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Abstract
Structural nested mean models (SNMMs) are useful for causal inference of
treatment effects in longitudinal observational studies. Most existing works
assume that the data are collected at prefixed time points for all subjects,
which, however, may be restrictive in practice. To deal with irregularly spaced
observations, we assume a class of continuous-time SNMMs and a martingale
condition of no unmeasured confounding (NUC) to identify the causal parame-
ters. We develop the semiparametric efficiency theory and locally efficient esti-
mators for continuous-time SNMMs. This task is nontrivial due to the restric-
tions from the NUC assumption imposed on the SNMM parameter. In the
presence of ignorable censoring, we show that the complete-case estimator is
optimal among a class of weighting estimators including the inverse proba-
bility of censoring weighting estimator, and it achieves a double robustness
feature in that it is consistent if at least one of the models for the potential
outcome mean function and the treatment process is correctly specified. The
new framework allows us to conduct causal analysis respecting the underlying
continuous-time nature of data processes. The simulation study shows that the
proposed estimator outperforms existing approaches. We estimate the effect of
time to initiate highly active antiretroviral therapy on the CD4 count at year
2 from the observational Acute Infection and Early Disease Research Program
database.
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1 INTRODUCTION

The gold standard to draw causal inference of treatment
effects is designing randomized experiments. However,
randomized experiments are not always feasible due to
practical constraints or ethical issues. In these cases, obser-
vational studies are useful. In observational studies, con-
founding presents a unique challenge to drawing valid
causal inferences of treatment effects. For example, sicker

patients are more likely to take the active treatment,
whereas healthier patients are more likely to take the con-
trol treatment. Consequently, it is not fair to compare the
outcome from the treated group and the control group
directly. Moreover, in longitudinal observational studies,
confounding is likely to be time-dependent, in the sense
that time-varying prognostic factors of the outcome affect
the treatment assignment at each time, and thereby distort
the association between treatment and outcome over time.
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In these cases, traditional regression methods are biased
even adjusting for the time-varying confounders (Robins
and Hernán, 2009).
Structural nested models (SNMs; Robins, 1994) have

been proposed to overcome the challenges for causal
inference with time-varying confounding. We focus on a
class of SNMs for continuous outcomes, namely, structural
nested mean models (SNMMs). Most existing works on
SNMMs assume discrete-time data-generating processes
and require all subjects to be followed at the same prefixed
time points, such as months. The literature of discrete-
time SNMMs is fruitful; see, for example, Robins (1994),
Lok and DeGruttola (2012), and Yang and Lok (2016);
2018). However, observational data are often collected by
user-initiated visits to clinics, hospitals, and pharmacies,
and data are more likely to be measured at irregularly
spaced time points, which are not necessarily the same
for all subjects. Such data sources are now commonplace,
such as electronic health records, claims databases, disease
data registries, and so on. The existing causal framework
does not directly apply in such situations, requiring some
(possibly arbitrary) discretization of the timeline (Neuge-
bauer et al., 2010). Data preprocessing is quite standard
and routine to practitioners, but leads to many unresolved
problems: the treatment process depends transparently
on the discretization, and therefore the interpretation
of SNMMs depends on the definition of time interval
(Robins, 1998). Moreover, after discretization, the data
may need to be recreated at certain time points. Consider
monthly data for example. If a subject had multiple visits
within the same month, a common strategy is to take the
average of the multiple measures as the observation for a
given variable at that month. If a subject had no visit for a
given month, one may need to impute the missing obser-
vation. Because of such distortions, the resulting data may
not satisfy the standard causal consistency or no unmea-
sured confounding (NUC) assumptions. Consequently,
model parameters may not have a causal interpretation.
Our interest is motivated by the observational AIEDRP

(Acute Infection and Early Disease Research Program)
study (Hecht et al., 2006). This study included a cohort of
HIV-infected patients diagnosed during the acute or early
stage of disease. Patients initiated highly active antiretro-
viral therapy (HAART) at various times of the follow-
up. Among all AIEDRP patients, 64% of patients initi-
ated the treatment before year 2 with the observed time
to treatment initiation ranging continuously from 12 to
282 days. The hypothesis was that deferring therapy may
have an increased risk of permanent immune system dam-
age but also a decreased risk of developing drug resis-
tance. Thus, the interest was to estimate the effect of
time to initiate HAART on disease progression. However,
the complex data also present novel challenges for sta-

tistical analysis as summarized below. By study proto-
col, follow-up visits were scheduled at weeks 2, 4, and
12, and then every 12 weeks thereafter, through week
96. During each follow-up visit, various variables can be
measured such as CD4 count and viral load, for which
lower CD4 count and higher viral load indicate worse
immunological function and disease progression. Treat-
ment initiation can then be determined by the discre-
tion of physicians at follow-up visits. This raises a major
concern of time-varying confounding that may obscure
the causal effect of time to treatment initiation on dis-
ease progression; for example, patients with worse dis-
ease progression tend to initiate HAART earlier. More-
over, although the study protocol set visit times in advance,
these fixed visit timeswere not adhered to perfectly in prac-
tice. Figure 1 shows the visit patterns from five random
patients from the AIEDRP study. Importantly, both the
number and the timings of visits differ from one patient
to the next. Finally, 45% of patients dropped out of the
study before year 2, resulting in right-censored data. It is
arguable that censoring due to dropout may depend on the
patient’s status, which necessitates proper adjustment of
censoring.
With irregularly spaced observations, it is more rea-

sonable to assume that the data are generated from
continuous-time processes. The work for causal models
in continuous-time processes is somewhat sparse; excep-
tions include, for example, Robins (1998), Lok (2008),
Zhang et al. (2011), Lok (2017), and Yang et al. (2020).
Extending the existing causal models with discrete-time
processes to continuous-time processes is not trivial. An
important challenge lies in time-dependent selection bias
or confounding; for example, in a health-related study,
sicker patients may visit the doctor more frequently and
are more likely to initiate the treatment. To overcome this
challenge, following Lok (2008), we treat the observed
treatment assignment process as a counting process 𝑁𝑇(𝑡)
and assume a martingale condition of NUC on 𝑁𝑇(𝑡)

to identify the SNMM parameter. Specifically, the NUC
assumption entails that the jumping rate of 𝑁𝑇(𝑡) at 𝑡
does not depend on future potential outcomes, given the
past treatment and covariate history up to 𝑡. A practical
implication is that the covariate set should be rich enough
to include all predictors of outcome and treatment so
that we can distinguish the treatment effect and the
confounding effect. This assumption was also adopted in
Zhang et al. (2011), Yang et al. (2018), and Yang et al. (2020).
Lok (2017) provided a strategy of constructing unbiased
estimating equations exploiting the relationship between
the potential outcome and treatment processes, which
leads to a large class of estimators. While this strategy
provides unbiased estimators, there is no guidance on
how to construct an efficient estimator.
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F IGURE 1 CD4 count and log viral load for five random patients measured at irregularly spaced time points, which are colored by
patients. This figure appears in color in the electronic version of this article, and any mention of color refers to that version

We establish the new semiparametric efficiency the-
ory for continuous-time SNMMs with irregularly spaced
observations. In our problem, the SNMM and NUC
assumptions constitute the semiparametric model for
the data. Although the NUC assumption does not have
any testable implications on the observed-data likeli-
hood, it imposes conditional independence restrictions
on the counterfactual outcomes and treatment processes,
given the past history, and hence restrictions for the
SNMM parameter. To circumvent this complication, we
use the variable transformation technique and translate
the restrictions into the new variables, which leads to the
unconstrained observed-data likelihood. This step allows
us to characterize the semiparametric efficiency score
(SES) for the SNMM parameter and construct locally effi-
cient estimators that achieve the semiparametric efficiency
bound. The estimator requires two nuisance models:

(a) the model of the potential outcome mean function con-
ditional on time-varying covariates, and

(b) the model of the treatment process conditional on the
history of the treatment and covariates.

The proposed estimator of the SNMM parameter is dou-
bly robust in that it is consistent and asymptotically Nor-
mal if at least one of the models for the potential outcome
mean function and the treatment process is correctly spec-
ified. In the AIEDRP database, a large portion of patients
dropped out of the study before year 2. Under an ignor-
able censoring mechanism given the observed history, we
show that the complete-case (CC) estimator, that is, the
locally efficient estimator applied to the uncensored sub-
jects, remains doubly robust and is optimal among a class
of weighting estimators including the inverse probability

of censoring weighting (IPCW) estimator (Rotnitzky et al.,
2007).

2 SNMMs IN DISCRETE-TIME
PROCESSES

2.1 Setup, models, and assumptions

We first describe the SNMM in discrete-time processes.
We assume that 𝑛 subjects are followed at prefixed dis-
crete times 𝑡0 < ⋯ < 𝑡𝐾+1 with 𝑡0 = 0 and 𝑡𝐾+1 = 𝜏. We
assume that the subjects are simple random samples from
a larger population. For simplicity, we suppress the sub-
script 𝑖 for subjects. Let 𝐿𝑚 be a vector of covariates at
time 𝑡𝑚. Let 𝐴𝑚 be the treatment indicator at 𝑡𝑚; that is,
𝐴𝑚 = 1 if the subject was on treatment at 𝑡𝑚 and 𝐴𝑚 = 0
otherwise. We use the overline notation to denote a vari-
able’s history; for example, 𝐴𝑚 = (𝐴0, … ,𝐴𝑚). We assume
that once treatment is initiated, it is never discontinued, so
each treatment regime corresponds to one treatment initi-
ation time. Let 𝑇 be the time to treatment initiation, and
let 𝑇 = ∞ if the subject never initiated the treatment dur-
ing the follow-up. Let Γ be the indicator that the treatment
initiation time is less than 𝜏; that is, Γ = 1 if the subject
initiated the treatment before 𝜏 and Γ = 0 otherwise. Let
𝑌(𝑚) be the potential outcome at the end of the study 𝜏,
had the subject initiated the treatment at 𝑡𝑚, and let 𝑌(∞)
be the potential outcome at 𝜏 had the subject never initi-
ated the treatment during the study follow-up. Let 𝑉𝑚 =
(𝐴𝑚−1, 𝐿𝑚) be the vector of treatment and covariate for
0 ≤ 𝑚 ≤ 𝐾, where𝐴−1 is defined as null. Let 𝑌 be the con-
tinuous outcome measured at 𝜏. Finally, the subject’s full
record is 𝐹 = (𝐴𝐾, 𝐿𝐾, 𝑌).
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Following Robins (1994) and Lok andDeGruttola (2012),
we describe the discrete-time SNMM for the treatment
effect as follows.

Assumption 1 (Discrete-time SNMM). For 𝑚 ≥ 0, the
discrete-time SNMM for the effect of the treatment initi-
ation time is

𝛾𝑚(𝐿𝑚) = 𝔼
{
𝑌(𝑚) − 𝑌(∞) ∣ 𝐴𝑚−1 = 0, 𝐿𝑚

}
= 𝛾𝑚(𝐿𝑚; 𝜓

∗); (1)

that is, 𝛾𝑚(𝐿𝑚; 𝜓) with 𝜓 ∈𝑝 is a correctly specified
model for 𝛾𝑚(𝐿𝑚) with the true parameter value 𝜓∗.

The general SNMMs in Robins (1994) specify the treat-
ment effects for 𝑎𝐾 with general patterns. In particular,
Robins (1994) focused on modeling 𝔼{𝑌(𝑎𝑚,0)𝑚 − 𝑌

(𝑎𝑚−1,0)
𝑚 ∣

𝐴𝑚−1 = 𝑎𝑚−1, 𝐿𝑚}, where (𝑎𝑚, 0) is the treatment regime
of following 𝑎𝑚 from 𝑡0 to 𝑡𝑚 and 0 onwards. This class of
models describes one episode of treatment 𝑎𝑚 on the shift
of the outcome means at 𝑡𝑚 given subject’s observed treat-
ment and covariates history (𝐴𝑚−1 = 𝑎𝑚−1, 𝐿𝑚). Model (1)
is another class of SNMMs that specify the effects of treat-
ment invitation times (Lok and DeGruttola, 2012). This
model characterizes the conditional expectation of the
treatment contrasts 𝑌(𝑚) − 𝑌(∞), given subject’s observed
history (𝐴𝑚−1 = 0, 𝐿𝑚). Intuitively, it states that the con-
ditional mean of the outcome is shifted by 𝛾𝑚(𝐿𝑚; 𝜓∗)
had the subject initiated the treatment at 𝑡𝑚 comparing to
never starting. Therefore, the parameter 𝜓∗ has a causal
interpretation. To help understand the model, consider
𝛾𝑚(𝐿𝑚; 𝜓

∗) = (𝜓∗1 + 𝜓
∗
2𝑡𝑚)(𝜏 − 𝑡𝑚)

+, where 𝜓∗ = (𝜓∗1 , 𝜓
∗
2)

and 𝑐+ = max(𝑐, 0) for a real number 𝑐. This model entails
that on average, the treatment would increase the mean of
the outcome at 𝜏 had the subject initiated the treatment
at 𝑡𝑚 by (𝜓∗1 + 𝜓

∗
2𝑡𝑚)(𝜏 − 𝑡𝑚)

+, and the magnitude of the
increase depends on the duration of the treatment and the
treatment initiation time. If 𝜓∗1 + 𝜓

∗
2𝑡𝑚 > 0 and 𝜓

∗
2 < 0, it

indicates the treatment is beneficial and earlier initiation
is better. Although we use the same notation 𝜓∗ for the
SNMM parameter as Robins (1994), it is important to keep
in mind that interpretation of model parameters is tied to
the class of SNMMs: Robins (1994) defines the effect of
“blipping off” treatment at a single time point, whereas
Model (1) defines the effect of removing treatment across
all time points.
The following consistency assumption links the

observed data to the potential outcomes.

