcome data is missing not at random. The method
is also applied to an application.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Missing data analyses have received much attention in statistics. Data are missing at random (Rubin, 1976) if the
missingness depends on the observed but not on the missing values; whereas data are missing not at random if the
missingness depends on both the observed and missing values. Under missingness not at random, the full data distribution
is not identifiable without further assumptions. Researchers have considered parametric assumptions, such as pattern-
mixture models (Little, 1993) and sample selection models (Heckman, 1979) and assumptions based on instrumental
variables (Tang et al., 2003; D’Haultfoeuille, 2010; Wang et al., 2014) or shadow variables (Miao and Tchetgen Tchetgen,
2016; Kott and Liao, 2017).

Under a fully parametric model, identification of parameters can be achieved by sufficiently stringent modeling
restrictions, which then invokes either the likelihood or Bayesian method; however, fully parametric approaches are
sensitive to model misspecification. Researchers have also developed semiparametric methods for which one of the
outcome model and the missing data mechanism model is parametric and the other is nonparametric. Among these, Tang
et al. (2003) and Zhao and Shao (2015) proposed maximum pseudo likelihood estimators without modeling the non-
response mechanism, and D’Haultfoeuille (2010) considered a regression analysis using a nonparametric nonresponse
model. Scharfstein et al. (1999) and Shao and Wang (2016) proposed semiparametric nonresponse models and inverse
probability weighted estimation. Qin et al. (2002), Kim and Yu (2011), Tang et al. (2014), and Zhao et al. (2017) used
semiparametric or empirical likelihood approaches with parametric assumptions on the missing data mechanism.
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In general, the missingness mechanism cannot be determined from the data alone, and inference under missingness
not at random may be sensitive to unverifiable assumptions about the missingness mechanism. For identification, one
common approach is to choose among the covariates a valid nonresponse instrument, a variable that is related to
the outcome and can be excluded from the nonresponse model when the outcome and other covariates are included.
The selection of a valid nonresponse instrument can be challenging. To address this issue, researchers have developed
sensitivity analysis methods (e.g. Robins et al., 2000). Although widely used in practice, sensitivity analysis cannot provide
point identification of parameter of interest.

In this article, we focus on estimation for general parameters defined through moment conditions and develop a robust
estimation method with multiple working models for the response mechanisms. These response models can be based on
different assumptions of the mechanism. For example, models for both missingness at random and missingness not at
random with different identification conditions can be simultaneously considered. With multiple nonresponse models, we
consider weights on the complete cases derived based on a set of calibration constraints. Construction of these calibration
constraints is essential. Under missingness at random, calibration constraints imposed only on covariates are sufficient to
eliminate selection bias after reweighting the complete cases (Han, 2014). However, this is not clear in that paper whether
a similar approach can be applied under missingness not at random. This paper fills in this gap by proposing to construct
calibration constraints directly on the score equations for the parameter of interest under multiple working models. Using
such calibration weights, the proposed estimator is multiply robust, in the sense that, under a correct specification of the
conditional distribution of the response given covariates, it is consistent if any one of the multiple response models is
correctly specified. Such a robustness property renders the estimator more protection against misspecification of the
response model. The multiple robustness has been studied in Han and Wang (2013), Chan and Yam (2014) and Han
(2014), under missingness at random and in Han (2017), for the mean of outcome under missingness not at random. Our
contribution is to develop multiple robust estimators for general parameters defined through moment conditions with
multiple response models under missingness not at random.

The multiple-robustness property discussed in this article is different from that in some other articles. Consider
a classical setting where likelihood function can be factorized into non-response and outcome mechanisms, each
specified with a working model. The well-known ‘‘Double robustness’’ refers to the consistency property that allows
misspecification of either one of the two models. Some articles generalize this classical concept in a likelihood model with
multiple components. For instance, Molina et al. (2017) studied factorized likelihood models, where both nonresponse
and outcome mechanisms can be further factorized into several components. A working model is specified for each of
these components. Multiply robust estimators, according to their definition, are those that are consistent when some
(not necessarily all) of these models are correct. In other words, their multiple robustness offers protection against
misspecification of two or more than two components of the likelihood function. Wang and Tchetgen Tchetgen (2018)
interpreted multiple robustness in a similar way. In contrast, we specify multiple models for the nonresponse mechanism.
The multiple robustness discussed here refers to the consistency property that requires correct specification of only one
of multiple models for the nonresponse mechanism.

