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Abstract: Propensity score weighting is a tool for causal inference to adjust for measured confounders in
observational studies. In practice, data often present complex structures, such as clustering, which make
propensity score modeling and estimation challenging. In addition, for clustered data, there may be unmea-
sured cluster-level covariates that are related to both the treatment assignment and outcome. When such un-
measured cluster-specific confounders exist and are omitted in the propensity score model, the subsequent
propensity score adjustment may be biased. In this article, we propose a calibration technique for propensity
score estimationunder the latent ignorable treatment assignmentmechanism, i. e., the treatment-outcome re-
lationship is unconfounded given the observed covariates and the latent cluster-specific confounders.We im-
pose novel balance constraints which imply exact balance of the observed confounders and the unobserved
cluster-level confounders between the treatment groups. We show that the proposed calibrated propensity
score weighting estimator is doubly robust in that it is consistent for the average treatment effect if either the
propensity score model is correctly specified or the outcome follows a linear mixed effects model. Moreover,
the proposed weightingmethod can be combinedwith sampling weights for an integrated solution to handle
confounding and sampling designs for causal inference with clustered survey data. In simulation studies,
we show that the proposed estimator is superior to other competitors. We estimate the effect of School Body
Mass Index Screening on prevalence of overweight and obesity for elementary schools in Pennsylvania.

Keywords: Calibration, Inverse probability weighting, Survey sampling, Unmeasured confounding

1 Introduction

A main statistical approach to causal inference is built on the potential outcomes framework [1], in which
a causal effect is defined as a comparison of the potential outcomes of the same units under different treat-
ment levels. Observational studies are often used to infer causal effects inmedical and social science studies.
In observational studies, there often is confounding by indication: some covariates are predictors of both
the treatment and outcome. One implication is that the covariate distributions differ between the treatment
groups. Under the assumption of ignorable treatment assignment and that all confounders are observed, the
causal effect of treatments can be obtained by comparing the outcomes for units from different treatment
groups, adjusting for the observed confounders. Rosenbaum and Rubin [2] further demonstrated the central
role of the propensity score, and showed that adjusting for the propensity score removes confounding bias.
An extensive literature thereafter proposed a number of estimators based on the propensity score, including
matching [3, 4, 5],weighting [6, 7, 8], and stratification [9, 10]. In particular, propensity scoreweighting can be
used to create a weighted population where the covariate distributions are balanced between the treatment
groups, on average. Therefore, under some assumptions, the comparison between the weighted outcomes
has a causal interpretation; see Imbens and Rubin [11] for a textbook discussion.

Propensity score weighting has been mainly developed and applied in settings with independently and
identically distributed (i.i.d.) data. However, in many research areas, data often present complex structures,
such as clustering. Clustering can be formed in diverse ways. First, clusters are created by experimental de-
sign. The classical examples are given in educational andhealth studies,where students are nested in schools
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(e. g. [12]) and patients are grouped in hospitals (e. g. [13]). Second, clusters are induced by high-level fea-
tures, such as common environmental and contextual factors, shared by individual units (e. g. [14]). For a
motivating example, we examine the 2007–2010 body mass index (BMI) surveillance data from Pennsylva-
nia Department of Health to estimate the effect of School Body Mass Index Screening (SBMIS) on the annual
overweight and obesity prevalence in elementary schools in Pennsylvania. The data set includes 493 schools
(units) in Pennsylvania, which are clustered by two factors: type of community (rural, suburban, and urban),
and population density (low, median, and high). The data structure is schools nested within high-level of
environments.

In this article, we address the problem of estimating the average treatment effect from clustered data,
where the treatment is administered at the unit level, the covariates are measured at both unit and cluster
levels (where cluster-level covariates are cluster characteristics shared by all units within clusters), and fi-
nally the outcome is measured at the unit level. Even if we collect a rich set of unit-level covariates, there may
be unobserved cluster-level covariates that are related to both the treatment assignment and outcome. This
problem is ubiquitous in clustered datawhere data are collected sufficiently at the unit level, however insuffi-
cient information is available at the cluster level. In ourmotivating example, we have unit-level school covari-
ates including the baseline prevalence of overweight and obesity and percentage of reduced and free lunch.
However, certain key contextual factors, such as accessibility to and quality of care, socioeconomic and envi-
ronmental variables, which can be very different across clusters, are perceivably important factors for schools
implementing prevention screening strategy and children’s obesity rate. Unfortunately, these cluster-specific
confounders are not available. When such unmeasured confounders exist and are omitted in the propensity
score model, the subsequent analysis may be biased.

We make the stable unit and treatment version assumption (SUTVA; [15]). Under the SUTVA, potential
outcomes for each unit are not affected by the treatments assigned to other units. This assumption is not
uncommon. In our application, the treatment was implemented school-wise. The potential outcomes for one
school are likely to be unaffected by the treatments implemented at other schools, and therefore the SUTVA
is plausible. However, in other settings, this assumption may not hold. A classical example is given in infec-
tious diseases [16, 17], where whether one person becomes infected depends on who else in the population
is vaccinated. In this article, we will not discuss the case when the SUTVA is violated.

The literature has proposed different methods for clustered data. Oakes [18] and VanderWeele [19] used
multi-level models for the potential outcomes to draw causal conclusions in neighborhood effect studies.
A series of papers has proposed various propensity score matching algorithms with multi-level models for
the propensity score; see, e. g., [12, 20, 21, 22, 23, 13, 24, 25], and [26]. Recently, Li et al. [14], Leite, Jimenez,
Kaya, Stapleton, MacInnes and Sandbach [27] and Schuler, Chu and Coffman [28] examined propensity score
weighting methods to reduce selection bias in multi-level observational studies. Xiang and Tarasawa [29]
employed propensity score stratification andmulti-level models to balance key covariates between treatment
groups of a cross-state sample of students. For comparison of the effectiveness of various propensity score
strategies; see, e. g., [30, 13] and [31]. Among these works, researchers considered different modeling choices
for the propensity score and outcome, such as generalized linear fixed/mixed effectsmodels. The fixed effects
models create dummy variables for each cluster, regarding the cluster variables as fixed; while the random
effects models use random intercepts for each cluster, treating the cluster variables as random. Nonetheless,
all existing methods require correct specification of the propensity score and outcome models.

The goal of this article is to develop a novel propensity score weighting method for causal inference with
clustered data in the presence of unmeasured cluster-level confounders. An important contribution is to pro-
vide a robust construction of inverse propensity score weights under the latent ignorable treatment assign-
mentmechanism; i. e., the treatment-outcome relationship is unconfounded given the observed confounders
and the latent cluster-level confounders. The key insight is based on the central role of the propensity score
in balancing the covariate distributions between the treatment groups. For propensity score estimation, we
then adopt the calibration technique and impose balance constraints for moments of the observed and latent
cluster-level confounders between the treatment groups. Because the latent cluster-level confounders are not
observed, we impose stronger balance constraints enforcing the sumofweighted treatments equal the cluster
size for all clusters, which imply the exact balance of the cluster-level confounders. The proposed propensity
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score weighting estimator is doubly robust (e. g., [32, 33, 7, 34]) in the sense that it is consistent for the aver-
age treatment effect if either the propensity score model is correctly specified or the outcome follows a linear
mixed effect model. In general cases, if the conditional mean of the outcome given the observed confounders
and the latent cluster-level confounders can be well approximated by the power series of confounders, im-
posing constraints on these power series can also eliminate confounding biases, and the propensity score
weighting estimator is consistent. The simulation results demonstrate that the proposed estimator has im-
proved robustness to model misspecification compared to existing methods.

Importantly, our results are in agreementwith some existing findings thatmisspecification of the propen-
sity score model may have minor impact on the bias of the estimator for the average treatment effect ([35]).
This is especially true in the matching and stratification algorithm, because the estimated propensity score
is only used to balance the covariate distributions instead of directly in estimation. Our results suggest that
if both individual and cluster-level confounders achieve a good balance between the treatment groups, the
proposed weighting estimator for the average treatment effect is robust.

Clustered data often arise in survey sampling. In complex surveys, the challenge is to take design infor-
mation or design weights into account when developing propensity score methods for causal inference. The
proposed weighting method can be combined with sampling weights for an integrated solution to handle
confounding and sampling designs for causal inference with clustered survey data.

This article is organized as follows. Section 2 introduces the data structure and assumptions, defines the
estimands, and presents existing inverse probability of treatment weighting estimators for clustered data.
Section 3 proposes our estimators. Section 4 presents the main theoretical results. Section 5 extends the pro-
posed calibration estimator to clustered survey data. Section 6 reports a simulation study to evaluate finite
sample properties of our estimator. Section 7 applies ourmethods to investigate the effect of SBMIS on the an-
nual overweight and obesity prevalence in elementary schools in Pennsylvania. A concluding remark is given
in Section 8. Finally, proofs of the main theoretical results and additional simulation results are provided in
the Appendix.

2 Basic setup

2.1 Observed data structure

To fix the ideas, we first focus on two-level clustered data. The extension to clustered survey data will be
addressed in Section 5.

Suppose we have a two-level data structure where at the first level we havem clusters, and at the second
level each cluster i includes ni units. Denote the sample size by n = ∑mi=1 ni. For unit j in cluster i, we observe a
p-dimensional vector of pre-treatment covariates Xij, which may include the observed individual and cluster
characteristics, a binary treatment variable Aij ∈ {0, 1}, with 0 and 1 being the labels of control and active
treatments, respectively, and lastly an outcome variable Yij.