Assumption 2 (Consistency). The observed outcome is
equal to the potential outcome under the actual treatment
received; that is, 𝑌 = 𝑌(𝑇).

If all potential outcomes were observed for each subject,
we can directly compare these outcomes to infer the treat-
ment effect; however, the fundamental problem in causal
inference is that we cannot observe all potential outcomes
for a specific subject (Holland, 1986). In particular, we can
observe 𝑌(∞) only for the subjects who did not initiate the
treatment during the follow-up. To overcome this issue,
define

𝐻(𝜓∗) = 𝑌 − 𝛾𝑇(𝐿𝑇; 𝜓
∗). (2)

Intuitively,𝐻(𝜓∗) subtracts the treatment effect 𝛾𝑇(𝐿𝑇; 𝜓∗)
from the observed outcome 𝑌, so it mimics the potential
outcome 𝑌(∞) had the treatment never been initiated. We
provide the formal statement as proved in Lok andDeGrut-
tola (2012).

Proposition 1 (Mimicking 𝑌(∞)). Under Assumption 2,
𝐻(𝜓∗) mimics 𝑌(∞), in the sense that 𝔼{𝐻(𝜓∗) ∣ 𝐴𝑚−1 =
0,𝐴𝑚, 𝐿𝑚} = 𝔼{𝑌

(∞) ∣ 𝐴𝑚−1 = 0,𝐴𝑚, 𝐿𝑚} for 0 ≤ 𝑚 ≤ 𝐾.
We cannot fit the SNMM by a regression model pooled

over time, because the model involves the unobserved
potential outcomes. Parameter identification requires the
NUC assumption (Robins et al., 1992).

Assumption 3 (No unmeasured confounding). 𝐴𝑚 ⟂
𝑌(∞) ∣ (𝐴𝑚−1, 𝐿𝑚) for 0 ≤ 𝑚 ≤ 𝐾.
Assumption 3 holds if (𝐴𝑚−1, 𝐿𝑚) contains all prognos-

tic factors for 𝑌(∞) that affect the treatment decision at 𝑡𝑚
for 0 ≤ 𝑚 ≤ 𝐾. Under this assumption, the observational
study can be conceptualized as a sequentially random-
ized experiment. Proposition 1 implies that underAssump-
tion 3, for 0 ≤ 𝑚 ≤ 𝐾,

𝔼
{
𝐻(𝜓∗) ∣ 𝐴𝑚−1 = 0,𝐴𝑚, 𝐿𝑚

}
= 𝔼

{
𝐻(𝜓∗) ∣ 𝐴𝑚−1 = 0, 𝐿𝑚

}
; (3)

see, for example, Robins et al. (1992). Equation (3) also
poses restrictions for 𝜓∗.
A stronger version of Assumption 3 is 𝐴𝑚 ⟂ 𝑌(𝑘) ∣

(𝐴𝑚−1, 𝐿𝑚) for 0 ≤ 𝑚 ≤ 𝐾 and 𝑚 ≤ 𝑘, requiring the inde-
pendence between the treatment assignment at 𝑡𝑚 and
all potential outcomes 𝑌(𝑘) for 𝑘 ≥ 𝑚, given (𝐴𝑚−1, 𝐿𝑚).
Under this assumption, for 𝑘 ≤ 𝑇, one may construct
the mimicking potential outcome𝐻(𝜓∗) + 𝛾(𝑘)(𝐿𝑘; 𝜓∗) for
𝑌(𝑘). The induced restriction for 𝜓∗ from 𝔼{𝑌(𝑘) ∣ 𝐴𝑚−1 =

0,𝐴𝑚, 𝐿𝑚} = 𝔼{𝑌
(𝑘) ∣ 𝐴𝑚−1 = 0, 𝐿𝑚} is the same as (3).

Therefore, it is not necessary to make the stronger version
of Assumption 3 in our context.
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2.2 SES for discrete-time SNMMs

The semiparametricmodel is characterized by the discrete-
time SNMM (1) and restriction (3), where the parameter of
primary interest is 𝜓∗. Robins (1994) established the semi-
parametric efficiency theory for the discrete-time SNMM,
following the geometric approach of Bickel et al. (1993)
by characterizing the nuisance tangent space, its orthog-
onal complementary space, where all influence functions
of regular asymptotically linear (RAL) estimators belong
to, and lastly the SES for the SNMM parameter.
Proposition 2 characterizes all influence functions of

RAL estimators for 𝜓∗.

Proposition 2. For the semiparametric model character-
ized by the discrete-time SNMM (1) and restriction (3), the
influence function space for 𝜓∗ is

Λ⊥ =
{
𝐺(𝜓∗; 𝐹, 𝑐) ∶ for all 𝑐(𝑚,𝑉𝑚) ∈ 𝑝

}
, (4)

where 𝑉𝑚 = (𝐴𝑚−1, 𝐿𝑚) and 𝐺(𝜓; 𝐹, 𝑐) =∑𝐾

𝑚=1
𝑐(𝑚,𝑉𝑚){𝐴𝑚 − pr(𝐴𝑚 = 1 ∣ 𝑉𝑚)}[𝐻(𝜓) − 𝔼{𝐻(𝜓) ∣

𝑉𝑚}] indexed by 𝑐. To make the notation accurate, the
abbreviation 𝑐 in 𝐺(𝜓; 𝐹, 𝑐)means 𝑐(𝑚,𝑉𝑚).

The SES, that is, the most efficient one among the class
in (4), often does not have a closed-form expression. To
fix ideas, consider 𝛾𝑚(𝐿𝑚; 𝜓∗) = (𝜓∗1 + 𝜓

∗
2𝑡𝑚)(𝜏 − 𝑡𝑚)

+.We
now make a working assumption, which extends restric-
tion (3) and allows us to derive an analytical expression of
the SES of 𝜓∗.

Proposition 3 (Discrete-time SES). Suppose Assump-
tions 1–3 hold. Suppose further that for 0 ≤ 𝑚 ≤ 𝐾,
var{𝐻(𝜓∗) ∣ 𝐴𝑚, 𝐿𝑚} = var{𝐻(𝜓

∗) ∣ 𝑉𝑚}. Then, the SES of
𝜓∗ is

𝑆ef f (𝜓
∗; 𝐹) = 𝐺(𝜓∗; 𝐹, 𝑐ef f ), (5)

where

𝑐ef f (𝑚, 𝑉𝑚)

=
⎛⎜⎜⎝

(𝜏 − 𝑡𝑚) − 𝔼
{
dur(𝑡𝑚) ∣ 𝐴𝑚 = 0, 𝐿𝑚

}
𝑡𝑚(𝜏 − 𝑡𝑚) − 𝔼

{
𝑇 × dur(𝑡𝑚) ∣ 𝐴𝑚 = 0, 𝐿𝑚

}⎞⎟⎟⎠[
var

{
𝐻(𝜓∗) ∣ 𝑉𝑚

}]−1
,

and dur(𝑡𝑚) =
∑𝐾−1

𝑙=𝑚
𝐴𝑙(𝑡𝑙+1 − 𝑡𝑙) is the observed treatment

duration from 𝑡𝑚 to 𝜏.

3 SNMMs IN CONTINUOUS-TIME
PROCESSES

3.1 Setup, models, and assumptions

We now extend discrete-time SNMMs in Section 2 to
continuous-time SNMMs. We assume that the variables
can change their values at any real time between 0 and 𝜏.
We assume that all subjects are followed until 𝜏 and con-
sider censoring in Section 3.4. Each subject has multiple
visit times. Let 𝑁(𝑡) be the counting process for the visit
times. Let 𝐿𝑡 be the multidimensional covariate process.
In contrast to the setting with discrete-time data processes,
𝐿𝑡 is a vector of covariates at 𝑡 and additional information
of the past visit times up to but not including 𝑡. This is
because the past visit pattern, for example, the number
and frequency of the visit times may be important con-
founders for the treatment and outcome processes. Let 𝐴𝑡
be the binary treatment process. In our motivating appli-
cation, the treatment can only be initiated at the follow-up
visits; that is, if 𝐴𝑡 = 1, then 𝑁(𝑡) = 1. We will model the
treatment process directly, although one can model first
the visit time process and then treatment assignment at
the visit times. Define 𝑌(𝑡) as the potential outcome at 𝜏
had the subject initiated the treatment at 𝑡, and define
𝑌(∞) as the potential outcome at 𝜏 had the subject never
initiated the treatment before 𝜏. Let 𝑌 be the continuous
outcome measured at 𝜏. For regularity, we assume that
the processes are Càdlàg processes, that is, the processes
are right-continuous with left limits. Let 𝑉𝑡 = (𝐴𝑡−, 𝐿𝑡)
be the combined treatment and covariate process, where
𝐴𝑡− is the treatment information right before 𝑡. We use
the overline notation to denote a variable’s observed
history; for example, 𝐴𝑡 = {𝐴𝑢 ∶ 0 ≤ 𝑢 ≤ 𝑡, 𝑑𝑁(𝑢) = 1}.
The subject’s full record is 𝐹 = {𝑉𝜏, (𝑌(𝑡) ∶ 0 ≤ 𝑡 ≤ 𝜏)}.
The observed data for a subject through 𝜏 is 𝐷 = (𝑉𝜏, 𝑌).
We assume the continuous-time SNMM as follows.

Assumption 4 (Continuous-time SNMM). For 𝑡 ≥ 0, the
continuous-time SNMM for the effect of the treatment ini-
tiation time is

𝛾𝑡(𝐿𝑡) = 𝔼
{
𝑌(𝑡) − 𝑌(∞) ∣ 𝐿𝑡, 𝑇 ≥ 𝑡} = 𝛾𝑡(𝐿𝑡; 𝜓∗); (6)

that is, 𝛾𝑡(𝐿𝑡; 𝜓) with 𝜓 ∈𝑝 is a correctly specified model
for 𝛾𝑡(𝐿𝑡) with the true parameter value 𝜓∗. Moreover,
𝑌(𝑡) ∼ 𝑌(∞) + 𝛾𝑡(𝐿𝑡; 𝜓

∗) given (𝐿𝑡, 𝑇 ≥ 𝑡), where ∼ means
“is (conditionally) distributed as.”

In the continuous-time SNMM (6), 𝜓∗ can be inter-
preted as the treatment effect rate for the outcome. For the
continuous-time SNMM, we assume that given (𝐿𝑡, 𝑇 ≥ 𝑡),
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the treatment effect only changes the location of the distri-
bution of the outcome but not on other aspects of the dis-
tribution such as the variance. This assumption is stronger
than the discrete-time SNMM in Assumption 1. But this
assumption is weaker than the rank-preserving assump-
tion of 𝑌(𝑡) = 𝑌(∞) + 𝛾𝑡(𝐿𝑡; 𝜓∗) considered in Zhang et al.
(2011). However, the rank preservation may be restric-
tive in practice, because it implies that for two subjects
𝑖 and 𝑗 with the same treatment and covariate history,
𝑌𝑖 > 𝑌𝑗 must imply 𝑌

(∞)
𝑖

> 𝑌
(∞)
𝑗

. We relax this restric-
tion by imposing a distributional assumption. To link the
observed outcome to the potential outcomes, we assume
that 𝑌 = 𝑌(𝑇). Define the mimicking outcome for 𝑌(∞) as
𝐻(𝜓∗) = 𝑌 − 𝛾𝑇(𝐿𝑇; 𝜓

∗). By Assumption 4,𝐻(𝜓∗) ∼ 𝑌(∞),
given (𝐿𝑡, 𝑇 ≥ 𝑡).
The continuous-time SNMM (6) can model the treat-

ment effect flexibly. For example, the two-parametermodel
𝛾𝑡(𝐿𝑡; 𝜓

∗) = (𝜓∗1 + 𝜓
∗
2𝑡)(𝜏 − 𝑡)

+ entails that the treatment
effect depends on the treatment initiation time and
the duration of the treatment. To allow for treatment
effect modifiers, we can specify an elaborated treatment
effect model including time-varying covariates, such as
viral load in the blood. For example, one can consider
𝛾𝑡(𝐿𝑡; 𝜓

∗) = (𝜓∗1 + 𝜓
∗
2𝑡 + 𝜓

∗
3 lvl𝑡 + 𝜓

∗
4CD4𝑡)(𝜏 − 𝑡)

+, where
lvl𝑡 and CD4𝑡 are the log viral load and CD4 count at 𝑡.
We discuss effect modification and model selection in Sec-
tion 6.
An important issue with data from user-initiated vis-

its and treatment initiation is the potential selection bias
and confounding, for example, sicker patients may visit
the doctor more frequently and are likely to initiate treat-
ment earlier. To overcome this issue, we impose the NUC
assumption on the treatment process.

Assumption 5 (No unmeasured confounding). The haz-
ard of treatment initiation is

𝜆𝑇(𝑡 ∣ 𝐹) = lim
ℎ→0

ℎ−1𝑃(𝑡 ≤ 𝑇 < 𝑡 +ℎ,Γ = 1 ∣ 𝑉𝑡,𝑌(∞),𝑇 ≥ 𝑡)
= lim
ℎ→0

ℎ−1𝑃(𝑡 ≤ 𝑇 < 𝑡 + ℎ, Γ = 1 ∣ 𝑉𝑡, 𝑇 ≥ 𝑡),
(7)

denoted by 𝜆𝑇(𝑡 ∣ 𝑉𝑡). Because treatment is never discon-
tinued once it is initiated, we impose the condition of 𝜆𝑇(𝑡 ∣
𝑉𝑡) = 0 for 𝑡 > 𝑇.