The rest of this article is organized as follows. In Section 2, we introduce the setup, discuss assumptions on the response
mechanism, and provide estimation methods. In Sections 3 and 4, we derive the proposed multiply robust estimator
for general parameters under multiple response models and its consistency. In Section 5, we evaluate the finite sample
performance of the proposed estimators via simulations. In Section 6, we apply the method to an application. We then
end with a brief discussion in Section 7.

2. Setup, models and estimation

Let {(xi, yi, δi) : i = 1, . . . , n} denote n realizations of (X, Y , δ), where X is a d-dimensional vector of covariates that is
always observed, Y is an outcome variable that has missing values, and δ is the response indicator of Y , i.e., δ = 1 if Y is
observed and 0 if it is missing. Define the parameter of interest θ0 through some moment condition E{U(θ0; X, Y )} = 0.
For example, if U(θ; X, Y ) = Y − θ , θ is the population mean of Y . If U(θ; X, Y ) = {Y − µ(X; θ )}∂µ(X; θ )/∂θ , θ is the
parameter that governs a model for the mean of Y given X .

We assume that the missingness of Y may depend on Y itself and make the following assumption for the response
probability.

Assumption 1 (Positivity). There exists a positive number C such that P(δ = 1 | X, Y ) = π (X, Y ) > C > 0 almost surely.

Under missingness not at random, the response model may not be identifiable without further assumptions. If, for
example, one can obtain a valid instrument – a variable that is correlated with the outcome and conditionally independent
of the response indicator given other variables and the outcome – then identification of the parameters in the response
model is possible (Wang et al., 2014). Suppose for a given model π (X, Y ; α) for P(δ = 1 | X, Y ), under certain identification
conditions, let S(α; X, Y , δ) be the score function of α:

S(α; X, Y , δ) =
δ − π (X, Y ; α)

π (X, Y ; α){1 − π (X, Y ; α)}
∂π (X, Y ; α)

∂α
. (1)
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The semiparametric efficient estimator α̂ can be obtained by solving
n∑

i=1

{
δi

π (xi, yi; α)
− 1

}
h(xi; α) = 0 (2)

where

h(X; α) =
E {S(α; X, Y , δ = 0)O(X, Y ; α) | X}

E {O(X, Y ; α) | X}
(3)

with O(X, Y ; α) = P(δ = 0 | X, Y ; α)/P(δ = 1 | X, Y ; α) = π (X, Y ; α)−1
− 1. See, for example, Robins and Rotnitzky

(1997).
In what follows, we use fd(Y | X) to denote f (Y | X, δ = d), and Ed(· | X) = E(· | X, δ = d) for d = 0, 1, and

E1(·) = E(· | δ = 1). For computation of (3), we note that

h(X; α) =
E1

{
S(α; X, Y , δ = 0)π (X, Y ; α)−1O(X, Y ; α) | X

}
E1

{
π (X, Y ; α)−1O(X, Y ; α) | X

}
=

∫
S(α; X, y, δ = 0)π (X, y; α)−1O(X, y; α)f1(y | X)dy∫

π (X, y; α)−1O(X, y; α)f1(y | X)dy
. (4)

To approximate the above integrals, we can substitute a nonparametric estimator f̂1(Y | X) for f1(Y | X). The drawback of
the nonparametric approach is that it is subject to the curse of dimensionality and often has a poor performance when the
dimension of X is large. As an alternative, we consider a parametric working model f1(Y | X; γ ) for f1(Y | X) and obtain
an estimator γ̂ from the respondents. Then, we can apply a numerical approximation technique to obtain the integrals
in (4). If f1(y | x) is correctly specified, the solution to (2) is optimal for α when the true response mechanism follows
π (X, Y ; α). If the model f1(Y | X; γ ) is incorrectly specified but π (X, Y ; α) is correctly specified, the solution to (2) is still
consistent, based on the fact that E

[{
π (X, Y ; α)−1δ − 1

}
h(X)

]
= 0 for any squared integrable function h(X).