2.2 Potential outcomes and assumptions

We use the potential outcomes framework [1]. Assume that each unit has two potential outcomes: Yij(0), the
outcome that would be realized, possibly contrary to the fact, had the unit received the control treatment,
and Yij(1), the outcome that would be realized, possibly contrary to the fact, had the unit received the active
treatment. The observed outcome is Yij = Yij(Aij). This notation implicitly makes the SUTVA [15] that there is
no interference between units and no versions of each treatment.

Suppose that clusters are random draws from a super-population of clusters, and that for observations
within cluster i, {Aij,Xij,Yij(0),Yij(1) : j = 1, . . . , ni} i.i.d. follow a cluster-specific super-population model. Our
goal is to estimate the average treatment effect, τ = E[n−1∑mi=1∑

ni
j=1{Yij(1) − Yij(0)}], where the expectation is
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taken with respect to the super-population model ξ of all random variables, which will be specified later. In
the binary case, τ is called the causal risk difference.

The fundamental problem is that not all potential outcomes can be observed for each unit in the sample;
only one potential outcome, the outcome corresponding to the treatment the unit actually followed, can be
observed [36]. Throughout, we use Z1⊥Z2 | Z3 to denote the conditional independence of Z1 and Z2 given Z3
[37]. With unstructured i.i.d. data, Rubin [1] described the following assumption for identifying the average
treatment effect.

Assumption 1 (Ignorability). {Yij(0),Yij(1)}⊥Aij | Xij.

Assumption 1 indicates that all confounders are included in Xij.
For clustered data, confounding may vary across clusters and are related to some cluster-level covariates

that are not always observable. In these cases, Assumption 1 does not hold. Instead, we assume a cluster-
specific latent variable Ui that summarizes the effect of unobserved cluster-level confounders, and consider
the following modified ignorability assumption.

Assumption 2 (Latent ignorability). {Yij(0),Yij(1)}⊥Aij | Xij,Ui.

Under Assumption 2, the propensity score becomes pr{Aij = 1 | Xij,Ui,Yij(0),Yij(1)} = pr(Aij = 1 | Xij,Ui) ≡
e(Xij,Ui). Moreover, we make the standard positivity assumption for the propensity score.

Assumption 3 (Positivity). There exist constants e and ē such that, with probability 1, 0 < e < e(Xij,Ui) < ē < 1.

Remark 1. In our setting, the treatment is assigned at the unit level. Assumption 3 implies that each unit in each
cluster has a positive probability to receive either treatment or control. Therefore, our setting does not apply to
the settings with a cluster-level treatment where all units in one cluster receive one treatment level. For these
settings, we refer the interested readers to Stuart [38] and VanderWeele [19].

Under Assumption 2, we write the joint distribution of {(Aij,Xij,Ui,Yij) : i = 1, . . . ,m; j = 1, . . . ni} as

m
∏
i=1

f (Ui)
ni
∏
j=1
(f (Xij | Ui) {f1(Yij | Xij,Ui)e(Xij,Ui)}

Aij [f0(Yij | Xij,Ui){1 − e(Xij,Ui)}]
1−Aij) ,

where fa(⋅ | Xij,Ui) is a conditional distribution of Yij(a) given (Xij,Ui), for a = 0, 1.
The literature has considered generalized linearmixed effectsmodels for fa(Yij | Xij,Ui) and e(Xij,Ui); see,

e. g., [24, 25, 14]. Following the literature, we assume generalized linear mixed effects models for the outcome
and propensity score.

Assumption 4 (Outcome model). The potential outcome Yij(a) follows a generalized linearmixed effects model
with a random intercept Ui as

μij(a) = ga(X
T
ijβa + Ui), (1)

where μij(a) = E{Yij(a) | Xij,Ui}, ga(⋅) is an unspecified inverse link function, and βa is a p-dimensional vector.

Assumption 5 (Propensity score model). The actual treatment Aij given (Xij,Ui) follows a generalized linear
mixed effects model with a random intercept Ui as

e(Xij,Ui; η) = h(X
T
ijη + Ui), (2)

where h(⋅) is an unspecified inverse link function, and η is a q-dimensional vector of parameters.

There are two different model specifications regarding the cluster-level confounders. The fixed effects
model treats Ui as fixed but unknown parameters across clusters. In this fixed-effects approach, treatment
assignment is an ignorable process, which complies with Assumption 1 given that Xij stacks all observed
confounders and cluster dummy variables. On the other hand, the random effects model treats Ui as random
and i.i.d. drawn from a distribution. The difference between the two modeling strategies has been addressed
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in both statistics and econometrics literature; see, e. g., [39] and [40]. Briefly, there are both statistical and
logical considerations. First, if the number of clusters is relatively large, the parameter estimates in the fixed
effects model are inconsistent [41]. In this case, the random effects approach is preferred. Second, the fixed
effects approach does not make distributional assumptions of the cluster-level confounders; whereas, the
random effects approach assumes that Ui is random and i.i.d. drawn from a distribution.

2.3 Inverse probability of treatment weighting estimator

To estimate the average treatment effect τ, let ν = (U1, . . . ,Um) denote the vector of cluster-level confounders.
Under (2), the inverse propensity score or probability of treatment weighting (IPTW) estimator of τ can be
expressed as

τ̂IPTW(ν, η) =
1
n

m
∑
i=1

ni
∑
j=1
{

AijYij
e(Xij,Ui; η)

−
(1 − Aij)Yij

1 − e(Xij,Ui; η)
} . (3)

Under Assumptions 2 and 3, if the propensity score is known, it is straightforward to verify that τ̂IPTW(ν, η) is
unbiased for τ. Moreover, if it is unknown but depends only on fixed parameters, τ̂IPTW(ν, η)with the consis-
tently estimated propensity score is asymptotically unbiased for τ. The challenge with clustered data is that
τ̂IPTW(ν, η)may depend on a growing number of unobserved cluster-level confounders. To resolve this issue,
there are several options:
(i) Weight based on predicted random intercepts; i. e., treat the Ui’s in model (2) as random intercepts, and

predict the propensity score as e(Xij, Û ran
i ; η̂

ran), where Û ran
i is the mode of a predictive distribution for Ui

given the observed Aij and Xij, and η̂ran is the maximum likelihood estimator of η.
(ii) Weight based on estimated fixed intercepts; i. e., treat the Ui’s in model (2) as fixed intercepts, and esti-

mate the propensity score as e(Xij, Û fix
i ; η̂

fix), where Û fix
i and η̂fix are maximum likelihood estimators.

Let τ̂IPTW(ν, η) in (3) be denoted as τ̂ran or τ̂fix when the propensity score is predicted under option (i) or es-
timated under option (ii), respectively. The two approaches suffer several drawbacks. First, to obtain τ̂ran of-
ten involves numerical integration, which can be computationally heavy. Second, the predicted value of the
propensity score does not guarantee the balance of covariate distributions between the treatment groups, due
to the shrinkage of random intercepts toward zero. Lastly, it is well-known that under (2), τ̂fix is not consistent
asm increases, because when treating Ui as fixed, the number of parameters has an order similar tom [42].

3 Proposed methodology
To motivate our estimation of the propensity score, we note

E { A
e(X,U)

(
X
U
)} = E [E { A

e(X,U)
| X,U}( X

U
)] = E {( X

U
)} , (4)

and

E { 1 − A
1 − e(X,U)

(
X
U
)} = E [E { 1 − A

1 − e(X,U)
| X,U}( X

U
)] = E {( X

U
)} . (5)

Equations (4) and (5) clarify the central role of the propensity score in balancing the covariate distributions
between the treatment groups in the super-population. For simplicity of exposition, let eij be the propensity
score for unit j in cluster i, and let êij be the corresponding estimate.We consider the propensity score estimate
to satisfy the following constraints:

m
∑
i=1

ni
∑
j=1

Aij
êij

Xij =
m
∑
i=1

ni
∑
j=1

1 − Aij
1 − êij

Xij =
m
∑
i=1

ni
∑
j=1

Xij, (6)
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ni
∑
j=1

Aij
êij
=

ni
∑
j=1

1 − Aij
1 − êij
=

ni
∑
j=1

1 = ni, (i = 1, . . . ,m). (7)

Note that (6) is the empirical version of (4). The empirical version of (5) is
m
∑
i=1

ni
∑
j=1

Aij
êij

Ui =
m
∑
i=1

ni
∑
j=1

1 − Aij
1 − êij

Ui =
m
∑
i=1

ni
∑
j=1

Ui, (8)

which however is infeasible because the Ui’s are unobserved. Instead, we impose (7) which implies (8), with-
out the need to observe the Ui’s.

To obtain the propensity score estimate that achieves (6) and (7), we use the calibration technique in the
following steps:
Step 1. Obtain an initial propensity score estimate ê0ij under a working propensity scoremodel, e. g. a logistic

linear mixed effects model. This in turn provides an initial set of inverse propensity score weights,W0 =
{dij : i = 1, . . . ,m; j = 1, . . . , ni}, where dij = 1/e0ij if Aij = 1 and dij = 1/(1 − e

0
ij) if Aij = 0.

Step 2. Modify the initial set of weightsW0 to a new set of weightsW = {αij : i = 1, . . . ,m; j = 1, . . . , ni} by
minimizing the Kullback-Leibler distance [43] ofW0 andW:

m
∑
i=1

ni
∑
j=1

G(αij, dij) =
m
∑
i=1

ni
∑
j=1

αij log
αij
dij
, (9)

subject to (6) and (7). By the Lagrange Multipliers technique, the minimizer of (9) subject to (6) and (7) is

αij(λ1, λ2) =
niAijdij exp(λT1XijAij)
∑nij=1 Aijdij exp(λ

T
1XijAij)

+
ni(1 − Aij)dij exp{λT2Xij(1 − Aij)}
∑nij=1(1 − Aij)dij exp{λ

T
2Xij(1 − Aij)}

, (10)

where (λ1, λ2) is the solution to the following equation

Q̂(λ1, λ2) = (
Q̂1(λ1, λ2)
Q̂2(λ1, λ2)

) = (
n−1∑mi=1∑

ni
j=1 {Aijαij(λ1, λ2) − 1}Xij

n−1∑mi=1∑
ni
j=1 {(1 − Aij)αij(λ1, λ2) − 1}Xij

) = 0. (11)

Step 3. Obtain the propensity score estimate as

êij = αij(λ̂1, λ̂2)
−Aij {1 − αij(λ̂1, λ̂2)}

−1+Aij .