Assumption 5 implies that the hazard of treatment ini-
tiation at 𝑡 depends only on the observed treatment and
covariate history𝑉𝑡 but not on the future observations and
potential outcomes. This assumption holds if the set of his-
torical covariates contains all prognostic factors for the out-
come that affect the patient’s decision of visiting the doctor

and initiating treatment. As an example, in the motivat-
ing application, time-invariant characteristics such as age
at infection, gender, race, and whether ever used injection
drugs are important confounders for the treatment and
outcome processes. Moreover, time-varying CD4 and viral
load are important confounders. Often, poor disease pro-
gression necessitates more frequent follow-up visits and
earlier treatment initiation.
The treatment process 𝐴𝑡 can also be represented in

terms of the counting process𝑁𝑇(𝑡) and the at-risk process
𝑅𝑇(𝑡) of observing treatment initiation. Let 𝜎(𝑉𝑡) be the 𝜎-
field generated by 𝑉𝑡, and let 𝜎(𝑉𝑡) be the 𝜎-field gener-
ated by ∪𝑢≤𝑡𝜎(𝑉𝑢). Under the standard regularity condi-
tions for the counting process, 𝑀𝑇(𝑡) = 𝑁𝑇(𝑡) − ∫ 𝑡

0
𝜆𝑇(𝑢 ∣

𝑉𝑢)𝑅𝑇(𝑢)𝑑𝑢 is a martingale with respect to the filtration
𝜎(𝑉𝑡). Assumption 5 entails that the jumping rate of𝑁𝑇(𝑡)
at 𝑡 does not depend on 𝑌(∞), given 𝑉𝑡. Because 𝐻(𝜓∗)
mimics 𝑌(∞) in the sense that it has the same distribution
as𝑌(∞) given𝑉𝑡, Assumption 5 also implies that the jump-
ing rate of 𝑁𝑇(𝑡) at 𝑡 does not depend on 𝐻(𝜓∗), given 𝑉𝑡.
To be formal, we show in the online supporting informa-
tion that

𝜆𝑇{𝑡 ∣ 𝑉𝑡, 𝐻(𝜓
∗)} = 𝜆𝑇(𝑡 ∣ 𝑉𝑡). (8)

Therefore, under the standard regularity conditions,𝑀𝑇(𝑡)

is a martingale with respect to the filtration 𝜎{𝑉𝑡,𝐻(𝜓∗)}.

3.2 SES for continuous-time SNMMs

To estimate the causal parameter precisely, we estab-
lish the new semiparametric efficiency theory for the
continuous-time SNMMs in parallel to that for the discrete-
time SNMMs. We defer all proofs to the online supporting
information.

Theorem 1. For the semiparametric model character-
ized by the continuous-time SNMM (6) and Assumption 5,
the influence function space for 𝜓∗ is Λ⊥ = {𝐺(𝜓∗; 𝐹, 𝑐) ∶
for all 𝑐(𝑢, 𝑉𝑢) ∈ 𝑝}, where

𝐺(𝜓; 𝐹, 𝑐) = ∫
𝜏

0

𝑐(𝑢, 𝑉𝑢)
[
𝐻(𝜓) − 𝔼

{
𝐻(𝜓) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢}]

× 𝑅𝑇(𝑢)𝑑𝑀𝑇(𝑢). (9)

From Theorem 1, we can construct a wide class of esti-
mating equation for 𝜓∗ based on 𝐺(𝜓; 𝐹, 𝑐) by varying the
choice of 𝑐(𝑢, 𝑉𝑢). The existence of a large number of esti-
mators calls for a principled way to choose 𝑐(𝑢, 𝑉𝑢) that
leads to efficient estimators. Toward this end, we derive
the SES for 𝜓∗ by 𝑆ef f (𝜓∗; 𝐹) =

∏
{𝑆(𝜓∗; 𝐹) ∣ Λ⊥}, where
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𝑆(𝜓∗; 𝐹) is the score function of 𝜓∗. This result motivates
efficient estimators of 𝜓∗ in the next subsection.

Theorem 2 (Continuous-time SES). Under the semipara-
metric model characterized by the continuous-time SNMM
(6) and Assumption 5, the SES of 𝜓∗ is

𝑆ef f (𝜓
∗; 𝐹) = 𝐺(𝜓∗; 𝐹, 𝑐ef f ), (10)

where𝐺(𝜓; 𝐹, 𝑐) is defined in (9), �̇�𝑢(𝜓) = 𝐻(𝜓) − 𝔼{𝐻(𝜓) ∣
𝑉𝑢, 𝑇 ≥ 𝑢}, and

𝑐ef f (𝑢, 𝑉𝑢) = [𝔼{𝜕�̇�𝑢(𝜓
∗)∕𝜕𝜓 ∣ 𝑉𝑢, 𝑇 = 𝑢}

− 𝔼{𝜕�̇�𝑢(𝜓
∗)∕𝜕𝜓 ∣ 𝑉𝑢, 𝑇 ≥ 𝑢}]

× [var{𝐻(𝜓∗) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢}]−1. (11)

To illustrate the theorem, we provide the explicit expres-
sion of the SES using an example.

Example 1. Consider 𝛾𝑡(𝐿𝑡; 𝜓) = (𝜓1 + 𝜓2𝑡)(𝜏 − 𝑡)+. Sup-
pose Assumption 5 holds. The SES of 𝜓∗ is 𝑆ef f (𝜓∗; 𝐹) =
𝐺(𝜓∗; 𝐹, 𝑐ef f ), where

𝑐ef f (𝑢, 𝑉𝑢) =

(
(𝜏 − 𝑢)+ − 𝔼{(𝜏 − 𝑇)+ ∣ 𝑉𝑢, 𝑇 ≥ 𝑢}
𝑢(𝜏 − 𝑢)+ − 𝔼{𝑇(𝜏 − 𝑇)+ ∣ 𝑉𝑢, 𝑇 ≥ 𝑢}

)
× [var{𝐻(𝜓∗) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢}]−1. (12)

Remark 1. The proposed continuous-time SES contains
the discrete-time SES as a special case. If the processes
take observations at discrete times {𝑡0, … , 𝑡𝐾}, then (i)
the conditioning event (𝑉𝑢, 𝑇 ≥ 𝑢) at 𝑡𝑚 is the same as
(𝐴𝑚 = 0, 𝐿𝑚), (ii) 𝑀𝑇(𝑡) = 𝑁𝑇(𝑡) − ∫ 𝑡

0
𝜆𝑇(𝑢 ∣ 𝑉𝑢)𝑅𝑇(𝑢)𝑑𝑢

at 𝑡 = 𝑡𝑚 becomes 𝐴𝑚 − pr(𝐴𝑚 = 1 ∣ 𝐴𝑚−1 = 0, 𝐿𝑚), and
𝔼{𝜕�̇�𝑡(𝜓

∗)∕𝜕𝜓 ∣ 𝑉𝑡, 𝑇 = 𝑡} at 𝑡 = 𝑡𝑚 becomes

𝔼{𝜕�̇�𝑚(𝜓
∗)∕𝜕𝜓 ∣ 𝑉𝑚, 𝑇 = 𝑡𝑚}

= −
⎛⎜⎜⎝

(𝜏 − 𝑡𝑚)
+ − 𝔼

{
dur(𝑡𝑚) ∣ 𝐴𝑚 = 0, 𝐿𝑚

}
𝑡𝑚(𝜏 − 𝑡𝑚)

+ − 𝔼
{
𝑇 × dur(𝑡𝑚) ∣ 𝐴𝑚 = 0, 𝐿𝑚

}⎞⎟⎟⎠.
Therefore, the continuous-time SES (10) reduces to the
discrete-time SES (5).

3.3 Doubly robust and locally efficient
estimators

We first construct a general class of estimators based on the
estimating function 𝐺(𝜓∗; 𝐹, 𝑐). Because 𝔼{𝐺(𝜓∗; 𝐹, 𝑐)} =

0, we obtain the estimator of 𝜓∗ by solving

ℙ𝑛{𝐺(𝜓; 𝐹, 𝑐)} = 0. (13)

In particular, Equation (13) with 𝑐ef f provides the semi-
parametric efficient estimator of 𝜓∗.
In (13), we assume that the models for the poten-

tial outcome mean function 𝔼{𝐻(𝜓∗) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢} and the
treatment process are known. In practice, they are often
unknown and must be modeled and estimated from the
data. We posit a working model 𝔼{𝐻(𝜓∗) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢; 𝛽},
such as a linear regression model, where 𝛽 is a vector of
unknownparameters.We also posit a proportional hazards
model with time-dependent covariates for the treatment
process; that is, 𝜆𝑇(𝑡 ∣ 𝑉𝑡; 𝛼) = 𝜆𝑇,0(𝑡) exp{𝛼T𝑊𝑇(𝑡, 𝑉𝑡)},
where 𝜆𝑇,0(𝑡) is an unknown baseline hazard function,
𝑊𝑇(𝑡, 𝑉𝑡) is a prespecified function of 𝑡 and 𝑉𝑡, and 𝛼 is
a vector of unknown parameters. Under Assumption 5,
we can estimate 𝛼 and 𝜆𝑇,0(𝑡) from the standard software
such as “coxph” in R (R Development Core Team, 2012).
Fitting the time-dependent proportional hazards model to
the data {(𝑉𝑇𝑖,𝑖 , 𝑇𝑖, Γ𝑖) ∶ 𝑖 = 1, … , 𝑛}, where Γ𝑖 = 𝐼(𝑇𝑖 ≤ 𝜏),
treating the treatment initiation as the failure event, we
obtain the estimators �̂� and 𝜆𝑇,0(𝑡). Then, we obtain 𝜆𝑇(𝑢 ∣
𝑉𝑢) = exp{�̂�

T𝑊𝑇(𝑢, 𝑉𝑢)} ×𝜆𝑇,0(𝑢) and �̂�𝑇(𝑡) = 𝑁𝑇(𝑡) −

∫ 𝑡
0
𝜆𝑇(𝑢 ∣ 𝑉𝑢)𝑅𝑇(𝑢)𝑑𝑢. As we show below, the resulting

estimator 𝜓 achieves the double robustness property.

Theorem 3 (Double robustness). Suppose the continuous-
time SNMM (6) in Assumption 4, and Assumption 5 hold.
The estimator 𝜓 solving the estimating equation (13) based
on the class of 𝐺(𝜓; 𝐹, 𝑐) in (9) by varying 𝑐(𝑢, 𝑉𝑢) is doubly
robust in that it is consistent if at least one of the models for
the potential outcome mean function 𝐸{𝐻(𝜓∗) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢}
and the treatment process is correctly specified.

The choice of 𝑐 does not affect the double robustness but
the efficiency of the resulting estimator. For efficiency con-
sideration, we consider 𝑐ef f in (11). The resulting estimator
solving the estimating equation (13) with 𝑐ef f is locally effi-
cient, in the sense that it achieves the semiparametric effi-
ciency bound if the working models for the treatment pro-
cess and the potential outcome mean function 𝐸{𝐻(𝜓∗) ∣
𝑉𝑢, 𝑇 ≥ 𝑢} are correctly specified. Because 𝑐ef f depends
on the unknown distribution, we require additional mod-
els for 𝔼{(𝜏 − 𝑇)+ ∣ 𝑉𝑢, 𝑇 ≥ 𝑢} and 𝔼{𝑇(𝜏 − 𝑇)+ ∣ 𝑉𝑢, 𝑇 ≥
𝑢} to approximate 𝑐ef f . For example, we can approx-
imate 𝔼{(𝜏 − 𝑇)+ ∣ 𝑉𝑢, 𝑇 ≥ 𝑢} by 𝑃(𝑇 ≤ 𝜏 ∣ 𝑉𝑢, 𝑇 ≥ 𝑢) ×
𝔼{𝜏 − 𝑇 ∣ 𝑉𝑢, 𝑢 ≤ 𝑇 ≤ 𝜏} and each approximated by (logis-
tic) linearmodels. For var{𝐻(𝜓∗) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢}, we consider
the following options: (i) assume var{𝐻(𝜓∗) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢} to
be a constant, and (ii) approximate var{𝐻(𝜓∗) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢}
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by the sample variance of𝐻(𝜓𝑝) among subjects with 𝑇 ≥
𝑢, where 𝜓𝑝 is a preliminary estimator. We compare the
two options via simulation. Although option (ii) provides
a slight efficiency gain in the estimation, for ease of imple-
mentationwe recommend option (i). Option (i) is common
in the generalized estimating equation framework. From
here on, we use this option for 𝑐 and suppress the depen-
dence on 𝑐 for estimating functions.

Remark 2. Double robustness has appeared for estima-
tors in other contexts of causal inference, such as the aug-
mented inverse probability weighting estimator (AIPW) of
the average treatment effect (e.g., Lunceford andDavidian,
2004; Bang and Robins, 2005). Specifically, the AIPW esti-
mator is consistent if either the potential outcome mean
function or the propensity score is correctly specified, sim-
ilar to the requirement for the nuisance functions in Theo-
rem 3. However, the double robustness result in Theorem 3
requires the SNMM to be correctly specified at the outset.
Thus, our result requires an additional modeling assump-
tion on the SNMM compared to the typical result for the
AIPW estimator.

3.4 Censoring

As in the AIEDRP study, in most longitudinal observa-
tional studies, subjects may drop out of the study pre-
maturely before the end of the study, which renders the
data censored at the time of dropout. If the censoring
mechanism depends on time-varying prognostic factors,
for example, sicker patients drop out of the study with
a higher probability than healthier patients, the patients
remaining in the study is a biased sample of the full pop-
ulation. We now introduce 𝐶 to be the time to censor-
ing. Let 𝑋 = min(𝐶, 𝜏) be time to censoring or the end of
the study, whichever came first. Let 𝛿𝐶 = 𝐼(𝐶 ≥ 𝜏) be the
indicator of not censoring before 𝜏. The observed data are
𝐷 = (𝑋,𝑉𝑋, 𝛿𝐶, 𝛿𝐶𝑌).
In the presence of censoring, the estimating equation

(13) is not feasible. We assume an ignorable censoring
mechanism as follows.