Once we obtain the parameter estimate α̂, the standard inverse probability weighting estimator θ̂ipw of θ can be
obtained by solving the weighted estimating equation

n∑
i=1

δiω̂iU(θ; xi, yi) = 0, (5)

where ω̂i = {π (xi, yi; α̂)}−1. It is well known that θ̂ipw has a large variance if the estimated probability is close to zero and
its consistency relies on the correct specification of the response probability.

3. Multiple robust estimation

The method to be discussed allows for multiple specifications of the response probability. As mentioned, for identi-
fication under missing not at random, one common approach would be to choose among the set of covariates a valid
nonresponse instrument X2, which satisfies (i) f (Y | X1, X2 = a) ̸= f (Y | X1, X2 = b) for any a ̸= b; and (ii)
P(δ = 1 | X, Y ) = P(δ = 1 | X1, Y ). The selection of a valid nonresponse instrument can be challenging. In this section, we
develop a multiply robust estimation method that can accommodate multiple models for the response mechanism. The
advantage is that in each model, we can make different assumptions, such as missingness at random and missingness not
at random with different identification conditions, such as with different nonresponse instruments

Let the set of K specifications of the response probability be {π k(X, Y ; αk) : k = 1, . . . , K }, where π k(X, Y ; αk) is the
kth model for π (X, Y ), known up to the parameter αk, k = 1, . . . , K . For each model, αk can be estimated as the solution
to (2) with the corresponding score function under model π k(X, Y ; αk), denoted as α̂k. From the standard Z-estimation
theory (e.g., van der Vaart, 2000), these estimators are well-defined and converge to some values in probability under
regularity conditions.

For convenience, we assume δ1 = · · · = δm = 1 and δm+1 = · · · = δn = 0. Let ω(X, Y ) = π (X, Y )−1 and ωi = ω(xi, yi).
We then have the following lemma.

Lemma 1. For any g(X, Y ), E1 (ω(X, Y )δ[g(X, Y ) − E{g(X, Y )}]) = 0.

Under missingness at random, Han (2014) defined positive weights ωi, i = 1, . . . ,m, by maximizing L(ω1, . . . , ωm) =∏m
i=1 ωi subject to

m∑
i=1

ωi = 1,
m∑
i=1

ωi{gk(xi) − n−1
n∑

i=1

gk(xi)} = 0 (k = 1, . . . , K ), (6)

where (6) is the sample version of the moment equality in Lemma 1 with g(X, Y ) being gk(X) and n−1 ∑n
i=1 g

k(xi)
estimating E{gk(X)}. Let gk(X) be the kth estimated response probability π k(X; α̂k), Han (2014) showed that with (6),
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the weighting estimator of θ , solving (5) with ω̂i being the resulting weight from above procedure is multiply robust in
the sense that if any one of models {π k(X; αk) : k = 1, . . . , K } is correctly specified, the weighting estimator is consistent
for the true value θ0. Chen and Haziza (2017) considered a similar problem under missingness at random.

Under missingness not at random, imposing constraints implied by Lemma 1 is not feasible, because g(xi, yi) is not
available for individuals with δi = 0, and therefore E{g(X, Y )} cannot be simply estimated by the sample average of
g(xi, yi). To overcome this difficulty, note that

E{g(X, Y )} = E [δg(X, Y ) + (1 − δ)E0{g(X, Y ) | X}] . (7)

To compute E0{g(X, Y ) | X}, by the Bayes rule, we can derive

f0(Y | X) = f1(Y | X)
O(X, Y )

E1{O(X, Y ) | X}
. (8)

and therefore,

E0{g(X, Y ) | X} =

∫
g(X, y)O(X, y)f1(y | X)dy∫

O(X, y)f1(y | X)dy
=

E1 {g(X, Y )O(X, Y ) | X}

E1 {O(X, Y ) | X}
.