Finally, our proposed IPTW estimator is

τ̂IPTW =
1
n

m
∑
i=1

ni
∑
j=1
{
AijYij
êij
−
(1 − Aij)Yij
1 − êij

} . (12)

Remark 2 (Calibration). Calibration has been used in many scenarios. In survey sampling, calibration is widely
used to integrate auxiliary information in estimation or handle nonresponse; see, e. g., [44, 45, 46, 47, 48] and
[49]. In causal inference, calibration has been used such as in Constrained Empirical Likelihood [50], Entropy
Balancing [51], Inverse Probability Tilting [52], and Covariate Balance Propensity Score of Imai and Ratkovic
[53]. Chan, Yam and Zhang [54] showed that estimation of average treatment effects by empirical balance cal-
ibration weighting can achieve global efficiency. However, all these works were developed in settings with i.i.d.
variables and they assumed that there are no unmeasured confounders. Our article is the first to use calibration
for causal inference with unmeasured cluster-level confounders.

Remark 3 (Distance function). In Step 2 of the calibration algorithm, different distance functions, other than
the Kullback-Leibler distance, can be considered. For example, if we choose G(αij, dij) = dij(αij/dij − 1)2, then the
minimumdistance estimation leads to generalized regression estimation [55] of the αij’s. If we chooseG(αij, dij) =
−dij log(αij/dij), then it leads to empirical likelihood estimation [56]. We use the Kullback–Leibler distance func-
tion, which leads to exponential tilting estimation [57, 58, 59]. The advantage of using the Kullback-Leibler
distance is that the resulting weights are always non-negative. Also, with Kullback-Leibler distance, the calibra-
tion constraint (7) can be built into a closed form expression for the weights, and thus avoiding solving a large
number of equations. This reduces the computation burden greatly, when there is a large number of clusters.
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Remark 4 (Nonparametric methods). It is worth commenting on the existing robust nonparametric methods
and the advantages of our estimator. In the i.i.d. data setting, many nonparametric andmachine learning meth-
ods have been proposed to capture the complex relationship of different variables without parametric assump-
tions, such as generalized boosted regression, causal trees, random forest, and neural networks. Indeed, many
studies have shown the superiority of these methods to the parametric propensity score estimation; see, e. g.,
[60, 61, 62, 63]. However, these data-driven methods assume that all confounders are observed, and therefore
they can not handle unobserved cluster-level confounders, unlike our proposed method.

4 Main results

To discuss the asymptotic properties of the proposed estimator, we assume that the cluster sample sizes sat-
isfy the condition that min1≤i≤m ni → ∞ and sup1≤i≤m ni = O(n1/2). To show the double robustness of the
proposed estimator τ̂IPTW, we distinguish two cases and indicate different roles of calibration in estimation.
We provide a heuristic argument below and relegate the technical details to the Appendix.

First, consider the case when the initial propensity score model is correctly specified. The weighting es-
timator with the initial propensity score estimates is then consistent for the average treatment effect. In this
case, the role of calibration is to improve estimation efficiency by incorporating additional covariate informa-
tion. This role of calibration has been demonstrated extensively in the survey literature (e. g., [64]) to modify
the initial design weights to incorporate known auxiliary information.

Second, consider the case when the outcome models are linear mixed effects models:

E {Yij(a) | Xij,Ui} = X
T
ijβa + Ui + ea,ij,

where the ea,ij’s are independent with E(ea,ij | Xij,Ui) = 0, for a = 0, 1. In this case, the role of calibration is to
balance the confounders between the treatment groups for reducing the selection bias. We note that êij does
not depend on outcome variables, and therefore under Assumptions 2, 4 and 5, êij⊥Yij(1) | Xij,Ui. Then, we
have

E{ 1
n

m
∑
i=1

ni
∑
j=1
(
Aij
êij
− 1)Yij(1)}=

1
n

m
∑
i=1

ni
∑
j=1

E [(
Aij
êij
− 1)E {Yij(1) | Xij,Ui}]=E{

1
n

m
∑
i=1

ni
∑
j=1
(
Aij
êij
− 1) (XT

ijβ1 + Ui)}=0,

(13)

where the last equality follows by the constraints (6) and (7). Using Assumption 2 and (13), it follows

E( 1
n

m
∑
i=1

ni
∑
j=1

Aij
êij

Yij) = E{
1
n

m
∑
i=1

ni
∑
j=1

Aij
êij

Yij(1)} = E{
1
n

m
∑
i=1

ni
∑
j=1

Yij(1)} . (14)

Similarly, we establish

E( 1
n

m
∑
i=1

ni
∑
j=1

1 − Aij
1 − êij

Yij) = E{
1
n

m
∑
i=1

ni
∑
j=1

Yij(0)} . (15)

Combining (14) and (15), we have E(τ̂IPTW) = τ, which yields the unbiasedness of τ̂IPTW. Under standard
regularity conditions specified in the Appendix, we show that τ̂IPTW is consistent for τ.

In general cases, if the conditional mean of the outcome given the observed confounders and the latent
cluster-level confounders can bewell approximated by the power series of confounders, imposing constraints
on these power series can also eliminate confounding biases, and the propensity score weighting estimator
is consistent.

We derive the asymptotic distribution of τ̂IPTW in the following theorem and relegate the proof to the
Appendix.
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Theorem 1. Suppose that Assumptions 2, 3, and the regularity conditions specified in the Appendix hold. Sup-
pose further that the cluster sample sizes ni, for i = 1, . . . ,m, satisfy the condition that min1≤i≤m ni → ∞ and
sup1≤i≤m ni = O(n1/2). If the outcome model (1) is a linear mixed effects model or the propensity score model (2)
is correctly specified, the proposed propensity score weighting estimator in (12), subject to constraints (6) and
(7), satisfies

V−1/21 (τ̂IPTW − τ)→ N (0, 1),

in distribution, as n→∞, where V1 = var(n−1∑
m
i=1∑

ni
j=1 τij),

τij = {αij(λ
∗
1 , λ
∗
2 )Aij(Yij − B

T
1Xij) + B

T
1Xij} − {αij(λ

∗
1 , λ
∗
2 )(1 − Aij)(Yij − B

T
2Xij) + B

T
2Xij},

B1 = E [
m
∑
i=1

ni
∑
j=1

αij(λ
∗
1 , λ
∗
2 ){1 −

αij(λ∗1 , λ
∗
2 )

ni
}AijYijX

T
ij]E [

m
∑
i=1

ni
∑
j=1

αij(λ
∗
1 , λ
∗
2 ){1 −

αij(λ∗1 , λ
∗
2 )

ni
}AijXijX

T
ij]
−1

,

B2 = E [
m
∑
i=1

ni
∑
j=1

αij(λ
∗
1 , λ
∗
2 ){1 −

αij(λ∗1 , λ
∗
2 )

ni
} (1 − Aij)YijX

T
ij]E [

m
∑
i=1

ni
∑
j=1

αij(λ
∗
1 , λ
∗
2 ){1 −

αij(λ∗1 , λ
∗
2 )

ni
} (1 − Aij)XijX

T
ij]
−1

,

and (λ∗1 , λ
∗
2 ) satisfies E{Q̂(λ

∗
1 , λ
∗
2 )} = 0 with Q̂(λ1, λ2) defined in (11).

The asymptotic result in Theorem 1 allows for variance estimation of τ̂IPTW. We now discuss variance
estimation. Let τ̂ij = αij(λ̂1, λ̂2){Aij(Yij − B̂T

1Xij) − (1 − Aij)(Yij − B̂
T
2Xij)} + (B̂1 − B̂2)

TXij, where

B̂1 =
m
∑
i=1

ni
∑
j=1

αij(λ̂1, λ̂2){1 −
αij(λ̂1, λ̂2)

ni
}AijYijX

T
ij [

m
∑
i=1

ni
∑
j=1

αij(λ̂1, λ̂2){1 −
αij(λ̂1, λ̂2)

ni
}AijXijX

T
ij]
−1

,

B̂2 =
m
∑
i=1

ni
∑
j=1

αij(λ̂1, λ̂2){1 −
αij(λ̂1, λ̂2)

ni
} (1 − Aij)YijX

T
ij [

m
∑
i=1

ni
∑
j=1

αij(λ̂1, λ̂2){1 −
αij(λ̂1, λ̂2)

ni
} (1 − Aij)XijX

T
ij]
−1

.

Let τ̂i = n−1i ∑
ni
j=1 τ̂ij and V̂i = (ni − 1)

−1∑nij=1(τ̂ij − τ̂i)
2. The variance estimator can be constructed as

V̂(τ̂IPTW) =
1
n
{ 1
m − 1

m
∑
i=1
(τ̂i − τ̂IPTW)

2 + 1
m

m
∑
i=1

V̂i} .