Assumption 6 (Ignorable censoring). The hazard of cen-
soring is

𝜆𝐶(𝑡 ∣ 𝐹) = lim
ℎ→0

ℎ−1𝑃(𝑡 ≤ 𝐶 < 𝑡 + ℎ ∣ 𝐹, 𝐶 ≥ 𝑡)
= lim
ℎ→0

ℎ−1𝑃(𝑡 ≤ 𝐶 < 𝑡 + ℎ ∣ 𝑉𝑡, 𝐶 ≥ 𝑡) (14)

denoted by 𝜆𝐶(𝑡 ∣ 𝑉𝑡).

Assumption 6 states that 𝜆𝐶(𝑡 ∣ 𝐹) depends only on the
past treatment and covariate history until 𝑡, but not on the
future variables and potential outcomes. This assumption
holds if the set of historical covariates contains all prog-
nostic factors for the outcome that affect the possibility of
loss to follow up at 𝑡. Under this assumption, the missing
data due to censoring are missing at random (Rubin, 1976).
From 𝜆𝐶(𝑡 ∣ 𝑉𝑡), we define 𝐾𝐶(𝑡 ∣ 𝑉𝑡) = exp{− ∫ 𝑡

0
𝜆𝐶(𝑢 ∣

𝑉𝑢)𝑑𝑢}, which is the probability of the subject not being
censored before 𝑡.
We discuss important implications of Assumption 6 on

the mimicking potential outcome and the treatment pro-
cess. First, Assumptions 4 and 6 yield𝐻(𝜓∗) ∼ 𝑌(∞), given
(𝐿𝑡, 𝑇 ≥ 𝑡, 𝐶 ≥ 𝑡). Second, under Assumption 6, the hazard
of treatment initiation in (7) is equal to limℎ→0 ℎ

−1𝑃(𝑡 ≤
𝑇 < 𝑡 + ℎ, Γ = 1 ∣ 𝑉𝑡, 𝑇 ≥ 𝑡, 𝐶 ≥ 𝑡). Redefining 𝑇 to be the
time to treatment initiation, or censoring, or the end of the
study, whichever came first, (7) can be estimated by condi-
tioning on 𝑇 ≥ 𝑡 with the new definition of 𝑇. Therefore,
the estimating equation (13) restricted to the uncensored
subjects remain unbiased. This leads to the CC estimator
𝜓 solving the following equation:

ℙ𝑛{𝛿𝐶𝐺(𝜓; 𝐹)} = 0. (15)

In fact, one can obtain a class of weighting estimators by
solving

ℙ𝑛

{
𝛿𝐶𝑔(𝑉𝜏)𝐺(𝜓; 𝐹)

}
= 0 (16)

for any weight function 𝑔(𝑉𝜏) ∈ . In particular, choos-
ing 𝑔(𝑉𝜏) to be {𝐾𝐶(𝜏 ∣ 𝑉𝜏)}−1 leads to the IPCW estimator
(Rotnitzky et al., 2007).We show that the CC estimator 𝜓 is
optimal among all estimators solving the estimating equa-
tion (16). This is because using varying weights reduces
the effective sample size compared to constant weights, a
classical result in survey sampling (Kish, 1992). Theorem 4
summarizes the asymptotic properties of the CC estimator.

Theorem 4. Suppose the continuous-time SNMM (6),
Assumptions 5 and 6, and regularity conditions in Assump-
tion S1 hold. The CC estimator 𝜓 solving the estimating
equation (15) is doubly robust in that it is consistent and
asymptotically Normal if at least one of the models for the
potential outcome mean function 𝐸{𝐻(𝜓∗) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢}
and the treatment process is correctly specified. Moreover, if
both nuisance models are correctly specified, 𝜓 achieves the
smallest variance among the class of estimators solving the
estimating equation (16).

The asymptotic Normal distribution is presented in
the online supporting information and is agnostic about
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whether the potential outcome mean function 𝐸{𝐻(𝜓∗) ∣
𝑉𝑢, 𝑇 ≥ 𝑢} or the treatment process is correctly estimated.
However, it is difficult to use the asymptotic variance for-
mula for variance estimation because it requires approx-
imating additional nuisance functions. From Theorem 4,
under the conditions that ensure double robustness, 𝜓 is
asymptotically linear with a Normal limiting distribution,
and therefore, we can use the nonparametric bootstrap for
variance estimation.

4 SIMULATION STUDY

Wenow evaluate the finite-sample performance of the pro-
posed estimator on simulated data sets with two objec-
tives. First, we assess the double robustness and efficiency
of the proposed estimator based on the SES, compared
with some preliminary estimator. Second, to demonstrate
the impact of data discretization as commonly done in
practice, we include the 𝑔-estimator applied to the prepro-
cessed data. We simulate 1000 data sets under two settings
with and without censoring with sample size 𝑛 = 1000.
Additional simulation results with 𝑛 = 2000 are presented
in the online supporting information.
In Setting I, we generate two covariates, one time-

independent (𝐿𝑇𝐼) and one time-dependent (𝐿𝑇𝐷). The
time-independent covariate 𝐿𝑇𝐼 is generated from a
Bernoulli distribution with mean equal to 0.55. The time-
dependent covariate is 𝐿𝑇𝐷,𝑡 = 𝑙1 × 𝐼(0 ≤ 𝑡 < 0.5) + 𝑙2 ×
𝐼(0.5 ≤ 𝑡 < 1) + 𝑙3 × 𝐼(1 ≤ 𝑡 < 1.5) + 𝑙4 × 𝐼(1.5 ≤ 𝑡 ≤ 2),
where (𝑙1, 𝑙2, 𝑙3, 𝑙4)

T is a 1 × 4 row vector generated
from a multivariate Normal distribution with mean
equal to (0,0,0,0) and covariance equal to 0.7|𝑖−𝑗| for
𝑖, 𝑗 = 1, … , 4. We assume that the time-dependent vari-
able remains constant between measurements. The
maximum follow-up time is 𝜏 = 2 (in year). We gener-
ate the time to treatment initiation 𝑇 with the hazard
rate 𝜆𝑇(𝑡 ∣ 𝑉𝑡) = 𝜆𝑇,0(𝑡) exp(𝛼1×𝐿𝑇𝐼 + 𝛼2𝐿𝑇𝐷,𝑡) with
𝜆𝑇,0(𝑡) = 0.4, 𝛼1 = 0.15, and 𝛼2 = 0.8. We generate 𝑇

according to the time-dependent model sequentially.
This is because the hazard of treatment initiation in
the time interval from 𝑡1 = 0 to 𝑡2 = 0.5 differs from
the hazard of treatment initiation in the next interval
and so on; see the online supporting information for
details. We let 𝑌(∞) = 𝐿𝑇𝐷,𝜏 be the potential outcome
had the subject never initiated the treatment before
𝜏. The observed outcome is 𝑌 = 𝑌(∞) + 𝛾𝑇(𝑉𝑇; 𝜓

∗),
where 𝛾𝑡(𝑉𝑡; 𝜓∗) = (𝜓∗1 + 𝜓

∗
2𝑡)(𝜏 − 𝑡)

+ with 𝜓∗1 = 15 and
𝜓∗
2
= −1.
We consider the following estimators with details for

the nuisance models and their estimation presented in the
online supporting information:

a) A preliminary estimator 𝜓𝑝 solves (13) with
𝐸{𝐻(𝜓∗) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢} ≡ 0 and 𝑐(𝑢, 𝑉𝑢) = (1, 𝑢)

T(𝜏 −

𝑢)+ − 𝔼{(1, 𝑇)T(𝜏 − 𝑇)+ ∣ 𝑉𝑢, 𝑇 ≥ 𝑢}. Therefore, 𝜓𝑝
corresponds to the proposed estimator with a misspec-
ified model for 𝔼{𝐻(𝜓∗) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢}.

b) The proposed estimator 𝜓cont,1 solves (13) , where we
replace var{𝐻(𝜓) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢} by a constant.

c) The proposed estimator 𝜓cont,2 solves (13) , where we
obtain v̂ar{𝐻(𝜓∗) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢} by the empirical vari-
ance of 𝐻(𝜓𝑝) − 𝔼{𝐻(𝜓𝑝) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢; 𝛽}, restricted to
subjects with 𝑇 ≥ 𝑢.

d) The 𝑔-estimator 𝜓disc,𝑔 in Section 2 applies to the
monthly data after discretization with 24 equally
spaced time points from 0 to 𝜏. For 𝑚 ≥ 1, at the 𝑚th
time point 𝑡𝑚, 𝐿𝑚 is the average of 𝐿𝑡 from 𝑡𝑚−1 ≤ 𝑡 ≤
𝑡𝑚,𝐴𝑚 is the indicator of whether the treatment is initi-
ated before 𝑡𝑚, and the time to treatment initiation 𝑇 is
𝑡𝑚 if 𝐴𝑚 = 1 and 𝐴𝑚−1 = 0. The 𝑔-estimator solves the
estimating equation based on (5), where the nuisance
models are estimated similar towhat are used for𝜓cont,1
but with the reshaped data.

To investigate the double robustness in Theorem 3, we con-
sider twomodels for estimating𝑀𝑇: the correctly specified
proportional hazards model with both time-independent
and time-dependent covariates; and the misspecified
proportional hazards model with only time-independent
covariate. For all estimators, we use the bootstrap for
variance estimation with the bootstrap size 100.
Table 1 shows the simulation results in Setting I. Under

Scenario (i), when the model for the treatment process
is correctly specified, 𝜓𝑝, 𝜓cont,1, and 𝜓cont,2 show small
biases. As a result, the coverage rates are close to the
nominal level. Under Scenario (ii), when themodel for the
treatment process is misspecified, 𝜓𝑝 shows large biases,
but 𝜓cont,1 and 𝜓cont,2 still show small biases. Moreover,
the root mean squared errors of 𝜓cont,1 and 𝜓cont,2 decrease
as the sample size increases; see the additional simulation
results in the online supporting information. This confirms
the double robustness of the proposed estimators. The pro-
posed estimator 𝜓cont,2 with v̂ar{𝐻(𝜓∗) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢} pro-
duces slightly smaller standard errors; however, this reduc-
tion is not large. In practice, we recommend𝜓cont,1 because
of its simpler implementation than 𝜓cont,2. We note large
biases in the 𝑔-estimator, which illustrates the conse-
quence of data preprocessing for the subsequent analysis.
In Setting II, we further generate the time to censor-

ing𝐶 with the hazard rate 𝜆𝐶(𝑡 ∣ 𝑉𝑡) = 𝜆𝐶,0(𝑡) exp(𝜂1𝐿𝑇𝐼 +
𝜂2𝐿𝑇𝐷,𝑡), with 𝜆𝐶,0(𝑡) = 0.2, 𝜂1 = 0.15, and 𝜂2 = 0.35. In
the presence of censoring, we consider the three estima-
tors (a), (b), and (d) considered in Setting I applied to the



10 YANG

TABLE 1 Simulation results in Setting I without censoring based on 1000 simulated data sets: the Monte Carlo bias, standard error, root
mean square error of the estimators, and coverage rate of 95% confidence intervals

Bias (×𝟏𝟎𝟐) SE (×𝟏𝟎𝟐) rMSE (×𝟏𝟎𝟐) CR (×𝟏𝟎𝟐)
Method 𝝍∗

𝟏
𝝍∗
𝟐

𝝍∗
𝟏

𝝍∗
𝟐

𝝍∗
𝟏

𝝍∗
𝟐

𝝍∗
𝟏

𝝍∗
𝟐

Scenario (i): Model for𝑀𝑇 (✓)
Model for POM (×) 𝜓𝑝 0.3 −0.1 5.3 9.6 5.3 9.6 95.0 94.0
Model for POM (✓) 𝜓cont,1 0.2 0.1 5.0 8.9 5.0 8.9 95.4 94.0

𝜓cont,2 0.2 0.1 4.9 8.7 4.9 8.7 95.3 94.4
– 𝜓disc,𝑔 28.6 34.5 6.0 10.5 29.3 36.1 0.0 7.2

Scenario (ii): Model for𝑀𝑇 (×)
Model for POM (×) 𝜓𝑝 7.4 20.2 5.2 9.9 9.1 22.5 68.8 44.6
Model for POM (✓) 𝜓cont,1 0.5 0.5 5.1 9.1 5.1 9.1 95.4 94.0

𝜓cont,2 0.5 0.4 5.1 9.0 5.1 9.0 95.0 95.4
– 𝜓disc,𝑔 27.7 38.6 5.9 10.2 28.4 40.0 0.2 3.4

Note “POM” means the potential outcome mean function 𝐸{𝐻(𝜓∗) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢}; ✓ (is correctly specified), and × (is misspecified).

uncensored subjects with weighting; that is, the estima-
tors solving the corresponding estimating equations (16)
weighted by 𝑔(𝑉𝜏). To investigate the robustness and opti-
mality of 𝑔(𝑉𝜏) = 1 in Theorem 4, we consider 𝑔(𝑉𝜏) = 1
and 𝑔(𝑉𝜏) = {𝐾𝐶(𝜏 ∣ 𝑉𝜏)}−1 with two models for estimat-
ing𝐾𝐶 : the correctly specified proportional hazards model
with (𝐿𝑇𝐼, 𝐿𝑇𝐷,𝑡), and the misspecified proportional haz-
ards model with (𝐿𝑇𝐼, 𝐿2𝑇𝐷,𝑡).
Table 2 shows the simulation results in Setting II. Under

scenarios when either themodel for the potential outcome
mean function 𝔼{𝐻(𝜓∗) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢} or the model for the
treatment process is correctly specified, the estimators
show small biases, regardless of the specification of 𝑔(𝑉𝜏).
Moreover, if both models for the potential outcome mean
function and the treatment process are misspecified, 𝜓𝑝
shows large biases. Under the same model specification,
the CC estimator with 𝑔(𝑉𝜏) = 1 is more efficient than the
IPCWestimatorwith a correctly specified censoringmodel
which is more efficient than the IPCW estimator with
a misspecified censoring model. This confirms the opti-
mality of 𝑔(𝑉𝜏) = 1 in Theorem 4. Again, the discretized
𝑔-estimator shows large biases across all scenarios.