Because f (Y | X) is often of primary scientific interest and is usually assumed to be correctly modeled based on subject
matter knowledge or existing literature, we denote f (Y | X, β) as this correct model. Then, based on the kth model of
π (X, Y ), we can specify f k1 (Y | X; γ k) through

f k1 (Y | X; γ k) =
f (Y | X; β)π k(X, Y ; αk)∫
f (y | X; β)π k(X, y; αk)dy

,

where γ k
= (αk, β). Let γ̂ k

= (α̂k, β̂k), where β̂k can be obtained using a weighted analysis among the respondents with
weights π k(xi, yi; α̂k)−1. Then, E0{g(X, Y ) | X} can be estimated by

Êk
0{g(X, Y ) | X; γ̂ k

} =

∫
g(X, y)Ok(X, y; α̂k)f̂ k1 (y | X; γ̂ k)dy∫

Ok(X, y; α̂k)f̂ k1 (y | X; γ̂ k)dy
, (9)

where Ok(X, Y ; αk) = π k(X, Y ; αk)−1
− 1. Therefore, (7) can be estimated by

Êk
{g(X, Y ); γ̂ k

} =
1
n

n∑
i=1

[
δig(xi, yi) + (1 − δi)Êk

0{g(X, Y ) | X = xi; γ̂ k
}

]
. (10)

Let g(X, Y ) = U(θ; X, Y ). We then propose the set of positive weights ω̂i, i = 1, . . . ,m, which maximizes L(ω1, . . . , ωm)
subject to the constraints

m∑
i=1

ωi = 1,
m∑
i=1

ωiU(θ̂ k
; Xi, Yi) = 0 (k = 1, . . . , K ), (11)

where θ̂ k solves Ūk(θ ) = n−1 ∑n
i=1[δiU(θ; xi, yi) + (1 − δi)Êk

0{U(θ; X, Y ) | X = xi; γ̂ k
}] = 0, i.e., the estimating equation

approach applied to the imputed dataset with the missing outcomes filled in by {Êk
0(Y | X = xi; γ̂ k) : δi = 0}.

Once we obtain the set of weights, the proposed estimator θ̂MR of θ is obtained by solving
m∑
i=1

ω̂iU(θ; xi, yi) = 0. (12)

In summary, the proposed estimation proceeds as follows:

Step 1. Posit a set of multiple parametric working models for π (X, Y ) and f (Y | X), P = {π k(X, Y ; αk), f (Y | X; β) : k =

1, . . . , K }. For the kth model, estimate αk by α̂k which solves
∑n

i=1 H
k(αk

; xi, yi, δi) = 0 for αk, where

Hk(αk
; X, Y , δ) =

{
δ

π k(X, Y ; αk)
− 1

}
×

Êk
1

{
S(αk

; X, Y , δ = 0)π k(X, Y ; αk)−1Ok(X, Y ; αk) | X
}

Êk
1

{
π k(X, Y ; αk)−1Ok(X, Y ; αk) | X

} ,

and Ok(X, Y ; αk) = π k(X, Y ; αk)−1
− 1 and Êk

1(· | X, δ = 1) is taken with respect to the working model f̂ k1 (Y | X).
Also, the coefficient β is estimated by β̂k which is obtained by applying a weighted analysis among the respondents
with weight π k(xi, yi; α̂k)−1.

Step 2. Let Ūk(θ ) = Êk
{U(θ; X, Y ); γ̂ k

} with Êk(·) defined in (10). Let θ̂ k solve Ūk(θ ) = 0. Then, impose the constraints
(11).
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Step 3. Obtain the set of weights {ω̂i : i = 1, . . . ,m} by maximizing L(ω1, . . . , ωm) subject to the constraints in (11).
Denote α̂ = (α̂1, . . . , α̂K )T, and ĉ(X, Y ) = [U(θ̂1

; X, Y )− Ū1(θ̂1), . . . ,U(θ̂K
; X, Y )− ŪK (θ̂K )]T, where Ūk(θ̂ k) = 0 for

all k by the way how θ̂ k is obtained. By the Lagrange multipliers technique, we have ω̂i = m−1
{1 + ρ̂Tĉ(xi, yi)}−1

(i = 1, . . . ,m), where ρ̂ = (ρ̂1, . . . , ρ̂K )T satisfies
m∑
i=1

{1 + ρ̂Tĉ(xi, yi)}−1ĉ(xi, yi) = 0.