5 Extension to clustered survey data
In this section, we extend the proposed propensity score weighting estimator to clustered survey data. Con-
sider a finite population FN with M clusters and Ni units in the ith cluster, where N = ∑Mi=1 Ni denotes the
population size. We assume that in the finite population, {Aij,Xij,Yij(0),Yij(1) : i = 1, . . . ,M; j = 1, . . . ,Ni} fol-
lows the super-population model ξ as described in Section 2. We are interested in estimating the population
average treatment effect τ = E[N−1∑Mi=1∑

Ni
j=1{Yij(1) − Yij(0)}].

We assume that the sample is selected according to a two-stage cluster sampling design. Specifically,
at the first stage, cluster i is sampled with the first-order inclusion probability πi = pr(i ∈ SI ), where SI is
the index set for the sampled clusters. Let πij = pr{(i, j) ∈ SI } be the second-order inclusion probability for
clusters i and j being sampled. At the second stage, given that cluster i was selected at the first stage, unit j
is sampled with conditional probability πj|i = pr(j ∈ SII | i ∈ SI ), where SII is the index set for the sampled
units. The final sample size is n = ∑i∈SI ni. The design weight for unit j in cluster i be ωij = (πiπj|i)−1, which
reflects the number of units for cluster i in the finite population this unit j represents. We assume that the
design weights are positive and known throughout the sample. Also, let πkl|i = pr{(k, l) ∈ SII | i ∈ SI } be
the second-order inclusion probability for units k and l being sampled given that cluster i was selected. The
second-order inclusion probabilities, πij and πkl|i, are often used for variance estimation.
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For clustered survey data, if the propensity score e(Xij,Ui) is known, we can express the IPTW estimator
of τ as

τ̂IPTW =
1
N
∑
i∈SI

ni
∑
j=1

ωij {
AijYij

e(Xij,Ui)
−
(1 − Aij)Yij
1 − e(Xij,Ui)

} . (16)

Let Eξ and Ep denote expectation under the super-population model and the sampling design, respectively.
It is easy to verify that

E(τ̂IPTW) = Eξ {Ep(τ̂IPTW)}

= Eξ [
1
N

M
∑
i=1

Ni

∑
j=1
{

AijYij
e(Xij,Ui)

−
(1 − Aij)Yij
1 − e(Xij,Ui)

}] = τ.

In practice, because the propensity score e(Xij,Ui) is often unknown, (16) is not feasible. To estimate
the propensity score, we now require the propensity score estimate êij satisfy the following design-weighted
moment constraints

∑
i∈SI

ni
∑
j=1

ωij
Aij
êij

Xij = ∑
i∈SI

ni
∑
j=1

ωij
1 − Aij
1 − êij

Xij = ∑
i∈SI

ni
∑
j=1

ωijXij, (17)

ni
∑
j=1

ωij
Aij
êij
=

ni
∑
j=1

ωij
1 − Aij
1 − êij
= Ni, (i ∈ SI ). (18)

These moment constraints (17) and (18) are the sample version of (4) and (5), respectively.
To obtain the propensity score estimate that achieves (17) and (18), we use the calibration technique in

the following steps:
Step 1. Obtain an initial propensity score estimate ê0ij under some working propensity score model, e. g. a

logistic linear mixed effect model, each unit weighted by the design weight ωij. This in turn provides an
initial set of inverse propensity score weights,W0 = {dij : i = 1, . . . ,m; j = 1, . . . , ni}, where dij = 1/e0ij if
Aij = 1 and dij = 1/(1 − e0ij) if Aij = 0.

Step 2. Modify the initial set of weightsW0 to a new set of weightsW = {αij : i = 1, . . . ,m; j = 1, . . . , ni} by
minimizing∑mi=1∑

ni
j=1 ωijαij log(αij/dij), subject to (17) and (18). By LagrangeMultiplier, αij can be obtained

as

αij(λ1, λ2) =
NiAijdij exp(λ1XijAij)
∑nij=1 ωijAijdij exp(λ1XijAij)

+
Ni(1 − Aij)dij exp{λ2Xij(1 − Aij)}
∑nij=1 ωij(1 − Aij)dij exp{λ2Xij(1 − Aij)}

, (19)

where (λ1, λ2) is the solution to the following equation

Q̂(λ1, λ2) = (
Q̂1(λ1, λ2)
Q̂2(λ1, λ2)

) = (
N−1∑i∈SI ∑

ni
j=1 ωij {Aijαij(λ1, λ2) − 1}Xij

N−1∑i∈SI ∑
ni
j=1 ωij {(1 − Aij)αij(λ1, λ2) − 1}Xij

) = 0. (20)

Step 3. Obtain the propensity score estimate as

êij = αij(λ̂1, λ̂2)
−Aij {1 − αij(λ̂1, λ̂2)}

−1+Aij .

Finally, our proposed IPTW estimator is

τ̂IPTW =
1
N
∑
i∈SI

ni
∑
j=1

ωij {
AijYij
êij
−
(1 − Aij)Yij
1 − êij

} . (21)

In the above procedure, the design wights are used in both the propensity score estimates and the weighting
estimator.

We now consider the asymptotic property of τ̂IPTW in (21). We use an asymptotic framework, where the
sample size n indexes a sequence of finite populations and samples ([65]; Section 1.3), such that the pop-
ulation size N increases with n. In addition, we have the following regularity conditions for the sampling
mechanism.
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Assumption 6. (i) The first-order inclusion probability πiπj|i is positive and uniformly bounded in the sense
that there exist positive constants C1 and C2 that do not depend on N, such that C1 ≤ πiπj|iNn−1 ≤ C2, for
any i and j; (ii) the sequence of Horvitz-Thompson estimators ŶHT = N−1∑i∈SI ∑

ni
j=1 ωijyi satisfies varp(ŶHT) =

O(n−1) and {varp(ŶHT)}−1/2(ŶHT − Ȳ) | FN → N (0, 1), in distribution, as n → ∞, where Ȳ = N−1∑Mi=1∑
Ni
j=1 yi

is the population mean of Y, and the reference distribution is the randomization distribution generated by the
sampling mechanism.

Sufficient conditions for the asymptotic normality of theHorvitz-Thompson estimators are discussed in Chap-
ter 1 of Fuller [65].

Theorem 2. Suppose that Assumptions 2–6, and the regularity conditions specified in the Appendix hold. Sup-
pose further that the cluster sample sizes Ni, for i = 1, . . . ,M, satisfy the condition that min1≤i≤M Ni → ∞ and
sup1≤i≤M Ni = O(N1/2). If the outcomemodel (1) is a linear mixed effects model or the propensity score model (2)
is correctly specified, the proposed propensity score weighting estimator in (21), subject to constraints (17) and
(18), satisfies

V−12 (τ̂IPTW − τ)→ N (0, 1),

in distribution, as n→∞, where V2 = var(N−1∑i∈SI ∑
ni
j=1 ωijτij),

τij = {αij(λ
∗
1 , λ
∗
2 )Aij(Yij − B

T
1Xij) + B

T
1Xij} − {αij(λ

∗
1 , λ
∗
2 )(1 − Aij)(Yij − B

T
2Xij) + B

T
2Xij},

B1 = E [
M
∑
i=1

Ni

∑
j=1

αij(λ
∗
1 , λ
∗
2 ){1 −

αij(λ∗1 , λ
∗
2 )

ni
}AijYijX

T
ij]E [

M
∑
i=1

Ni

∑
j=1

αij(λ
∗
1 , λ
∗
2 ){1 −

αij(λ∗1 , λ
∗
2 )

ni
}AijXijX

T
ij]
−1

,

B2 = E [
M
∑
i=1

Ni

∑
j=1

αij(λ
∗
1 , λ
∗
2 ){1 −

αij(λ∗1 , λ
∗
2 )

ni
} (1 − Aij)YijX

T
ij]E [

M
∑
i=1

Ni

∑
j=1

αij(λ
∗
1 , λ
∗
2 ){1 −

αij(λ∗1 , λ
∗
2 )

ni
} (1 − Aij)XijX

T
ij]
−1

,

and (λ∗1 , λ
∗
2 ) satisfies E{Q̂(λ

∗
1 , λ
∗
2 )} = 0 with Q̂(λ1, λ2) defined in (20).

For variance estimation of τ̂IPTW, let τ̂ij = αij(λ̂1, λ̂2){Aij(Yij − B̂T
1Xij) − (1 − Aij)(Yij − B̂

T
2Xij)} + (B̂1 − B̂2)

TXij,
where

B̂1 = ∑
i∈SI

ni
∑
j=1

ωijαij(λ̂1, λ̂2){1 −
αij(λ̂1, λ̂2)

ni
}AijYijX

T
ij [∑

i∈SI

ni
∑
j=1

ωijαij(λ̂1, λ̂2){1 −
αij(λ̂1, λ̂2)

ni
}AijXijX

T
ij]
−1

,

B̂2 = ∑
i∈SI

ni
∑
j=1

ωijαij(λ̂1, λ̂2){1 −
αij(λ̂1, λ̂2)

ni
} (1 − Aij)YijX

T
ij [∑

i∈SI

ni
∑
j=1

ωijαij(λ̂1, λ̂2){1 −
αij(λ̂1, λ̂2)

ni
} (1 − Aij)XijX

T
ij]
−1

.

Let τ̂i = ∑
ni
j=1 π
−1
j|i τ̂ij and

V̂i =
ni
∑
k=1

ni
∑
l=1

πkl|i − πk|iπl|i
πkl|i

τ̂ik
πk|i

τ̂il
πl|i
.

The variance estimator can be constructed as

V̂(τ̂IPTW) =
1
N2 (∑

i∈SI

∑
j∈SI

πij − πiπj
πij

τ̂i
πi

τ̂j
πj
+ ∑
i∈SI

V̂i
πi
) .