5 ESTIMATING THE EFFECT OF TIME
TO INITIATING HAART

We apply our method to the observational AIEDRP
database consisting of 1762 HIV-positive patients diag-
nosed during acute and early infection (Hecht et al., 2006).
This data set was previously used by Lok and DeGruttola
(2012) and Yang and Lok (2016; 2018); all these methods
were based on the monthly data after discretization. As
discussed in the introduction, the observations from the
original data are collected by user-initiated visits and are

irregularly spaced (Hecht et al., 2006). Figure 1 shows the
visit times for five random patients. As can be seen, we
have irregular visits, and the number and frequency of vis-
its vary from patient to patient. We aim to estimate the
average causal effect of the time to HAART initiation on
the mean CD4 count at year 2 after HIV infection directly
on the basis of the original data without discretization .
The outcome variable 𝑌 is the CD4 count measured by
the end of year 2, with the interquantile range from 443
to 794 cells/mm3. The observed time to treatment initia-
tion ranges continuously from 12 to 282 days. To ensure
the NUC and ignorable censoring assumptions hold, we
include the following baseline and time-varying covariates:
age at infection, gender, race, injection drug ever/never,
and measured CD4 count and log viral load at follow-up
visits. We assume a continuous-time SNMM 𝛾(𝑉𝑢; 𝜓

∗) =

(𝜓∗1 + 𝜓
∗
2𝑡)(𝜏 − 𝑡)

+, where 𝜓∗2 quantifies the impact of time
to treatment initiation. The rationale for this modeling
choice is because the duration of treatment may well be
predictive of its effect.
We consider the proposed CC estimators 𝜓cont,1 and

𝜓cont,2 specified in Section 4 applied to the uncensored sub-
jects. The estimation procedure requires specifying and fit-
ting nuisance models, which we discuss below.
Model for the potential outcome mean function.

𝐸{𝐻(𝜓𝑝) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢; 𝛽} is a linear regression model
where the covariates include age, male, race, injdrug,
CD4𝑢, lvl𝑢, CD4

3∕4
𝑢 (𝜏 − 𝑢), CD4

3∕4
𝑢 × (𝜏 − 𝑢) × age,

CD4
3∕4
𝑢 × (𝜏 − 𝑢) × male, CD4

3∕4
𝑢 × (𝜏 − 𝑢) × race,

CD4
3∕4
𝑢 × (𝜏 − 𝑢) × injdrug, CD4

3∕4
𝑢 × (𝜏 − 𝑢) × lvl𝑢,

CD4slope𝑢 measured, CD4slope𝑢 × (𝜏 − 𝑢)
1∕2 (6 − 𝑢)+,

and (36 − 𝑢2)+. This model specification is motivation
based on the substantive literature; see, for example, May
et al. (2009).
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TABLE 2 Simulation results in Setting II with censoring based on 1000 simulated data sets: the Monte Carlo bias, standard error, root
mean square error of the estimators, and coverage rate of 95% confidence intervals

Bias (×𝟏𝟎𝟑) SE (×𝟏𝟎𝟑) rMSE (×𝟏𝟎𝟑) CR (×𝟏𝟎𝟐)
(𝒏 = 𝟏𝟎𝟎𝟎) Method 𝝍∗

𝟏
𝝍∗
𝟐

𝝍∗
𝟏

𝝍∗
𝟐

𝝍∗
𝟏

𝝍∗
𝟐

𝝍∗
𝟏

𝝍∗
𝟐

Scenario (i): Model for𝑀𝑇 (✓) and 𝑔 ≡ 1
Model for POM (×) 𝜓𝑝 0.4 −1.4 65.4 110.9 65.4 110.9 95.7 94.6
Model for POM (✓) 𝜓cont,1 −0.1 3.4 65.0 106.5 65.0 106.6 95.0 94.5
– 𝜓disc,𝑔 276.2 315.6 74.5 121.5 286.0 338.2 8.7 10.9

Scenario (ii): Model for𝑀𝑇 (×) and 𝑔 ≡ 1
Model for POM (×) 𝜓𝑝 63.7 177.5 64.4 110.6 90.6 209.2 69.1 43.5
Model for POM (✓) 𝜓cont,1 6.5 5.3 65.0 107.5 65.4 107.7 94.2 94.5
– 𝜓disc,𝑔 281.2 318.7 74.4 120.9 290.9 340.9 7.4 8.8

Scenario (iii): Model for𝑀𝑇 (✓) and 𝑔 = 𝐾−1𝐶 (✓)
Model for POM (×) 𝜓𝑝 −0.3 −0.3 66.8 114.6 66.8 114.6 95.7 95.5
Model for POM (✓) 𝜓cont,1 −0.6 5.2 65.7 109.4 65.7 109.5 95.2 94.2
– 𝜓disc,𝑔 273.4 312.4 75.0 124.1 283.5 336.2 10.3 12.0

Scenario (iv): Model for𝑀𝑇 (×) and 𝑔 = 𝐾−1𝐶 (✓)
Model for POM (×) 𝜓𝑝 63.5 160.0 63.2 109.8 89.6 194.0 63.1 48.3
Model for POM (✓) 𝜓cont,1 10.2 2.5 66.2 108.8 67.0 108.9 94.1 94.7
– 𝜓disc,𝑔 283.7 311.4 76.0 124.7 293.7 335.4 11.8 13.2

Scenario (v): Model for𝑀𝑇 (✓) and 𝑔 = 𝐾−1𝐶 (×)
Model for POM (×) 𝜓𝑝 0.2 −1.5 67.3 114.0 67.3 114.0 95.2 95.6
Model for POM (✓) 𝜓cont,1 −0.3 3.7 66.7 109.3 66.7 109.4 94.6 94.3
– 𝜓disc,𝑔 273.4 312.4 75.0 124.1 283.5 336.2 8.4 10.2

Scenario (vi): Model for𝑀𝑇 (×) and 𝑔 = 𝐾−1𝐶 (×)
Model for POM (×) 𝜓𝑝 72.6 191.8 66.1 113.6 98.2 223.0 61.4 32.2
Model for POM (✓) 𝜓cont,1 13.7 4.1 66.9 107.6 68.3 107.7 94.2 94.6
– 𝜓disc,𝑔 283.7 311.4 76.0 124.7 293.7 335.4 7.7 9.3

Note “POM” means the potential outcome mean function 𝐸{𝐻(𝜓∗) ∣ 𝑉𝑢, 𝑇 ≥ 𝑢}; ✓ (is correctly specified), and × (is misspecified).

Model for the treatment process. The model for the treat-
ment process (𝑀𝑇) is a time-dependent proportional haz-
ards model adjusting for gender, age (age at infection),
race (white non-Hispanic race), injdrug (injection drug
ever/never), CD41∕2𝑢 (square root of current CD4 count ),
lvl𝑢 (log viral load), days from last visit𝑢 (number of days
since the last visit), first visit𝑢 (whether the visit is the first
visit), and second visit𝑢 (whether the visit is the second
visit).
Other nuisance models. 𝐸(𝜏 − 𝑇 ∣ 𝐿𝑢, 𝑇 ≥ 𝑢)

and 𝐸{𝑇(𝜏 − 𝑇) ∣ 𝐿𝑢, 𝑇 ≥ 𝑢)} are linear regres-
sion models where the covariates include 𝑢,
(𝜏 − 𝑢), male×(𝜏 − 𝑢), age×(𝜏 − 𝑢), race×(𝜏 − 𝑢),
injdrug×(𝜏 − 𝑢), CD41∕2𝑢 ×(𝜏 − 𝑢), lvl𝑢×(𝜏 − 𝑢), days
from last visit𝑢 × (𝜏 − 𝑢), first visit𝑢 × (𝜏 − 𝑢), and second
visit𝑢 × (𝜏 − 𝑢).
We use bootstrap for variance estimation with the

bootstrap size 100 and compute the 95%Wald confidence
interval. We also include the discretized 𝑔-estimator (Lok
and DeGruttola, 2012) applied to the monthly data. Table 3

TABLE 3 Results of the effect of time to HAART initiation on
the CD4 count at year 2

Method Est SE
Lower
0.95

Upper
0.95 𝒑-Val

𝜓∗1 cells/mm
3 per month

Proposed 1: 𝜓cont,1 14.2 1.0 12.2 16.1 0.000
Proposed 2: 𝜓cont,2 14.4 1.0 12.4 16.3 0.000
Disc 𝑔-formula: 𝜓disc,𝑔 24.9 1.2 22 28 0.000

𝜓∗2 cells/mm
3 per month2

Proposed 1: 𝜓cont,1 −0.96 0.28 −1.51 −0.41 0.000
Proposed 2: 𝜓cont,2 −0.97 0.27 −1.49 −0.45 0.000
Disc 𝑔-formula: 𝜓disc,𝑔 −0.73 0.65 −1.50 0.10 0.080

shows the results for the effect of time toHAART initiation
on the CD4 count at year 2. We note only slight differences
in the point estimates between the proposed estimators.
The discretized 𝑔-estimator is much larger than the
proposed estimators for 𝜓∗1 , but all estimators have similar
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results for 𝜓∗2 . The results show that earlier HAART ini-
tiation is better in increasing CD4 counts. Our estimators
respect the underlying continuous-time nature of data
processes. Based on our results, on average, initiation
of HAART at the time of infection (𝑡 = 0) can increase
CD4 counts at year 2 by 14.2 cells/mm3 per month ×
24months ≈ 341 cells/mm3; while initiation of HAART 3
months after the time of infection can increase CD4 counts
at year 2 by (14.2 − 0.96 × 3) × (24 − 3) ≈ 238 cells/mm3.
In the supporting information, we conduct a sensitivity
analysis using an elaborated SNMM with possible treat-
ment effect modifiers. The analysis also shows earlier
HAART initiation is better in increasing CD4 counts,
although the result becomes not significant possibly due
to the increased number of the SNMM parameter. Finally,
we add a caveat that we require the SNMMs to be correctly
specified and a formal goodness-of-fit test for model
assessment will be our future work.

6 DISCUSSION

In this paper, we have developed a new semiparamet-
ric estimation framework for continuous-time SNMMs to
evaluate treatment effects with irregularly spaced longi-
tudinal observations under the assumptions of NUC and
ignorability of censoring. We do not require specifying
the full distribution of the covariate, treatment, outcome,
and censoring processes. Our approach achieves a dou-
ble robustness property requiring the correct specification
of either the model for the potential outcome mean func-
tion or the model for the treatment process, regardless of
whether or not the model for the censoring process is cor-
rectly specified. As discussed previously, the key assump-
tions hold if all variables are measured that are related to
both treatment and outcome and that are related to both
censoring and outcome. Although essential, they are not
verifiable based on the observed data but rely on subject
matter experts to assess their plausibility.
The proposed framework is also applicable to the anal-

ysis of patient-reported outcomes in pragmatic clinical tri-
als. Although trial protocols often require collecting out-
comes at prefixed time points after randomization, patients
may delay or even miss their visits in practice, resulting
in irregular-spaced observations. One important implica-
tion of the proposed framework for future trial designs is
to collect a sufficiently rich set of variables that predict the
treatment and censoring processes and ensure the required
assumptions hold.
There are several directions for future work: (i) we will

extend the continuous-time SNMMs framework to other
types of outcomes such as binary outcomes and survival

outcomes; and (ii) we will develop a variable selection pro-
cedure for identifying effect modifiers. The insight is that
we have a larger number of estimating functions than the
number of parameters. The problem for effect modifiers
selection falls into the recent work of Chang et al. (2018)
on high-dimensional statistical inferences with overidenti-
fication; (iii) a goodness-of-fit test using overidentification
(Yang and Lok, 2016). can also be developed to assess the
assumption for the SNMM; and (iv) we will develop sensi-
tivity analyses to assess the impact of possible uncontrolled
confounding (Yang and Lok, 2018).
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Web Appendix 1. Proofs

Web Appendix 1.1 Proof of (8)

First, we express

λT{t | V t, Y
(∞)} = lim

h→0
h−1P{t 6 T < t+ h | V t, Y

(∞), T > t}

= lim
h→0

h−1f{Y (∞) | V t, t 6 T < t+ h}P{t 6 T < t+ h | V t, T > t}
f{Y (∞) | V t, T > t}

= lim
h→0

h−1f{H(ψ∗) | V t, t 6 T < t+ h}P{t 6 T < t+ h | V t, T > t}
f{H(ψ∗) | V t, T > t}

= lim
h→0

h−1P{t 6 T < t+ h | V t, H(ψ∗), T > t}

= λT{t | V t, H(ψ∗)},

where the second equality follows by the Bayes rule, and the third equality follows by Model (6)

which implies that the distribution of {V t, Y
(∞)} is the same as the distribution of {V t, H(ψ∗)}.

Second, by Assumption 5, λT{t | V t, Y
(∞)} = λT (t | V t). Therefore, λT{t | V t, H(ψ∗)} =

λT{t | V t, Y
(∞)} = λT (t | V t).