Step 4. The proposed estimator θ̂MR of θ is obtained by solving (12).

Remark 3.1. Because ω̂i should be non-negative, ρ̂ must satisfy 1 + ρ̂Tĉ(xi, yi) > 0 for i = 1, . . . ,m. To ensure the
non-negativity of ω̂i, the modified Newton–Raphson algorithm proposed by Chen et al. (2002) to obtain range restricted
weights can be applied.

Remark 3.2. There are some other proposals for θ̂ k. For example, one can obtain θ̂ k using a weighted regression analysis
among the respondents with weights π k(xi, yi; α̂k)−1. In these cases, Ūk(θ̂ k) in Step 3 may not necessarily be zero. These
variations would not affect the multiple robustness property of the proposed estimator.

4. Main result

In this section, we show the consistency of the proposed estimator θ̂MR and its multiple robustness. We first state the
following regularity conditions. For each k = 1, . . . , K ,

(C1) the parameter space Ak, Bk and Θk for αk, βk and θ k are compact;
(C2) π k(X, Y ; αk) and h(X; αk) are continuous in αk; U(θ k

; X, Y ) is continuous in θ k; Ek
0{U(θ; X, Y ) | X; αk, βk

} is
continuous in αk and βk;

(C3) the function

q(X, Y ; αk, βk, θ k) =

⎡⎣ {δ/π k(X, Y ; αk) − 1}h(X; αk)
δ/π k(X, Y ; αk)U(θ k

; X, Y )
δU(θ; X, Y ) + (1 − δ)Ek

0{U(θ k
; X, Y ) | X; αk, βk

}

⎤⎦
satisfies that E

{
sup(αk,βk,θk)∈Ak×Bk×Θk ∥q(X, Y ; αk, βk, θ k)∥

}
< ∞;

(C4) E{q(X, Y ; αk, βk, θ k)} = 0 has a unique solution in Ak
× Bk

× Θk;
(C5) E[supρ∈℘ log{1 + ρT c(X, Y )} | δ = 1] < ∞ where ℘ is the parameter space for ρ and is compact;
(C6) E[supθk∈Θk,ρ∈℘{U(θ0; X, Y ) − U(θ k

; X, Y )}/{1 + ρT c(X, Y )} | δ = 1] < ∞.

Conditions (C1)–(C5) are standard assumptions for the consistency of the estimators α̂k and β̂k and θ̂ k; see for in-
stance Newey and McFadden (1994). Conditions (C5)–(C6) are needed for the law of large number in the proof; see for
instance Han (2017). We state the main result in the following theorem.

Theorem 4.1 (Multiple Robustness). Under Assumption 1 and regularity conditions (C1)–(C6), if any one working model is
correctly specified for the response probability π (X, Y ), θ̂MR → θ0 in probability as n → ∞.

Proof of Theorem 4.1. Assume that π1(X, Y ; α1) and f (Y | X; β) are correctly specified models for π (X, Y ) and f (Y | X)
with true parameter values α1

0 and β0; i.e., π1(X, Y ; α1
0) = π (X, Y ) and f (Y | X; β0) = f (Y | X). Let α̂1 be the solution

to (2) under π1(X, Y ; α1) and β̂1 be a weighted estimator of β1 using the respondents with weight π1(xi, yi; α̂1)−1. Then,
under above regularity conditions, α̂1 and β̂1 are root-n consistent for α1

0 and β0.
To show θ̂MR is consistent for θ0, it suffices to show that

∑m
i=1 ω̂iU(θ0; xi, yi) → 0 in probability. Firstly, because

π1(X, Y ; α1) is correctly specified, we have θ̂1
→ θ0 in probability. By constraint (11) with k = 1, we have

m∑
i=1

ω̂iU(θ0; xi, yi) =

m∑
i=1

ω̂i

{
U(θ0; xi, yi) − U(θ̂1

; xi, yi)
}

+ Ū1(θ̂1)

=
1
m

m∑
i=1

U(θ0; xi, yi) − U(θ̂1
; xi, yi)

1 + ρ̂Tĉ(xi, yi)

→E
{
U(θ0; X, Y ) − U(θ0; X, Y )

1 + ρ̄Tc̄(X, Y )

⏐⏐⏐δ = 1
}

= 0,
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Table 1
Bias, standard deviation, estimated standard error based on 100 bootstrap replicates, and coverage of 95% confidence
intervals over 2000 simulated datasets. All numbers are on the scale 10−2 .