6 Simulation studies
We conduct two simulation studies to evaluate the finite-sample performance of the proposed estimator, as-
sessing its robustness against model misspecification in Section 6.1 and the robustness against omitting a
unit-level confounder in Section 6.2.
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6.1 Robustness against model misspecification

We first generate finite populations and then select a sample from each finite population using a two-stage
cluster sampling design. In the first setting, we specify the number of clusters in the population to be M =
10,000, and the size of the ith cluster size Ni to be the integer part of 500 × exp(2 + Ui)/{1 + exp(2 + Ui)},
where Ui ∼ N (0, 1). The cluster sizes range from 100 to 500. The potential outcomes are generated according
to linear mixed effects models, Yij(0) = Xij + Ui + eij and Yij(1) = Xij + τ + τUi + eij, where τ = 2, Xij ∼
N (0, 1), eij ∼ N (0, 1), Ui, Xij, and eij are independent, for i = 1, . . . ,M, j = 1, . . . ,Ni. The parameter of interest
is τ. We consider three propensity score models, pr(Aij = 1 | Xij;Ui) = h(γ0 + γ1Ui + Xij), with h(⋅) being
the inverse logit, probit and complementary log-log link function, for generating Aij. We set (γ0, γ1) to be
(−0.5, 1), (−0.25,0.5) and (−0.5,0.1) for the above three propensity score models, respectively. The observed
outcome isYij = AijYij(1)+(1−Aij)Yij(0). From each realized population,m clusters are sampled by Probability-
Proportional-to-Size (PPS) sampling with the measure of size Ni. So the first-order inclusion probability of
selecting cluster i is equal to πi = mNi/∑

m
i=1 Ni, which implicitly depends on the unobserved random effect.

Once the clusters are sampled, the ni units in the ith selected cluster are sampled by Poisson sampling with
the corresponding first-order inclusion probability πj|i = nezij/(∑

Mi
j=1 zij), where zij = 0.5 if eij < 0 and 1 if eij > 0.

With this sampling design, the units with eij > 0 are sampled with a chance twice as big as the units with
eij < 0.We consider four combinations ofm and ne: (i) (m, ne) = (50, 50); (ii) (m, ne) = (100, 30), representing a
large number of small clusters; (iii) (m, ne) = (30, 100); and (iv) (m, ne) = (5, 100), representing a small number
of large clusters.

In the second setting, all data-generating mechanisms are the same as in the first setting, except that
the potential outcomes are generated according to logistic linear mixed effects models, Yij(0) ∼ Bernoulli(p0ij)
with logit(p0ij) = Xij +Ui and Yij(1) ∼ Bernoulli(p1ij)with logit(p

1
ij) = Xij +τ+τui. Moreover, in the 2-stage cluster

sampling, πj|i = nezij/(∑
Mi
j=1 zij), where zij = 0.5 if Yij = 0 and 1 if Yij = 1. With this sampling design, the units

with Yij = 1 are sampled with a chance twice as big as the units with Yij = 0.
We compare four estimators for τ: (i) τ̂simp, the simple design-weighted estimator without propensity

score adjustment; (ii) τ̂fix, the weighting estimator in (3) with the propensity score estimated by a logistic lin-
ear fixed effects model with fixed cluster intercepts; (iii) τ̂ran, the weighting estimator in (3) with the propen-
sity score estimated by a logistic linear mixed effects model with random cluster intercepts; (iv) τ̂IPTW, the
proposed estimator with calibrations (17) and (18).

Table 1 shows biases, variances and coverages for 95% confidence intervals from 1,000 simulated data
sets. The simple estimator shows large biases across difference scenarios, even adjusting for sampling de-
sign. This suggests that the covariate distributions are different between the treatment groups in the finite
population, contributing to the bias. τ̂fix works well under Scenario 1 with the linear mixed effects model for
the outcome and the logistic linear mixed effects model for the propensity score; however, its performance
is not satisfactory in other scenarios. Moreover, τ̂fix shows the largest variance among the four estimators in
most of scenarios. This is because for a moderate or large number of clusters, there are too many free param-
eters, and hence the propensity score estimates may not be stable. For τ̂ran, we assume that the cluster effect
is random, which reduces the number of free parameters. As a result, τ̂ran shows less variability than τ̂fix.
Nonetheless, both τ̂fix and τ̂ran cannot control the bias well. The proposed estimator shows small bias and
good empirical coverage across all scenarios. Notably, to compute τ̂IPTW, we used a working model, a logistic
linear model, to provide an initial set of weights. When the true propensity score is probit or complemen-
tary log-log model, τ̂IPTW still has small biases. This suggests that our proposed estimator achieves improved
robustness compared to the existing weighting estimators.

6.2 Robustness against omitting a unit-level (higher moment of) confounder

The data generating mechanisms are the same as in Section 6.1, except that in the potential outcomes and
the treatment assignment models, we use a squared covariate instead of the original covariate. Now, for the
potential outcomes models, we have in the first setting, Yij(0) = X2

ij + Ui + eij and Yij(1) = X2
ij + τ + τUi + eij,
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Table 1: Simulation results: bias, variance (×10−3) and coverage (%) of 95% confidence intervals based on 1,000 Monte Carlo
samples; the outcome is linear and logistic linear mixed effects model and the propensity score is logistic, probit or comple-
mentary log-log (C-loglog).

(m, ne) (50, 50) (100, 30) (30, 100) (5, 100)
bias var cvg bias var cvg bias var cvg bias var cvg

Scenario 1: Linear outcome & Logistic propensity score
̂τsimp -0.37 22 27.4 -0.38 12 8.7 -0.38 35 42.3 -0.38 228 55.1
̂τfix -0.01 36 95.6 0.00 21 95.6 -0.01 42 95.2 -0.01 298 82.0
̂τran 0.14 26 90.2 0.21 14 64.6 0.07 37 94.7 0.07 263 87.1
̂τcal 0.01 26 94.5 0.02 11 95.1 0.00 33 95.6 0.00 245 93.3

Scenario 2: Linear outcome & Probit propensity score
̂τsimp -0.29 16 34.4 -0.08 9 2.3 -0.22 30 65.6 -0.30 162 58.0
̂τfix 0.08 35 90.3 -0.10 19 4.5 0.12 69 90.4 0.07 341 82.5
̂τran 0.24 28 73.9 -0.07 16 29.9 0.21 60 85.5 0.15 303 86.7
̂τcal 0.01 22 94.9 0.01 11 95.4 0.00 33 94.6 0.00 252 95.1

Scenario 3: Linear outcome & C-loglog propensity score
̂τsimp -0.21 20 62.0 -0.21 10 41.2 -0.22 30 65.6 -0.21 240 65.0
̂τfix 0.12 48 88.8 0.12 36 82.7 0.12 69 90.4 0.13 445 80.6
̂τran 0.29 38 69.1 0.36 22 32.5 0.21 60 85.5 0.22 441 84.6
̂τcal 0.00 21 95.3 0.00 10 95.1 0.00 33 94.6 -0.01 248 94.1

Scenario 4: Logistic outcome & Logistic propensity score
̂τsimp -0.11 100 9.1 -0.11 540 0.5 -0.11 160 20.5 -0.11 9 62.9
̂τfix -0.11 44 0.3 -0.11 38 0.1 -0.11 39 0.1 -0.11 3 30.6
̂τran -0.09 33 1.3 -0.08 21 0.5 -0.10 34 0.3 -0.10 2 45.8
̂τcal 0.01 74 96.3 0.01 55 95.2 0.01 74 95.9 0.01 5 94.4

Scenario 5: Logistic outcome & Probit propensity score
̂τsimp -0.08 58 13.1 -0.08 34 2.3 -0.08 81 25.3 -0.07 5 65.9
̂τfix -0.10 93 6.9 -0.10 85 4.5 -0.10 73 3.8 -0.10 5 50.5
̂τran -0.08 67 23.0 -0.07 48 29.9 -0.09 61 8.3 -0.09 4 67.0
̂τcal 0.01 89 94.7 0.01 65 95.4 0.01 84 95.0 0.01 6 95.4

Scenario 6: Logistic outcome & C-loglog propensity score
̂τsimp -0.06 0.3 3.2 -0.06 0.2 1.0 -0.06 0.2 3.7 -0.06 2 62.0
̂τfix -0.05 0.5 44.6 -0.05 0.5 43.6 -0.05 0.5 43.0 -0.05 3 76.8
̂τran -0.03 0.5 95.4 -0.03 0.4 97.3 -0.03 0.4 92.8 -0.03 3 93.4
̂τcal -0.01 0.7 95.5 0.00 0.6 95.8 -0.01 0.7 95.2 0.00 5 95.9

where τ = 2, Xij ∼ N (0, 1), eij ∼ N (0, 1), Ui, Xij, and eij are independent, for i = 1, . . . ,M, j = 1, . . . ,Ni;
while in the second setting, Yij(0) ∼ Bernoulli(p0ij) with logit(p0ij) = X

2
ij + Ui and Yij(1) ∼ Bernoulli(p1ij) with

logit(p1ij) = X
2
ij + τ+ τui. For three propensity score models, we now have pr(Aij = 1 | Xij;Ui) = h(γ0 + γ1Ui +X2

ij),
with h(⋅) being the inverse logit, probit and complementary log-log link function, for generating Aij. We set
(m, ne) = (50, 50). In the proposedmethod, the calibration condition (17) is imposed only for the first moment
of Xij. This represents the case of omitting a unit-level confounder.

Table 2 shows biases, variances and coverages for 95% confidence intervals from 1,000 simulated data
sets. The proposed estimator τ̂IPTW does not control bias well in some scenarios, similar to all other esti-
mators. This is in line with the consensus in the causal inference literature that all unit-level confounders,
including higher moments if present, must be properly controlled for in order to obtain a consistent causal
effect estimator.