Web Appendix 1.2 General semiparametric efficiency theory

We present the general semiparametric efficiency theory. Suppose the data consist of n independent

and identically distributed random variables F1, . . . , Fn. We consider regular asymptotically linear

(RAL) estimators ψ̂n for ψ∗ as

n1/2(ψ̂n − ψ∗) = n1/2PnΦ(F ) + oP(1), (S1)
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where Pn denotes the empirical mean; i.e., PnΦ(F ) = n−1
∑n

i=1 Φ(Fi), Φ(F ) is called the in-

fluence function of ψ̂n, with mean zero and finite and non-singular variance. Because ψ∗ is p-

dimensional, Φ(F ) is also p-dimensional. From (S1), the asymptotic variance of n1/2(ψ̂n − ψ∗) is

equal to the variance of its influence function. As a result, to construct the efficient RAL estimator,

it suffices to find the influence function with the smallest variance.

To do this, we describe a geometric approach of Bickel et al. (1993). Consider the Hilbert space

H of all p-dimensional, mean-zero finite variance measurable functions of F , denoted by h(F ),

equipped with the covariance inner product < h1, h2 >= E {h1(F )Th2(F )} and the norm ||h|| =

E {h(F )Th(F )}1/2 < ∞. Bickel et al. (1993) stated that influence functions for RAL estimators

lie in the orthogonal complement of the nuisance tangent space in H. To motive the concept of

the nuisance tangent space for a semiparametric model, we first consider a fully parametric model

f(F ;ψ, θ), where ψ is a p-dimensional parameter of interest, and θ is an q-dimensional nuisance

parameter. The score vectors of ψ and θ are S(ψ∗;F ) = ∂ log f(F ;ψ, θ∗)/∂ψ and S(θ∗;F ) =

∂ log f(F ;ψ∗, θ)/∂θ, both evaluated at the true values (ψ∗, θ∗), respectively. For a parametric

model, the nuisance tangent space Λ is the linear space in H spanned by the q-dimensional nui-

sance score vector S(θ;F ). For semiparametric models, where the nuisance parameter is infinite-

dimensional, the nuisance tangent space Λ is defined as the mean squared closure of all parametric

sub-model nuisance tangent spaces. The efficient score Seff(F ) for the semiparametric model is

the projection of S(ψ∗;F ) onto the orthogonal complementary space of the nuisance tangent space

Λ⊥; i.e., Seff(F ) =
∏[

S(ψ∗;F ) | Λ⊥
]
, where

∏
is the projection operator in the Hilbert space.

The efficient influence function is Φeff(F ) = [E {Seff(F )Seff(F )T}]−1 Seff(F ), with the variance

[E {Seff(F )Seff(F )T}]−1, which achieves the semiparametric efficiency bound (Bickel et al., 1993).

From this geometric point of view, to derive efficient semiparametric estimators for ψ∗, it suffices

to find the efficient score Seff(F ).
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Web Appendix 1.3 Proof of Theorem 1

First, we characterize the semiparametric likelihood function of ψ∗ based on a single variable

D = (V τ , Y ). The semiparametric likelihood is

fD
(
V τ , Y

)
=

{
dH(ψ∗)

dY

}
f{V τ ,H(ψ∗)}{V τ , H(ψ∗)} = f{V τ ,H(ψ∗)}{V τ , H(ψ∗)}, (S2)

where the first equality follows by the transformation ofD to {V τ , H(ψ∗)}, and the second equality

follows because dH(ψ∗)/dY = 1. To express (S2) further, we let the observed times to treatment

initiation among the n subjects be v0 = 0 < v1 < · · · < vM . By Assumption 5 and (8), we express

fD
(
V τ , Y ;ψ∗, θ

)
= f {H(ψ∗); θ1}

M∏
k=1

f
{
Lvk | Avk−1

= 0, Lvk−1
, H(ψ∗); θ2

}
×

vM∏
v=v1

f
{
Avk | Avk−1

= 0, Lvk , H(ψ∗); θ3

}
,

= f {H(ψ∗); θ1}
M∏
k=1

f
{
Lvk | Avk−1

= 0, Lvk−1
, H(ψ∗); θ2

}
×

vM∏
v=v1

f
{
Avk | Avk−1

= 0, Lvk ; θ3

}
= f {H(ψ∗); θ1}

M∏
k=1

f
{
Lvk | Avk−1

= 0, Lvk−1
, H(ψ∗); θ2

}
×f(T,Γ | V T ; θ3), (S3)

where θ = (θ1, θ2, θ3) is a vector of the infinite-dimensional nuisance parameters given the non-

parametric models, and the third equality follows because
∏M

k=1 f
(
Avk | Avk−1

= 0, Lvk ; θ3

)
can

be equivalently expressed as the likelihood based on the data (T,Γ) given V T .

Second, we characterize Λk, the nuisance tangent space for θk, for k = 1, 2, 3. Assuming

f {H(ψ∗); θ1} and
∏M

k=1 f
{
Lvk | Avk−1

= 0, Lvk−1
, H(ψ∗); θ2

}
are nonparametric, it follows from

Section 4.4 of Tsiatis (2006) that the tangent space regarding θ1 is

Λ1 = {s {H(ψ∗)} ∈ Rp : E [s {H(ψ∗)}] = 0} ,

and the tangent space of θ2 is

Λ2 =
M∑
k=1

{
S
{
V vk−1, Lvk , H(ψ∗)

}
∈ Rp :
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E
[
S
{
V vk−1, Lvk , H(ψ∗)

}
| Avk−1

= 0, Lvk−1
, H(ψ∗)

]
= 0
}
.

By writing

f(T,Γ|V T )(T,Γ | V T ) = λT (T | V T )Γ exp

{
−
ˆ T

0

λT (u | V u)du

}
×
{
fT |V T (T | V T )

}1−Γ
{ˆ ∞

T

fT |V T (u | V u)du

}Γ

,

it follows from Tsiatis (2006) that the tangent space of θ3 is

Λ3 =

{ˆ
hu(V u)dMT (u) : for all hu(V u) ∈ Rp

}
.

Because θ1, θ2, and θ3 separate out in the likelihood function, Λ1, Λ2 and Λ3 are mutually orthog-

onal. Then, the nuisance tangent space becomes Λ = Λ1 ⊕ Λ2 ⊕ Λ3, where ⊕ denotes a direct

sum.

Third, we characterize Λ⊥ using the following technical trick. Define

Λ∗3 =

{ˆ
hu{V u, H(ψ∗)}dMT (u) : hu{V u, H(ψ∗)} ∈ Rp

}
.

Because the tangent space Λ1⊕Λ2⊕Λ∗3 is that for a nonparametric model; i.e., a model that allows

for all densities ofD, and because the tangent space for a nonparametric model is the entire Hilbert

space, we obtain thatH = Λ1⊕Λ2⊕Λ∗3. Because Λ⊥ must be orthogonal to Λ1⊕Λ2, Λ⊥ consists

of all elements of Λ∗3 that are orthogonal to Λ3. It then suffices to find the projection of all elements

of Λ∗3,
´
hu{V u, H(ψ∗)}dMT (u), onto Λ⊥3 . To find the projection, we derive h∗u(V u) such that[ˆ

hu{V u, H(ψ∗)}dMT (u)−
ˆ
h∗u(V u)dMT (u)

]
∈ Λ⊥3 .

Therefore, we have

E
(ˆ [

hu{V u, H(ψ∗)} − h∗u(V u)
]

dMT (u)×
ˆ
hu(V u)dMT (u)

)
= 0, (S4)

for any hu(V u). It is important to note that by Assumption 5, MT (t) is a martingale with respect

to the filtration σ{V t, H(ψ∗)}. If P1(u) and P2(u) are locally bounded σ{V t, H(ψ∗)}-predictable

processes, then we have the following useful result:

E
{ˆ t

0

P1(u)dMT (u)

ˆ t

0

P2(u)dMT (u)

}
=

ˆ t

0

P1(u)P2(u)λT (u | V u)RT (u)du. (S5)
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By (S5), (S4) becomes

E
(ˆ [

hu{V u, H(ψ∗)} − h∗u(V u)
]
hu(V u)λT (u | V u)RT (u)du

)
= E

(ˆ
E
([
hu{V u, H(ψ∗)} − h∗u(V u)

]
RT (u) | V u

)
hu(V u)λT (u | V u)du

)
= 0,

for any hu(V u). Because hu(V u) is arbitrary, we obtain

E
([
hu{V u, H(ψ∗)} − h∗u(V u)

]
RT (u) | V u

)
= 0. (S6)

Solving (S6) for h∗u(V u), we obtain

h∗u(V u) = E
[
hu{V u, H(ψ∗)} | V u, T > u

]
.

This completes the proof.

Web Appendix 1.4 A lemma

The following lemmas are useful for the proof of theorems.

LEMMA S1: For any h{H(ψ∗), V u}, we have

E
ˆ τ

0

h{H(ψ∗), V u}dMT (u) = E
ˆ τ

0

(
E[h{H(ψ∗), V u} | V u, T = u]

− E[h{H(ψ∗), V u} | V u, T > u]
)
λT (u | V u)RT (u)du.

Proof of Lemma S1.

Combining the following two results

E
ˆ τ

0

h{H(ψ∗), V u}NT (u) = E
ˆ τ

0

E[h{H(ψ∗), V u} | V u, T ]dNT (u)

= E
ˆ τ

0

E[h{H(ψ∗), V u} | V u, T = u]λT (u | V u)RT (u)du,

and

E
{ˆ τ

0

h{H(ψ∗), V u}λT (u | V u)RT (u)du

}
= E

{ˆ τ

0

E[h{H(ψ∗), V u} | V u, RT (u)]λT (u | V u)RT (u)du

}
= E

{ˆ τ

0

E[h{H(ψ∗), V u} | V u, T > u]λT (u | V u)RT (u)du

}
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leads to Lemma S1. �

Web Appendix 1.5 Projection onto Λ⊥

To derive Seff(ψ∗;F ), we calculate the projection of any B = B(F ) onto Λ⊥. Theorem S1

summarizes the result.

THEOREM S1: For any B = B(F ), the projection of B onto Λ⊥ is

∏(
B | Λ⊥

)
=

ˆ τ

0

[
E
{
BḢu(ψ

∗) | V u, T = u
}
− E

{
BḢu(ψ

∗) | V u, T > u
}]

×
[
var
{
H(ψ∗) | V u, T > u

}]−1 [
H(ψ∗)− E

{
H(ψ∗) | V u, T > u

}]
dMT (u), (S7)

where Ḣu(ψ
∗) = H(ψ∗)− E{H(ψ∗) | V u, T > u}.

Proof of Theorem S1.

For any B = B(F ), let

G = G(F ) =

ˆ τ

0

[
E
{
BḢu(ψ

∗) | V u, T = u
}
− E

{
BḢu(ψ

∗) | V u, T > u
}]

×
[
var
{
H(ψ∗) | V u, T > u

}]−1 [
H(ψ∗)− E

{
H(ψ∗) | V u, T > u

}]
dMT (u).

To show
∏(

B | Λ⊥
)

= G, it is easy to see that G ∈ Λ⊥, so the remaining is to show that B−G ∈

Λ. Toward this end, we show that for any G̃ = G̃(F ) =
´ τ

0
c̃(u, V u)[H(ψ∗)−E{H(ψ∗) | V u, T >

u}]RT (u)dMT (u) ∈ Λ⊥, (B −G)⊥⊥ G̃ or E{(B −G)G̃} = 0. We now verify E(BG̃) = E(GG̃)

by the following calculation.

First, by (S5), we calculate

E(GG̃) = E
ˆ τ

0

c̃(u, V u)[E{BḢu(ψ
∗) | V u, T = u} − E{BḢu(ψ

∗) | V u, T > u}]

×[var{H(ψ∗) | V u, T > u}]−1[H(ψ∗)− E{H(ψ∗) | V u, T > u}]2

×λT (u | V u)RT (u)du

= E
ˆ τ

0

c̃(u, V u)[E{BḢu(ψ
∗) | V u, T = u} − E{BḢu(ψ

∗) | V u, T > u}]

×λT (u | V u)RT (u)du. (S8)
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Second, we calculate

E(BG̃) = E
ˆ τ

0

c̃(u, V u)B[H(ψ∗)− E{H(ψ∗) | Lu, T > u}]dMT (u)

= E
ˆ τ

0

c̃(u, V u)BḢu(ψ
∗)dNT (u)

−E
ˆ τ

0

c̃(u, V u)BḢu(ψ
∗)λT (u | V u)RT (u)du

= E
ˆ τ

0

c̃(u, V u)[E{BḢu(ψ
∗) | V u, T = u} − E{BḢu(ψ

∗) | V u, T > u}]

×λT (u | V u)RT (u)du, (S9)

where the last equality follows by Lemma S1.