Bias s.d. s.e. Coverage Bias s.d. s.e. Coverage

β1 = .5 β2 = 1

IPW10 0.56 9.19 11.3 96.8 −0.36 13.2 13.6 94.0
IPW01 13.2 7.19 7.03 53.5 −10.3 11.9 11.0 81.4
MR10 0.29 9.16 10.8 97.5 0.23 11.8 12.3 94.3
MR01 13.0 7.04 6.9 53.3 −9.94 10.9 10.4 82.1
MR11 0.29 9.16 10.8 97.5 0.23 11.8 12.3 94.3

β3 = 1 β4 = 1

IPW10 0.33 11.3 11.5 94.2 0.11 11.6 11.5 94.6
IPW01 −3.53 10.4 10.0 92.0 −3.57 10.7 10.0 91.2
MR10 0.20 10.0 10.0 94.2 0.24 10.2 10.0 94.6
MR01 −3.38 10.1 9.9 92.0 −3.58 10.4 9.85 91.4
MR11 0.20 10.0 10.0 94.2 .024 10.2 10.0 94.6

where ρ̄ is the probability limit of ρ̂, and

c̄(X, Y ) =

⎛⎜⎝ U(θ̄1
; X, Y )
...

U(θ̄K
; X, Y )

⎞⎟⎠ ,

and θ̄ k is the probability limit of θ̂ k, for k = 1, . . . , K . This completes the proof.

Remark 4.1. From Theorem 4.1, consistency of the proposed estimator is guaranteed if one response probability model
is correctly specified. Both the number of the posited models and their functional forms can affect the efficiency of the
proposed estimator in a very complex way. In addition, with a finite sample size, the numerical performance can be
unstable if there are a large number of working models. In particular, Step 3 may not have a solution when some of the
models are poorly constructed. In this case, although some adjustments can be made to ensure existence of a solution
(e.g., Chen et al., 2008; Emerson and Owen, 2009; Tsao and Wu, 2013), the implementation of these adjustments is
complicated. To reduce the chance of running into numerical issues, we suggest positing a few well-constructed working
models instead of a large number of poorly built ones.

The proposed estimator can be viewed as a Z-estimator (van der Vaart, 2000), solving a set of estimating equations,
and its confidence interval can be constructed via the bootstrap.

5. A simulation study

In this section, we evaluate the finite-sample performance of the proposed estimator for its robustness compared to
existing methods.

We generate samples of size n = 300. The covariates X1, X2 and X3 are identically and independently generated from
Normal(0, 0.5). The outcome variable is Y = β1 + β2X1 + β3X2 + β4X3 + ϵ with (β1, β2, β3, β4) = (0.5, 1, 1, 1) and
ϵ ∼ Normal(0, 1). The missing indicator δ, is generated from Bernoulli(π ), where logit(π ) = 1 + 0.5y + x1, and therefore
the missingness is missing not at random. The average response rate is about 72%. The parameters of interest are the
regression coefficients β1,..., β4.

We consider two response models. The correct model for π (x, y) is specified as logit{π1(x, y; α1)} = α1
1+α1

2y+α1
3x1 and

the incorrect model is specified as logit{π2(x, y; α2)} = α2
1 + α2

2x1 + α2
3x2 + α2

4x3. Each estimator is assigned a name with
the form ‘‘method-00,” where each digit of the two-digit number, from left to right, indicates if π1(x, y; α1) or π2(x, y; α2)
is used in the construction with ‘‘1” meaning yes and ‘‘0” no, respectively. For example, ‘‘IPW10’’ is the inverse probability
weighting estimator with the response model π1(x, y; α1) and ‘‘MR11’’ is the proposed estimator based on the response
models π1(x, y; α1) and π2(x, y; α2).