7 An application

Ethical approval: The conducted research uses an existing de-identified dataset and is not considered as hu-
man subject research by the authors’ institutional review board.We examine the 2007–2010 BMI surveillance
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Table 2: Simulation results: bias, variance (×10−3) and coverage (%) of 95% confidence intervals based on 1,000 Monte Carlo
samples; the outcome is linear and logistic linear mixed effects model and the propensity score is logistic, probit or comple-
mentary log-log (C-loglog).

Scenario

1 2 3
Linear outcome Linear outcome Linear outcome
Logistic PS Probit PS C-loglog PS
bias var cvg bias var cvg bias var cvg

̂τsimp -0.84 34 2.5 -0.88 22 0.6 -0.66 28 4.6
̂τfix 0.00 52 95.2 -0.06 87 92.7 0.59 121 47.8
̂τran 0.11 41 95.7 0.08 72 96.7 0.67 91 33.8
̂τcal -0.02 31 94.7 -0.08 42 93.9 0.33 39 84.0

Scenario

4 5 6
Logistic outcome Logistic outcome Logistic outcome
Logistic PS Probit PS C-loglog PS
bias var cvg bias var cvg bias var cvg

̂τsimp -0.14 0.84 1.1 -0.13 0.52 0.2 -0.12 0.22 0.0
̂τfix -0.10 0.80 8.9 -0.11 1.79 21.4 -0.01 0.86 93.9
̂τran -0.08 0.60 15.0 -0.09 1.28 32.4 0.01 0.71 99.3
̂τcal 0.00 0.81 95.5 -0.01 1.08 95.7 0.06 0.78 86.1

data from Pennsylvania Department of Health to investigate the effect of School Body Mass Index Screening
(SBMIS) on the annual overweight and obesity prevalence in elementary schools in Pennsylvania. Early stud-
ies have shown that SBMIS has been associated with increased parental awareness of child weight [66, 67].
However, there have been mixed findings about the effect of screening on reducing prevalence of overweight
and obesity [66, 68]. The data set includes 493 schools in Pennsylvania. The baseline is the school year 2007.
Previous studies (e. g. [69]) have shown that two high-level contextual factors are strongly associated with
school policies for SBMIS: type of community (rural, suburban, and urban), and population density (low,
median, and high). Therefore, we cluster schools according to these two factors. This results in five clus-
ters: rural-low, rural-median, rural-high, suburban-high, and urban-high, with cluster sample sizes n1 = 33,
n2 = 118, n3 = 116, n4 = 84, and n5 = 142, respectively.

LetA = 1 if the school implementedSBMIS, andA = 0 if the school didnot. In this data set, 63%of schools
implemented SBMIS, and the percentages of schools implemented SBMIS across the clusters range from 45%
to 70%, indicating cluster-level heterogeneity of treatment. The outcome variable Y is the annual overweight
and obesity prevalence for each school in the school year 2010. The prevalence is calculated by dividing the
number of students with BMI > 85th by the total number of students screened for each school. Therefore,
the outcome was measured for each school. For each school, we obtain school characteristics including the
baseline prevalence of overweight and obesity (X1), and percentage of reduced and free lunch (X2).

For a direct comparison, the average difference of the prevalence of overweight and obesity for schools
that implemented SBMIS and those that did not is 8.78%. This unadjusted difference in the prevalence of
overweight and obesity ignores differences in schools and clusters. To take the cluster-level heterogeneity
of treatment into account, we consider three propensity score models: (i) a logistic linear fixed effects model
with linear predictors including X1, X2, and a fixed intercept for each cluster; (ii) a logistic linearmixed effects
model with linear predictors including X1, X2, and a random intercept for each cluster; (iii) the proposed
calibrated propensity score. Using the estimated propensity score, we estimate the average treatment effect
τ by the weighting method.

Table 3 displays the standardized differences of means for X1 and X2 between the treated and control
groups for each cluster and the whole population, standardized by the standard errors in the whole popula-
tion. Without any adjustment, there are large differences in means for X1 and X2. For this specific data set,
the three methods for modeling and estimating the propensity score are similar in balancing the covariate
distributions between the treated and control groups. All three propensity score weighting methods improve
the balance for X1 and X2. Table 4 displays point estimates and variance estimates based on 500 bootstrap
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Table 3: Balance Check.

simple fixed random calibration

X1

Cluster 1 1.68 -0.22 0.68 0.20
Cluster 2 1.21 0.10 -0.41 0.10
Cluster 3 1.75 -0.02 0.99 0.02
Cluster 4 0.86 -0.04 -1.05 0.02
Cluster 5 -0.36 0.37 -1.39 0.33
Whole Pop 1.28 -0.02 -0.02 0

X2

Cluster 1 0.48 0.02 0.30 0.03
Cluster 2 0.43 0.13 -0.01 0.14
Cluster 3 0.73 0.01 0.46 0.02
Cluster 4 0.18 -0.08 -0.34 -0.07
Cluster 5 -0.57 -0.39 -1.53 -0.44
Whole Pop 0.39 -0.003 -0.001 0

Table 4: Results: estimate, variance estimate (ve) based on 500 bootstrap replicates, and 95% confidence interval (c.i.).

estimate ve 95% c.i.

simple 8.78 2.11 (5.94, 11.63)
fixed 0.47 0.44 (-0.83, 1.77)
random 0.52 0.44 (-0.77, 1.82)
calibration 0.53 0.39 (-0.71, 1.76)

replicates. The simple estimator shows that the screening has a significant effect in reducing the prevalence
of overweight and obesity. However, this may be due to confounders. After adjusting for the confounders, the
screening does not have a significant effect. Given the different sets of assumptions for the different methods,
this conclusion is reassuring.

8 Discussion

We provide a doubly robust construction of inverse propensity score weights by imposing the exact balance
of unit- and (observed and unobserved) cluster-level covariate distributions between the treatment groups.
When either the treatment assignment is correctly specified or the outcome follows a linear mixed effects
model, we show that consistent estimation of the average treatment effect is possible. Our simulation ex-
amines the robustness property of the proposed estimator under various data generating mechanisms. The
results suggest that if all confounders in the linear predictors of the treatment and outcomemodels (including
all highermoments) achieve a good balance between two treatment groups, the proposed estimator is robust.
The balance conditions help to satisfy the underlying latent ignorable treatment assignment assumption, and
maybeparticularly useful in the casewhere not sufficient cluster-level confounders are available. In this case,
misspecification of the propensity score model has little impact on the bias of the causal effect estimator.

Moreover, our simulation results also indicate that robustness may not hold in the case where higher
moments of unit-level confounders are present however are omitted in the balance constraints. This is sim-
ilar to the case when there are unmeasured unit-level confounders. We therefore emphasize that unbiased
estimation of the average treatment effect requires that all unit-level confounders be sufficiently controlled
for.

It is well known that the IPTW estimator is sensitive to near-zero values of the estimated propensity score
(e. g. [70, 34, 8]). Our proposed estimator prevents the occurrence of extreme values of weights through the
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calibration constraintswhere theweightswithin each cluster are positive and sum to the cluster sample sizes.
Therefore, it is unlikely that some units receive extremely large weights that dominate.

We have focused on two-level data with a binary treatment and the average treatment effect over the
full population in this article. Our proposed method can be easily generalized to many other scenarios not
discussed here, such asmulti-level data,multiple treatments [10] or other causal estimands, e. g., the average
causal effects over a subset of population [71, 72, 73], including the average causal effect on the treated.

The IPTW estimator is not efficient in general. Semiparametric efficiency bounds for estimating the av-
erage treatment effects in the setting with i.i.d. random variables were derived by Hahn [74]. He showed that
the efficient influence function for the average treatment effect depends on both the propensity score and
the outcome model. An important implication is that combining the propensity score model and the out-
come regression model can improve efficiency of the IPTW estimator. For clustered data, because the data
are correlated through the random cluster variables, the efficiency theory established for the i.i.d. data is
not applicable. It remains an interesting avenue for future research to develop the semiparametric efficiency
theory for clustered data.
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Appendix. Regularity conditions and proof of Theorem 1

We formulate the proposed estimator as a Z-estimator (e. g., [75]), which invokes the standard Z-estimation
theory to show the asymptotic properties. Write τ̂IPTW(λ1, λ2) = n−1∑

m
i=1∑

ni
j=1 αij(λ1, λ2)Yij, where αij(λ1, λ2) is

defined in (10). The proposed estimator is τ̂IPTW(λ̂1, λ̂2), where (λ̂1, λ̂2) satisfies Q̂(λ̂1, λ̂2) = 0, where Q̂(λ1, λ2) is
defined in (11). Define Q(λ1, λ2) = limn→∞ E{Q̂(λ1, λ2)}, and define (λ∗1 , λ

∗
2 ) that satisfy Q(λ

∗
1 , λ
∗
2 ) = 0. Denote

A ≅ B as A = B + oP(n−1/2), where the reference distribution is the super-population model, as n→∞.
We impose the following regularity conditions.

Condition A1. Q̂(λ1, λ2)→ Q(λ1, λ2) in probability uniformly for (λ1, λ2) ∈ B as n→∞, and there exists a unique
(λ∗1 , λ
∗
2 ) ∈ B such that Q(λ∗1 , λ

∗
2 ) = 0;

Condition A2. àτ̂IPTW(λ1, λ2)/à(λT1, λ
T
2) and àQ̂(λ1, λ2)/à(λ

T
1, λ

T
2) are continuous at (λ1, λ2) ∈ B almost surely;

Condition A3. The matrix

E {
àQ̂(λ∗1 , λ

∗
2 )

à(λT1, λT2)T
} = E [ 1

n

m
∑
i=1

ni
∑
j=1

αij(λ
∗
1 , λ
∗
2 ){1 −

αij(λ∗1 , λ
∗
2 )

ni
}AijXijX

T
ij]

is invertible;

Condition A4. E||Xij||3 <∞, E|Yij(0)|3 <∞, and E|Yij(1)|3 <∞.