Therefore, by (S8) and (S9), E(BG̃) = E(GG̃) for any G̃ ∈ Λ⊥, proving (S7). �

Web Appendix 1.6 Proof of Theorem 2

The SES is S∗eff(ψ∗) =
∏(

Sψ | Λ⊥
)
. By Theorem S1, we have

S∗eff(ψ∗) =

ˆ τ

0

[E{SψḢu(ψ
∗) | V u, T = u} − E{SψḢu(ψ

∗) | V u, T > u}]

×[var{H(ψ∗) | V u, T > u}]−1[H(ψ∗)− E{H(ψ∗) | V u, T > u}]dMT (u)

= −
ˆ τ

0

[E{∂Ḣu(ψ
∗)/∂ψ | V u, T = u} − E{∂Ḣu(ψ

∗)/∂ψ | V u, T > u}]

×[var{H(ψ∗) | V u, T > u}]−1[H(ψ∗)− E{H(ψ∗) | V u, T > u}]dMT (u)

= −
ˆ τ

0

E{∂Ḣu(ψ
∗)/∂ψ | V u, T = u}[var{H(ψ∗) | V u, T > u}]−1

×H(ψ∗)− E{H(ψ∗) | V u, T > u}]dMT (u),

where the last equality follows by using the generalized information equality: because Ḣu(ψ
∗) =

H(ψ∗) − E{H(ψ∗) | V u, T > u}, we have E{Ḣu(ψ
∗) | V u, T > u} = 0. Take the derivative of

ψ at both sides, we have E{SψḢu(ψ
∗) | V u, T > u} + E{∂Ḣu(ψ

∗)/∂ψ | V u, T > u} = 0, or

equivalently E{SψḢu(ψ
∗) | V u, T > u} = −E{∂Ḣu(ψ

∗)/∂ψ | V u, T > u}. Similarly, noticing

E{H(ψ∗) | V u, T > u} = E{H(ψ∗) | V u, T = u}, we have E{Ḣu(ψ
∗) | V u, T = u} = 0. Take

the derivative of ψ at both sides, we have E{SψḢu(ψ
∗) | V u, T = u}+E{∂Ḣu(ψ

∗)/∂ψ | V u, T =
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u} = 0, or equivalently E{SψḢu(ψ
∗) | V u, T = u} = −E{∂Ḣu(ψ

∗)/∂ψ | V u, T = u}. Ignoring

the negative sign, the result in Theorem 2 follows.

Web Appendix 1.7 Proof of Theorem 3

We show that E{G(ψ∗;F, c)} = 0 in two cases.

First, if λT (t | V t) is correctly specified, under Assumption 5, MT (t) is a martingale with

respect to the filtration σ{V t, H(ψ∗)}. Because c(u, V u)[H(ψ∗) − E{H(ψ∗) | V u, T > u}] is

a σ{V t, H(ψ∗)}-predictable process,
´ t

0
c(u, V u)[H(ψ∗) − E{H(ψ∗) | V u, T > u}]dMT (u) is a

martingale for t > 0. Therefore, E{G(ψ∗;F, c)} = 0.

Second, if E
{
H(ψ∗) | V u, T > u

}
is correctly specified but λT (t | V t) is not necessarily cor-

rectly specified, let λ∗T (t | V t) be the probability limit of the possibly misspecified model. We

obtain

E
ˆ
c(u, V u)

[
H(ψ∗)− E

{
H(ψ∗) | V u, T > u; β∗

}] {
dNT (u)− λ∗T (u | V u)RT (u)du

}
= E

ˆ
c(u, V u)

[
H(ψ∗)− E

{
H(ψ∗) | V u, T > u; β∗

}] {
dNT (u)− λT (u | V u)RT (u)du

}
+E
ˆ
c(u, V u)

[
H(ψ∗)− E

{
H(ψ∗) | V u, T > u; β∗

}] {
λT (u | V u)− λ∗T (u | V u)

}
RT (u)du

= 0 + E
ˆ
c(u, V u)E

([
H(ψ∗)− E

{
H(ψ∗) | V u, T > u; β∗

}]
| V u, T > u

)
(S10)

×
{
λT (u | V u)− λ∗T (u | V u)

}
RT (u)du

= 0 + E
ˆ
c(u, V u)× 0×

{
λT (u | V u)− λ∗T (u | V u)

}
RT (u)du = 0, (S11)

where zero in (S10) follows because dMT (u) = dNT (u) − λT (u | V u)du is a martingale with

respect to the filtration σ{V t, H(ψ∗)}, and zero in (S11) follows because E
{
H(ψ∗) | V u, T > u

}
is correctly specified and therefore, E

{
H(ψ∗) | V u, T > u; β∗

}
= E

{
H(ψ∗) | V u, T > u

}
.

Web Appendix 1.8 Proof of Theorem 4

The proposed estimator ψ̂ depends on two nuisance models: (i) E{H(ψ∗) | V u, T > u; β} indexed

by β and (ii) the proportional hazards model for the treatment process, denoted by MT . Let β̂
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and M̂T be the estimates of β and MT under the specified parametric and semiparametric models,

respectively. To reflect that the estimating function depends on the nuisance parameters, we denote

G(ψ, β,MT ;F ) =
´
c(u, V u)[H(ψ)− E{H(ψ) | V u, T > u; β}]dMT (u). Denote the probability

limits of β̂ and M̂T as β∗ and M∗
T , respectively.

Proof of the double robustness.

The key implications of Assumption 6 are the following. First, By Assumptions 4 and 6,H(ψ∗) ∼

Y (∞), given (Lt, T > t, C > t). Second, under Assumption 6, the hazard of treatment initiation

in (7) is equal to limh→0 h
−1P (t 6 T < t + h,Γ = 1 | V t, T > t, C > t). Thus, we can

follow the same steps in Section Web Appendix 1.7 to show the double robustness by changing the

conditioning set {V t, T > t} to {V t, T > t, C > t}. �

Proof of the optimality.

Denote the class of estimating functions for ψ as G = {GC(ψ, g;F ) = δCg(V τ )G(ψ;F ) :

for any g}, where G(ψ;F ) is the SES of ψ in the absence of censoring. For simplicity, let X⊗2

denote XXT. The following lemma gives a condition under which g∗ is optimal among all choices

of g in G.

LEMMA S2: If g∗ satisfies

E
{
∂GC(ψ, g;F )∂ψ|ψ=ψ∗

}
= E {GC(ψ∗, g;F )GC(ψ∗, g∗;F )T} , (S12)

for any g, then the solution to the estimating equation constructed based on GC(ψ, g∗;F ) for ψ∗

achieves the smallest asymptotic variance.

We show that g∗(V τ ) = 1 satisfies the optimality criterion (S12). Recall that G(ψ;F ) =

´ τ
0
ceff(u, V u)Ḣu(ψ

∗)RT (u)dMT (u) with

ceff(u, V u) = [E{∂Ḣu(ψ
∗)/∂ψ | V u, T = u}

− E{∂Ḣu(ψ
∗)/∂ψ | V u, T > u}]× [var{H(ψ∗) | V u, T > u}]−1. (S13)
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For any g, define κ(V u; g) = E{KC(V τ )g(V τ ) | V u}. The left hand side of (S12) is

E
{
∂GC(ψ, g;F )∂ψ|ψ=ψ∗

}
= E

[
δCg(V τ ) {∂G(ψ;F )/∂ψ}

∣∣
ψ=ψ∗

]
= E

[
KC(V τ )g(V τ ) {∂G(ψ;F )/∂ψ}

∣∣
ψ=ψ∗

]
= E

[
κ(V τ ; g)

ˆ τ

0

ceff(V u)
{
∂Ḣu(ψ

∗)/∂ψ
}
RT (u)dMT (u)

]
. (S14)

Similarly, the right hand side of (S12) with g∗(V τ ) = 1 is

E
{
GC(ψ∗, g;F )⊗2

}
= E

{
KC(V τ )g(V τ )G(ψ∗;F )⊗2

}
= E

[
κ(V τ ; g)

ˆ τ

0

ceff(V u)
⊗2{Ḣu(ψ

∗)}2λT (u | V u)RT (u)du

]
.(S15)

We now show (S12) by induction. Let ∆ > 0 be a small increment. We start with (S14), which

becomes

E
[
κ(V τ ; g)

(ˆ τ−∆

0

+

ˆ τ

τ−∆

)
ceff(u, V u)

{
∂Ḣu(ψ

∗)/∂ψ
}
RT (u)dMT (u)

]
= E

[
κ(V τ−∆; g)

ˆ τ−∆

0

ceff(u, V u)
{
∂Ḣu(ψ

∗)/∂ψ
}
RT (u)dMT (u)

]
+E

[
κ(V τ ; g)

ˆ τ

τ−∆

ceff(u, V u)
{
∂Ḣu(ψ

∗)/∂ψ
}
RT (u)dMT (u)

]
. (S16)

Also, (S15) becomes

E
[
κ(V τ ; g)

(ˆ τ−∆

0

+

ˆ τ

τ−∆

)
ceff(u, V u)

⊗2{Ḣu(ψ
∗)}2λT (u | V u)RT (u)du

]
= E

[
κ(V τ−∆; g)

ˆ τ−∆

0

ceff(u, V u)
⊗2{Ḣu(ψ

∗)}2λT (u | V u)RT (u)du

]
+E

[
κ(V τ ; g)

ˆ τ

τ−∆

ceff(u, V u)
⊗2{Ḣu(ψ

∗)}2λT (u | V u)RT (u)du

]
. (S17)

It suffices to show that the term in (S16) equals the term in (S17). By Lemma S1, the term in (S16)

is

E
[
κ(V τ ; g)

ˆ τ

τ−∆

ceff(u, V u)
{
∂Ḣu(ψ

∗)/∂ψ
}
RT (u)dMT (u)

]
= Eκ(V τ ; g)

ˆ τ

τ−∆

ceff(u, V u)
[
E
{
∂Ḣu(ψ

∗)/∂ψ | V u, T = u
}

− E
{
∂Ḣu(ψ

∗)/∂ψ | V u, T = u
}]

λT (u | V u)RT (u)du,
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and the term in (S17) is

E
[
κ(V τ ; g)

ˆ τ

τ−∆

ceff(u, V u)
⊗2{Ḣu(ψ

∗)}2λT (u | V u)RT (u)du

]
= E

{
κ(V τ ; g)

ˆ τ

τ−∆

ceff(u, V u)
⊗2E[{Ḣu(ψ

∗)}2 | V u, RT (u)]λT (u | V u)RT (u)du

}
= Eκ(V τ ; g)

ˆ τ

τ−∆

ceff(u, V u)
[
E
{
∂Ḣu(ψ

∗)/∂ψ | V u, T = u
}

− E
{
∂Ḣu(ψ

∗)/∂ψ | V u, T = u
}]

λT (u | V u)RT (u)du,

and therefore the two terms are equal. Then, (S12) follows by induction. This completes the proof.

�

Web Appendix 2. Asymptotic distribution of ψ̂

Let Φ(ψ, β,MT ;F ) = δCG(ψ, β,MT ;F ), for ψ ∈ Θ, β ∈ B, and MT ∈ FT , where Θ and B

are compact sets in the Euclidean space and FT contains MT with a bounded L2 norm. Then, the

proposed estimator ψ̂ solves

Pn
{

Φ(ψ, β̂, M̂T ;F )
}

= 0, (S18)

for ψ. We present the asymptotic distribution of the proposed estimator ψ̂ solving equation (S18).

Let P denote the true data generating distribution ofF , and for any g(F ), let P{g(F )} =
´
g(f)dP(f)

and let Gn = n1/2(Pn − P). We define

J1(β) = P {Φ(ψ∗, β,M∗
T ;F )} ,

J2(MT ) = P {Φ(ψ∗, β∗,MT ;F )} ,

J(β,MT ) = P {Φ(ψ∗, β,MT ;F )} .

Similar to Yang and Lok (2016), we impose the regularity conditions from the empirical process

literature (van der Vaart and Wellner, 1996).

ASSUMPTION S1: (i) For any sequence of {ψn} ∈ Θ , if ||PΦ(ψn, β
∗,M∗

T ;F )|| → 0, then

||ψn − ψ∗|| → 0.
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(ii) Φ(ψ, β,MT ;F ) and ∂Φ(ψ, β,MT ;F )/∂ψ are weak Glivenko-Cantelli classes; i.e.,

sup
ψ∈Θ,β∈B,MT∈FT

|Pn − P|{Φ(ψ, β,MT ;F )} = oP(1),

sup
ψ∈Θ,β∈B,MT∈FT

|Pn − P|
{
∂Φ(ψ, β,MT ;F )

∂ψ

}
= oP(1).

(iii) Φ(ψ, β,MT ;F ) and ∂Φ(ψ, β,MT ;F )/∂ψ are Donsker classes; i.e.,

Gn{Φ(ψ̂, β̂, M̂T ;F )} = Gn{Φ(ψ∗, β∗,M∗
T ;F )}+ oP(1),

Gn

{
∂Φ(ψ̂, β̂, M̂T ;F )

∂ψ

}
= Gn

{
∂Φ(ψ∗, β∗,M∗

T ;F )

∂ψ

}
+ oP(1).

(iv) Assume that

P
{
||Φ(ψ∗, β̂, M̂T ;F )− Φ(ψ∗, β∗,M∗

T ;F )||
}

= oP(1),

P
{
|| ∂
∂ψ

Φ(ψ̂, β̂, M̂T ;F )− ∂

∂ψ
Φ(ψ∗, β∗,M∗

T ;F )||
}

= oP(1).

(v) A(ψ∗, β∗,M∗
T ) = P {∂Φ(ψ∗, β∗,M∗

T ;F )/∂ψ} is invertible.

(vi) Assume that

J(β̂, M̂T )− J(β∗,M∗
T ) = J1(β̂)− J1(β∗) + J2(M̂T )− J2(M∗

T ) + oP(n−1/2),

and that J1(β̂) and J2(M̂T ) are regular asymptotically linear with influence functions Φ1(ψ∗, β∗,

M∗
T ;F ) and Φ2(ψ∗, β∗,M∗

T ;F ), respectively.

We discuss the implications of these conditions. First, Assumption S1 (i) is an identification con-

dition that ensures the uniqueness of the solutionψ∗ to the estimating equation PΦ(ψ∗, β∗,M∗
T ;F ) =

0. Assumption S1 (i) and (ii) are standard for the consistency of ψ̂. The Donsker class condition

requires that the nuisance models should not be too complex. Assumption S1 (iii) is a standard

condition for the empirical processes. We refer the interested readers to Section 4.2 of Kennedy

(2016) for a thorough discussion of Donsker classes of functions. Second, Assumption S1 (iv)

states that β̂ and M̂T have probability limits β∗ and M∗
T , and that the double robustness condition

in Theorem 4 holds. Third, Assumption S1 (vi) holds for smooth functionals of parametric or

semiparametric efficient estimators under specified models. Therefore, this assumption would hold
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under mild regularity conditions if β̂ and M̂T are the parametric and semiparametric maximum

likelihood estimators under specified models.