Table 1 and Fig. 1 contain the comparison of different estimators. From these results, one can notice that when π (x, y) is
correctly modeled, IPW10 and MR10 have small biases, and MR10 improves the efficiency over IPW10 for all parameters.
When π (x, y) is incorrectly modeled, IPW01 and MR01 have large biases. The proposed estimator has small biases for all
parameters when both response models are used in calibration. These observations confirm our theoretical results and
shows that the proposed estimator has improved robustness over the existing weighting estimator.

6. Application

In this section, we apply our method to an application. In the Stroke Recovery in Underserved Populations
2005–2006 (U.S.) study, several metrics for stroke patients’ emotional and physiological wellness were measured at four
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Fig. 1. Simulation results for β1, β2, β3, β4 : green numbers are biases, blue numbers are standard deviations, and red dots are the Monte Carlo
averages of the estimates. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

time points at admission and discharge from rehabilitation facility, and 3 months and 12 months after discharge. Patients
were also followed up with questions regarding their health maintenance type — own care, unpaid person (or family),
or paid professional. Simple summary statistics show that patients with own care tend to have better emotional health
condition in the 12 month follow-up than those with health aids (paid or unpaid). It would be interesting to see whether
such effects remain significant if other variables such as emotional wellness and functional recovery status at discharge
are controlled for.

In our analysis, the variable Y is the depression scale (CESD) at 12 month follow-up. A high score of Y indicates high
symptoms of depression. Covariates of interest are base-line depression scale at discharge, and physiological wellness
— Functional Independence Measure (FIM) at discharge, and whether a patient self cares. Many demographic variables
do not indicate statistical significance. We include only age in our study. Specifically, we let X1 be the age of patients,
X2 is the depression scale at discharge, X3 is the FIM score at discharge and X4 the binary variable indicating whether
a patient self-cares or not. The dataset we study have Y missing for 172 cases out of 1005 total cases. Two response
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Table 2
Dependent variable: CESD at 12 month follow up. Standard errors are computed based on 100 bootstrap samples.
Variable IPW10 IPW01 MR11 MR10 MR01

Intercept 8.905 8.368 8.680 8.704 8.130
(2.49) (2.21) (1.89) (1.88) (2.22)

Age −0.035 −0.032 −0.033 −0.033 −0.031
(0.02) (0.02) (0.02) (0.02) (0.02)

CESD-base 0.361 0.332 0.318 0.319 0.333
(0.03) (0.03) (0.03) (0.03) (0.03)

FIM-base 0.010 0.011 0.013 0.012 0.013
(0.02) (0.02) (0.02) (0.01) (0.02)

Self care −2.949 −2.647 −2.786 −2.679 −2.681
(0.72) (0.64) (0.73) (0.60) (0.65)

models are considered: the first one being logit{π1(x, y; α1)} = α1
1 + α1

2y + α1
3x3 and second one logit{π1(x, y; α1)} =

α1
1 + α1

2x1 + α1
3x2 + α1

3x3.
Results are given in Table 2. One can see that all estimators for coefficients for X2 and X4 are statistically significant.

For comparison, a complete case analysis yields estimates 0.332 and −2.657 for coefficients for X2 and X4 respectively.
They are close to estimates that are based on MAR assumption. On the other hand, our MR11 estimate is closer to MR10
than to MR01. In particular, for MR11 estimation, the effect of self-care on the depression level y is larger and the effect
of base line depression level on y is smaller. In all cases, after base-line emotional and functional health conditions are
controlled for, opting for self care tends to improve a patient’s emotional well-being.

7. Discussion

We have developed multiple robust estimators for parameters defined by moment conditions that allow multiple
response models in the presence of missing not at random data. The improved robustness comes from multiple
model specifications for the nonresponse mechanism. Our proposed method provides multiple protections to model
misspecification and therefore is an attractive alternative to existing inverse probability weighting estimators.

Missing data often arise in survey sampling. In complex surveys, the challenge is to take design information or design
weights into account when developing propensity score methods for handling missing data. The proposed weighting
method can be combined with sampling weights for an integrated solution to handle missing not at random data and
sampling designs. This extension will be pursued in a separate paper.
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