The convergence in ConditionA1 is uniform convergence. That is, given ϵ > 0, there exists n0 = n0(ϵ) such
that pr{|Q̂(λ1, λ2)−Q(λ1, λ2)| > ϵ} ≤ ϵ holds for all n ≥ n0 and (λ1, λ2) ∈ B. A sufficient condition for the uniform
convergence is that |αij(λ1, λ2)| < M for all (i, j) and (λ1, λ2) ∈ B, whereM is a constant. Condition A4 specifies
moment conditions for the central limit theorem. Conditions A1–A4 are standard regularity conditions on
Z-estimation; see, e. g., [75]. However, the regularity conditions may be difficult to check in practice. We give
an extreme example where a certain condition is violated. For example, if two covariates in X are perfectly
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correlated, then Condition A3 fails to hold. Aside from extreme cases, the regularity conditions are often
satisfied for the models we are considering and reasonable choices of covariates in practice.

Under Conditions A1–A4, using the standard linearization technique, we obtain

τ̂IPTW(λ̂1, λ̂2) ≅ τ̂IPTW(λ
∗
1 , λ
∗
2 )

−E {
àτ̂IPTW(λ∗1 , λ

∗
2 )

à(λT1, λT2)
}E {
àQ̂(λ∗1 , λ

∗
2 )

à(λT1, λT2)
}
−1

Q̂(λ∗1 , λ
∗
2 )

≡ τ̂IPTW(λ
∗
1 , λ
∗
2 ) − B

T
1Q̂1(λ
∗
1 , λ
∗
2 ) − B

T
2Q̂2(λ
∗
1 , λ
∗
2 ). (A1)

First, consider the case when the initial propensity score model is correctly specified and consistently
estimated. We have e0ij ≅ eij and λ

∗
1 = λ
∗
2 = 0. This is because with λ

∗
1 = λ
∗
2 = 0, limn→∞ E{Q̂(λ∗1 , λ

∗
2 )} = 0. We

now evaluate the terms in (A1) further. We express τ̂IPTW(0,0) as

n−1
m
∑
i=1

ni
∑
j=1

αij(0,0)Yij

= n−1
m
∑
i=1

ni
∑
j=1

dijAijYij
n−1i ∑

ni
j=1 dijAij

− n−1
m
∑
i=1

ni
∑
j=1

dij(1 − Aij)Yij
n−1i ∑

ni
j=1 dij(1 − Aij)

= n−1
m
∑
i=1

ni
∑
j=1

dijAijYij(1)
n−1i ∑

ni
j=1 dijAij

− n−1
m
∑
i=1

ni
∑
j=1

dij(1 − Aij)Yij(0)
n−1i ∑

ni
j=1 dij(1 − Aij)

≅ n−1
m
∑
i=1

ni
∑
j=1

e−1ij AijYij(1)
n−1i ∑

ni
j=1 e
−1
ij Aij
− n−1

m
∑
i=1

ni
∑
j=1

(1 − eij)−1(1 − Aij)Yij(0)
n−1i ∑

ni
j=1(1 − eij)

−1(1 − Aij)

≅ τ, (A2)

where the third line follows by the consistency assumption, the forth line follows by the assumption that
the initial propensity score model is correctly specified, and the last line follows by the strong law of large
numbers and the condition of min1≤i≤m ni →∞. Also, following the similar argument, we obtain

Q̂1(0,0) = n
−1

m
∑
i=1

ni
∑
j=1
{Aijαij(0,0) − 1}Xij ≅ 0, (A3)

Q̂2(0,0) = n
−1

m
∑
i=1

ni
∑
j=1
{(1 − Aij)αij(0,0) − 1}Xij ≅ 0. (A4)

Combining (A1)–(A4), we obtain τ̂IPTW(λ̂1, λ̂2) ≅ τ.
Second, consider the casewhen the outcome follows a linearmixed effectsmodel.We do not assume that

the initial propensity score model is correctly specified, and therefore λ∗1 and λ∗2 in (A1) are not necessarily
zero. Conditions A1–A4 ensure that (A1) is consistent for some parameter. We have shown in Section 4 that
the proposed estimator is asymptotically unbiased for τ. It follows that τ̂IPTW(λ̂1, λ̂2) ≅ τ.

To derive asymptotic variance formula, continuing (A1), we obtain

τ̂IPTW(λ̂1, λ̂2) =
1
n

m
∑
i=1

ni
∑
j=1
{αij(λ
∗
1 , λ
∗
2 )Aij(Yij − B

T
1Xij) + B

T
1Xij}

− 1
n

m
∑
i=1

ni
∑
j=1
{αij(λ
∗
1 , λ
∗
2 )(1 − Aij)(Yij − B

T
2Xij) + B

T
2Xij}

= 1
n

m
∑
i=1

ni
∑
j=1

τij,

where

τij = {αij(λ
∗
1 , λ
∗
2 )Aij(Yij − B

T
1Xij) + B

T
1Xij} − {αij(λ

∗
1 , λ
∗
2 )(1 − Aij)(Yij − B

T
2Xij) + B

T
2Xij} .

Therefore, var(τ̂IPTW) = var(n−1∑
m
i=1∑

ni
j=1 τij), denoted as V1.
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To establish the asymptotic normality of τ̂IPTW, we use the central limit theory for dependent vari-
ables [76, 77]. Let var(τij) = σ2τ and cov(τij, τik) = ντ for j ̸= k. Arrange the τij’s in a n-length sequence
{τ11, . . . , τ1n1 , τ21, . . . , τmnm }. To simplify the notation, let the kth random variable in this sequence be denoted
by τk, for k = 1, . . . , n. We now consider such sequences {τk : k = 1, . . . , n} are indexed by n. By Condition
A4, the absolute central moments E|τk − E(τk)|3 are bounded uniformly in k. Moreover, by the assumption
of sup1≤i≤m ni = O(n1/2), we then have var(∑

a+n
k=a+1 τk) ∼ nA

2, uniformly in a, as n → ∞, where A2 is a positive
constant. Following Serfling [77], these are typical criterion for verifying the Lindeberg condition [78], and
therefore V−1/21 (τ̂IPTW − τ)→ N (0, 1), in distribution, as n→∞.

Appendix. Regularity conditions for Theorem 2

For the clustered survey data, we now write τ̂IPTW(λ1, λ2) = N−1∑i∈SI ∑
ni
j=1 ωij × αij(λ1, λ2)Yij, where αij(λ1, λ2) is

defined in (19). The proposed estimator is τ̂IPTW(λ̂1, λ̂2), where (λ̂1, λ̂2) satisfies Q̂(λ̂1, λ̂2) = 0, where Q̂(λ1, λ2) is
defined in (20). We assume Conditions A1–A4 holds with the new definitions of τ̂IPTW(λ1, λ2), αij(λ1, λ2), and
Q̂(λ1, λ2).

References
1. Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol.

1974;66:688–701.
2. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika.

1983;70:41–55.
3. Rosenbaum PR, Rubin DB. Constructing a control group using multivariate matched sampling methods that incorporate the

propensity score. Am Stat. 1985;39:33–8.
4. Stuart EA. Matching methods for causal inference: A review and a look forward. Stat Sci. 2010;25:1–21.
5. Abadie A, Imbens GW. Matching on the estimated propensity score. Econometrica. 2016;84:781–807.
6. Hirano K, Imbens GW. Estimation of causal effects using propensity score weighting: An application to data on right heart

catheterization. Health Serv Outcomes Res Methodol. 2001;2:259–78.
7. Bang H, Robins JM. Doubly robust estimation in missing data and causal inference models. Biometrics. 2005;61:962–73.
8. Cao W, Tsiatis AA, Davidian M. Improving efficiency and robustness of the doubly robust estimator for a population mean

with incomplete data. Biometrika. 2009;96:723–34.
9. Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. J Am

Stat Assoc. 1984;79:516–24.
10. Yang S, Imbens GW, Cui Z, Faries DE, Kadziola Z. Propensity score matching and subclassification in observational studies

with multi-level treatments. Biometrics. 2016;72:1055–65.
11. Imbens GW, Rubin DB. Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge UK: Cambridge

University Press; 2015.
12. Hong G, Raudenbush SW. Evaluating kindergarten retention policy: A case study of causal inference for multilevel

observational data. J Am Stat Assoc. 2006;101:901–10.
13. Griswold ME, Localio AR, Mulrow C. Propensity score adjustment with multilevel data: setting your sites on decreasing

selection bias. Ann Intern Med. 2010;152:393–5.
14. Li F, Zaslavsky AM, Landrum MB. Propensity score weighting with multilevel data. Stat Med. 2013;32:3373–87.
15. Rubin DB. Bayesian inference for causal effects: The role of randomization. Ann Stat. 1978;6:34–58.
16. Ross R. An application of the theory of probabilities to the study of a priori pathometry. part i. Proc R Soc Lond, a Contain

Pap Math Phys Character. 1916;92:204–30.
17. Hudgens MG, Halloran ME. Toward causal inference with interference. J Am Stat Assoc. 2008;103:832–42.
18. Oakes JM. The (mis) estimation of neighborhood effects: causal inference for a practicable social epidemiology. Soc Sci

Med. 2004;58:1929–52.
19. VanderWeele TJ. Ignorability and stability assumptions in neighborhood effects research. Stat Med. 2008;27:1934–43.
20. Hong G, Yu B. Early-grade retention and children’s reading and math learning in elementary years. Educ Eval Policy Anal.

2007;29:239–61.
21. Hong G, Yu B. Effects of kindergarten retention on children’s social-emotional development: An application of propensity

score method to multivariate, multilevel data. Dev Psychol. 2008;44:407–21.



18 | S. Yang, Propensity Score Weighting for Causal Inference with Clustered Data

22. Kim J, Seltzer M. Causal inference in multilevel settings in which selection processes vary across schools. Technical Report
Working Paper 708. University of California, Los Angeles, Center for the Study of Evaluation; 2007.

23. Kelcey BM. Improving and assessing propensity score based causal inferences in multilevel and nonlinear settings. PhD
thesis. University of Michigan; 2009.

24. Arpino B, Mealli F. The specification of the propensity score in multilevel observational studies. Comput Stat Data Anal.
2011;55:1770–80.

25. Thoemmes FJ, West SG. The use of propensity scores for nonrandomized designs with clustered data. Multivar Behav Res.
2011;46:514–43.

26. Kim J-S, Steiner PM. Multilevel propensity score methods for estimating causal effects: A latent class modeling strategy. In:
Quantitative Psychology Research. Springer; 2015. p. 293–306.

27. Leite WL, Jimenez F, Kaya Y, Stapleton LM, MacInnes JW, Sandbach R. An evaluation of weighting methods based on
propensity scores to reduce selection bias in multilevel observational studies. Multivar Behav Res. 2015;50:265–84.

28. Schuler MS, Chu W, Coffman D. Propensity score weighting for a continuous exposure with multilevel data. Health Serv
Outcomes Res Methodol. 2016;16:271–92.

29. Xiang Y, Tarasawa B. Propensity score stratification using multilevel models to examine charter school achievement
effects. J School Choice. 2015;9:179–96.

30. Su Y-S, Cortina J. What do we gain? combining propensity score methods and multilevel modeling. In: Annual Meeting of
the American Political Science Association. Toronto, Canada; 2009.

31. Eckardt P. Propensity score estimates in multilevel models for causal inference. Nurs Res. 2012;61:213–23.
32. Robins JM, Rotnitzky A, Zhao LP. Estimation of regression coefficients when some regressors are not always observed. J Am

Stat Assoc. 1994;89:846–66.
33. Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects:

a comparative study. Stat Med. 2004;23:2937–60.
34. Kang JD, Schafer JL. Demystifying double robustness: A comparison of alternative strategies for estimating a population

mean from incomplete data. Stat Sci. 2007;22:523–39.
35. Rubin DB. On principles for modeling propensity scores in medical research. Pharmacoepidemiol Drug Saf. 2004;

13:855–7.
36. Holland PW. Statistics and causal inference. J Am Stat Assoc. 1986;81:945–60.
37. Dawid AP. Conditional independence in statistical theory. J R Stat Soc, Ser B, Stat Methodol. 1979;41:1–31.
38. Stuart EA. Estimating causal effects using school-level data sets. Educ Res. 2007;36:187–98.
39. Baltagi B. Econometric Analysis of Panel Data. New York: John Wiley & Sons, Wiley; 1995.
40. Wooldridge JM. Econometric Analysis of Cross Section and Panel Data. Cambridge, MA: MIT press; 2002.
41. Wallace TD, Hussain A. The use of error components models in combining cross section with time series data.

Econometrica. 1969;37:55–72.
42. Skinner CJ, et al.. Inverse probability weighting for clustered nonresponse. Biometrika. 2011;98:953–66.
43. Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat. 1951;22:79–86.
44. Wu C, Sitter RR. A model-calibration approach to using complete auxiliary information from survey data. J Am Stat Assoc.

2001;96:185–93.
45. Chen J, Sitter R, Wu C. Using empirical likelihood methods to obtain range restricted weights in regression estimators for

surveys. Biometrika. 2002;89:230–7.
46. Särndal C-E, Lundström S. Estimation in Surveys with Nonresponse. New York: John Wiley & Sons; 2005.
47. Kott PS. Using calibration weighting to adjust for nonresponse and coverage errors. Surv Methodol. 2006;32:133–42.
48. Chang T, Kott PS. Using calibration weighting to adjust for nonresponse under a plausible model. Biometrika.

2008;95:555–71.
49. Kim JK, Kwon Y, Paik MC. Calibrated propensity score method for survey nonresponse in cluster sampling. Biometrika.

2016;103:461–73.
50. Qin J, Zhang B. Empirical-likelihood-based inference in missing response problems and its application in observational

studies. J R Stat Soc B. 2007;69:101–22.
51. Hainmueller J. Entropy balancing for causal effects: A multivariate reweighting method to produce balanced samples in

observational studies. Polit Anal. 2012;20:25–46.
52. Graham BS, Pinto CCDX, Egel D. Inverse probability tilting for moment condition models with missing data. Rev Econ Stud.

2012;79:1053–79.
53. Imai K, Ratkovic M. Covariate balancing propensity score. J R Stat Soc B. 2014;76:243–63.
54. Chan KCG, Yam SCP, Zhang Z. Globally efficient non-parametric inference of average treatment effects by empirical

balancing calibration weighting. J R Stat Soc B. 2015;78:673–700.
55. Park M, Fuller WA. Generalized regression estimators. Encycl Environmetrics. 2012;2:1162–6.
56. Newey WK, Smith RJ. Higher order properties of GMM and generalized empirical likelihood estimators. Econometrica.

2004;72:219–55.
57. Kitamura Y, Stutzer M. An information-theoretic alternative to generalized method of moments estimation. Econometrica.

1997;65:861–74.



S. Yang, Propensity Score Weighting for Causal Inference with Clustered Data | 19

58. Imbens G, Johnson P, Spady RH. Information theoretic approaches to inference in moment condition models.
Econometrica. 1998;66:333–57.

59. Schennach SM. Point estimation with exponentially tilted empirical likelihood. Ann Stat. 2007;35:634–72.
60. McCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression for evaluating causal effects in

observational studies. Psychol Methods. 2004. 403–425.
61. Setoguchi S, Schneeweiss S, Brookhart MA, Glynn RJ, Cook EF. Evaluating uses of data mining techniques in propensity

score estimation: a simulation study. Pharmacoepidemiol Drug Saf. 2008;17:546–55.
62. Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. Stat Med. 2010;29:337–46.
63. Pirracchio R, Petersen ML, van der Laan M. Improving propensity score estimators’ robustness to model misspecification

using super learner. Am J Epidemiol. 2014;181:108–19.
64. Deville J-C, Särndal C-E. Calibration estimators in survey sampling. J Am Stat Assoc. 1992;87:376–82.
65. Fuller WA. Sampling Statistics. Hoboken, NJ: Wiley; 2009.
66. Harris KC, Kuramoto LK, Schulzer M, Retallack JE. Effect of school-based physical activity interventions on body mass index

in children: a meta-analysis. Can Med Assoc J. 2009;180:719–26.
67. Ebbeling CB, Feldman HA, Chomitz VR, Antonelli TA, Gortmaker SL, Osganian SK, Ludwig DS. A randomized trial of

sugar-sweetened beverages and adolescent body weight. N Engl J Med. 2012;367:1407–16.
68. Thompson JW, Card-Higginson P. Arkansas’ experience: statewide surveillance and parental information on the child

obesity epidemic. Pediatrics. 2009;124:73–82.
69. Peyer KL, Welk G, Bailey-Davis L, Yang S, Kim J-K. Factors associated with parent concern for child weight and parenting

behaviors. Childhood Obesity. 2015;11:269–74.
70. Robins J, Sued M, Lei-Gomez Q, Rotnitzky A. Comment: Performance of double-robust estimators when “inverse

probability” weights are highly variable. Stat Sci. 2007;22:544–59.
71. Crump R, Hotz VJ, Imbens G, Mitnik O. Moving the goalposts: Addressing limited overlap in the estimation of average

treatment effects by changing the estimand. Technical report, 330. Cambridge, MA: National Bureau of Economic Research;
2006.

72. Li F, Morgan KL, Zaslavsky AM. Balancing covariates via propensity score weighting. J Am Stat Assoc. 2017.
https://doi.org/10.1080/01621459.2016.1260466.

73. Yang S, Ding P. Asymptotic inference of causal effects with observational studies trimmed by the estimated propensity
scores. Biometrika. 2018;105:487–93.

74. Hahn J. On the role of the propensity score in efficient semiparametric estimation of average treatment effects.
Econometrica. 1998;66:315–31.

75. van der Vaart. Asymptotic Statistics. vol. 3. Cambridge: Cambridge university press; 2000.
76. Hoeffding W, Robbins H, et al.. The central limit theorem for dependent random variables. Duke Math J. 1948;15:773–80.
77. Serfling RJ. Contributions to central limit theory for dependent variables. Ann Math Stat. 1968;39:1158–75.
78. Loève M. Probability Theory. 2nd ed. Princeton: Van Nostrand; 1960.

https://doi.org/10.1080/01621459.2016.1260466

	Propensity Score Weighting for Causal Inference with Clustered Data
	1 Introduction
	2 Basic setup
	2.1 Observed data structure
	2.2 Potential outcomes and assumptions
	2.3 Inverse probability of treatment weighting estimator

	3 Proposed methodology
	4 Main results
	5 Extension to clustered survey data
	6 Simulation studies
	6.1 Robustness against model misspecification
	6.2 Robustness against omitting a unit-level (higher moment of) confounder

	7 An application
	8 Discussion
	Appendix. Regularity conditions and proof of Theorem 1
	Appendix. Regularity conditions for Theorem 2
	References