THEOREM S2: Under the continuous-time SNMM (6) and Assumptions 5 and S1, ψ̂ is consis-

tent for ψ∗ and satisfies

n1/2(ψ̂ − ψ∗)→ N (0,Σψψ),

where Σψψ = var{Φ̃(ψ∗, β∗,M∗
T ;F )}, Φ̃(ψ∗, β∗,M∗

T ;F ) = {A(ψ∗, β∗,M∗
T )}−1B̃(ψ∗, β∗,M∗

T ;F ),

A(ψ∗, β∗,M∗
T ) is defined in Assumption S1 (iii),

B̃(ψ∗, β∗,M∗
T ;F ) = Φ(ψ∗, β∗,M∗

T ;F ) + Φ1(ψ∗, β∗,M∗
T ;F ) + Φ2(ψ∗, β∗,M∗

T ;F ), (S19)

and Φ1(ψ∗, β∗,M∗
T ;F ) and Φ2(ψ∗, β∗,M∗

T ;F ) are defined in Assumption S1 (iv).

Proof of Theorem S2.

We assume the double robustness condition holds; i.e., either the potential outcome mean model

or the model for the treatment process is correctly specified. By Assumption S1 (i), we have

||P{Φ(ψ̂, β∗,M∗
T ;F )}|| 6 ||P{Φ(ψ̂, β∗,M∗

T ;F )} − P{Φ(ψ̂, β̂, M̂T ;F )}||+ ||P{Φ(ψ̂, β̂, M̂T ;F )}||

= ||P{Φ(ψ̂, β∗,M∗
T ;F )} − P{Φ(ψ̂, β̂, M̂T ;F )}||

+||P{Φ(ψ̂, β̂, M̂T ;F )} − Pn{Φ(ψ̂, β̂, M̂T ;F )}||

= ||P{Φ(ψ̂, β∗,M∗
T ;F )} − P{Φ(ψ̂, β̂, M̂T ;F )}||

+ sup
ψ∈Θ,β∈B,MT∈FT

|Pn − P|{Φ(ψ, β,MT ;F )}

= oP(1).

Together with Assumption S1 (ii) leads to the consistency of ψ̂.

Applying the Taylor expansion of Pn
{

Φ(ψ̂, β̂, M̂T ;F )
}

= 0 around ψ∗ leads to

0 = Pn
{

Φ(ψ̂, β̂, M̂T ;F )
}



14 Biometrics,

= Pn
{

Φ(ψ∗, β̂, M̂T ;F )
}

+ Pn

{
∂Φ(ψ̃, β̂, M̂T ;F )

∂ψT

}
(ψ̂ − ψ∗),

where ψ̃ is on the line segment between ψ̂ and ψ∗.

Under Assumption S1 (iii) and (iv),

(Pn − P)

{
∂Φ(ψ̃, β̂, M̂T ;F )

∂ψT

}
= (Pn − P)

{
∂Φ(ψ∗, β∗,M∗

T ;F )

∂ψT

}
= oP(n−1/2),

and therefore,

Pn

{
∂Φ(ψ̃, β̂, M̂T ;F )

∂ψT

}
= P

{
∂Φ(ψ̃, β̂, M̂T ;F )

∂ψT

}
+ oP(n−1/2)

= A(ψ∗, β∗,M∗
T ) + oP(n−1/2).

We then have

n1/2(ψ̂ − ψ∗) = {A(ψ∗, β∗,M∗
T )}−1 n1/2Pn

{
Φ(ψ∗, β̂, M̂T ;F )

}
+ oP(1). (S20)

Based on the double robustness, we have

P{Φ(ψ∗, β∗,M∗
T ;F )} = 0. (S21)

To express (S20) further, based on (S21), we have

PnΦ(ψ∗, β̂, M̂T ;F ) = (Pn − P)Φ(ψ∗, β̂, M̂T ;F )

+ P
{

Φ(ψ∗, β̂, M̂T ;F )− Φ(ψ∗, β∗,M∗
T ;F )

}
+ PΦ(ψ∗, β∗,M∗

T ;F ). (S22)

By Assumption S1 (iii) and (iv), the first term in (S6) becomes

(Pn − P)Φ(ψ∗, β̂, M̂T ;F ) = (Pn − P)Φ(ψ∗, β∗,M∗
T ;F ) + oP(n−1/2)

= PnΦ(ψ∗, β∗,M∗
T ;F ) + oP(n−1/2). (S23)

By Assumption S1 (vi), the second term in (S6) becomes

P
{

Φ(ψ∗, β̂, M̂T ;F )− Φ(ψ∗, β∗,M∗
T ;F )

}
= J(β̂, M̂T )− J(β∗,M∗

T ) + oP(n−1/2)

= J1(β̂)− J1(β∗) + J2(M̂T )− J2(M∗
T ) + oP(n−1/2)

= PnΦ1(ψ∗, β∗,M∗
T ;F ) + PnΦ2(ψ∗, β∗,M∗

T ;F ). (S24)
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Algorithm 1 Algorithm 1 for generating T according to a time-dependent proportional hazards

model

Step 1. Set k = 1.

Step 2. Generate a temporary time to treatment initiation, Ttemp,k, compatible with the hazard

function for the time interval [tk, tk+1), using the method of Bender et al. (2005); i.e., generate

u ∼Uniform[0, 1] and let Ttemp,k =− log(1− u)/{λT,0 exp(α∗1LTI + α∗2LTD,tk)}.

If Ttemp,k is contained within the first time interval [0, tk+1 − tk), then set T = Ttemp,k + tk;

else if Ttemp,k is not contained within the interval [0, tk+1 − tk), increase k by 1 and move to the

beginning of Step 2.

Combining (S21)–(S24) leads to

PnΦ(ψ∗, β̂, M̂T ;F ) = Pn{B̃(ψ∗, β∗,M∗
T ;F )},

where

B̃(ψ∗, β∗,M∗
T ;F ) = Φ(ψ∗, β∗,M∗

T ;F ) + Φ1(ψ∗, β∗,M∗
T ;F )

+Φ2(ψ∗, β∗,M∗
T ;F ) + Φ3(ψ∗, β∗,M∗

T ;F ).

As a result,

n1/2(ψ̂ − ψ∗) = n1/2PnΦ̃(ψ∗, β∗,M∗
T ;F ) + oP(1), (S25)

where

Φ̃(ψ∗, β∗,M∗
T ;F ) = {A(ψ∗, β∗,M∗

T )}−1 B̃(ψ∗, β∗,M∗
T ;F ).

This completes the proof. �

Web Appendix 3. Details for the simulation study

First, Algorithm 1 specifies the steps for generating T according to a time-dependent proportional

hazards model.

Second, we describe the nuisance models and their estimation. For c(u, V u), we approximate
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E{(1, T )T(τ−T )+ | V u, T > u} by p̂r(T 6 τ | V u, T > u)×Ê{(1, T )T(τ−T ) | V u, u 6 T 6 τ}.

We describe the details for fitting below:

(a) p̂r(T 6 τ | V u, T > u) is the predicted value from a logistic regression model of I(T 6 τ)

against u, LTI , LTD,u, and all interactions of these terms, restricted to subjects with T > u.

(b) Ê(τ − T | V u, u 6 T 6 τ) is the predicted value from a linear regression model of τ − T

against u, LTI , LTD,u, and all interactions of these terms, restricted to subjects with u 6 T 6 τ .

(c) Ê{T (τ−T ) | V u, u 6 T 6 τ} is the predicted value from a linear regression model of T (τ−T )

against u, LTI , LTD,u, and all interactions of these terms, restricted to subjects with u 6 T 6 τ .

(d) E{H(ψ̂p) | V u, T > u; β̂} by a linear regression model of H(ψ̂p) against u, LTI , LTD,u, and all

interactions of these terms, restricted to subjects with T > u.

Tables S1 and S2 show the simulation results with n = 2000 in Setting I and Setting II, respectively.

The same discussion applies to the estimators considered in the simulation exercise. Moreover, for

the proposed estimators, the bias remains small and the standard errors decreases as n increases.

[Table 1 about here.]

[Table 2 about here.]

Web Appendix 4. Sensitivity analysis in the real data application

In the sensitivity analysis, we assume an elaborated SNMM with possible treatment effect modi-

fiers:

γ(V u;ψ
∗) = (ψ∗1 + ψ∗2t+ ψ∗3male + ψ∗4age + ψ∗5white + ψ∗6injdrug

+ ψ∗7CD4t + ψ∗8lvlt)(τ − t)+, (S26)

where male is the indicator of being male, age is age at infection, white is the indicator of being

white and non-hispanic, injdrug is the indicator of being an injection drug user, CD4t and lvlt are

time-varying CD4 and log viral load at t. Table S3 shows the results for the sensitivity analysis
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with SNMM (S26). Consistent with the primary result in the main text, the estimate of ψ∗2 is−0.36

that shows that earlier HAART initiation is better in increasing CD4 counts. However, none of the

estimates of the SNMM parameters is significant, probably because of the increased number of

parameters.

[Table 3 about here.]
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Table S1: Simulation results in Setting I without censoring based on 1, 000 simulated datasets: the
Monte Carlo bias, standard error, root mean square error of the estimators, and coverage rate of
95% confidence intervals.

Bias (×102) SE (×102) rMSE (×102) CR (×102)
(n = 2000) Method ψ∗1 ψ∗2 ψ∗1 ψ∗2 ψ∗1 ψ∗2 ψ∗1 ψ∗2

Scenario (i): model for MT (�)
Model for POM (×) ψ̂p 0.2 -0.1 3.4 6.2 3.4 6.2 95.9 96.0

Model for POM (�)
ψ̂cont,1 0.1 0.1 3.3 5.8 3.3 5.8 95.2 95.4
ψ̂cont,2 0.1 0.1 3.2 5.6 3.2 5.6 95.1 95.6

– ψ̂disc,g 27.8 37.1 3.9 6.7 28.1 37.7 0.0 0.0
Scenario (ii): model for MT (×)

Model for POM (×) ψ̂p 7.4 20.1 3.5 6.4 8.1 21.1 46.2 17.2

Model for POM (�)
ψ̂cont,1 0.4 0.3 3.4 5.9 3.4 5.9 95.0 95.4
ψ̂cont,2 0.3 0.3 3.4 5.8 3.4 5.8 95.3 95.6

– ψ̂disc,g 27.3 39.5 3.9 6.7 27.6 40.0 0.0 0.0
“POM” means the potential outcome mean function E{H(ψ∗) | V u, T > u}; � (is correctly

specified), × (is misspecified)
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Table S2: Simulation results in Setting II with censoring based on 1, 000 simulated datasets: the
Monte Carlo bias, standard error, root mean square error of the estimators, and coverage rate of
95% confidence intervals.

Bias (×103) SE (×103) rMSE (×103) CR (×102)
(n = 2000) Method ψ∗1 ψ∗2 ψ∗1 ψ∗2 ψ∗1 ψ∗2 ψ∗1 ψ∗2

Scenario (i): model for MT (�) and g ≡ 1

Model for POM (×) ψ̂p -2.0 -3.8 46.5 86.3 46.6 86.4 94.5 94.6
Model for POM (�) ψ̂cont,1 -1.9 -1.4 45.9 83.1 46.0 83.1 95.4 95.3

– ψ̂disc,g 273.4 315.2 52.9 94.9 278.4 329.1 1.1 5.9
Scenario (ii): model for MT (×) and g ≡ 1

Model for POM (×) ψ̂p 63.1 175.1 45.5 86.2 77.8 195.2 63.4 35.3
Model for POM (�) ψ̂cont,1 4.8 0.5 46.0 83.5 46.3 83.5 94.2 94.4

– ψ̂disc,g 278.2 319.0 53.3 94.9 283.2 332.8 0.0 2.2
Scenario (iii): model for MT (�) and g = K−1

C (�)
Model for POM (×) ψ̂p -2.5 -4.1 47.5 87.2 47.6 87.3 94.7 94.5
Model for POM (�) ψ̂cont,1 -2.3 -1.3 46.6 83.7 46.7 83.7 95.2 94.9

– ψ̂disc,g 270.8 310.6 53.6 95.1 276.1 324.8 0.0 2.7
Scenario (iv): model for MT (×) and g = K−1

C (�)
Model for POM (×) ψ̂p 63.2 155.8 44.2 84.0 77.1 177.0 57.3 31.7
Model for POM (�) ψ̂cont,1 8.8 -4.0 46.7 83.6 47.5 83.7 94.6 95.1

– ψ̂disc,g 280.9 310.1 54.3 95.8 286.1 324.6 0.0 2.6
Scenario (v): model for MT (�) and g = K−1

C (×)

Model for POM (×) ψ̂p -2.1 -3.8 47.8 88.3 47.8 88.4 95.0 94.8
Model for POM (�) ψ̂cont,1 -2.0 -1.0 47.0 84.3 47.0 84.3 95.2 95.4

– ψ̂disc,g 270.8 310.6 53.6 95.1 276.1 324.8 0.0 1.8
Scenario (vi): model for MT (×) and g = K−1

C (×)

Model for POM (×) ψ̂p 72.3 189.7 46.5 88.7 86.0 209.4 52.7 29.5
Model for POM (�) ψ̂cont,1 12.3 -0.5 46.9 83.8 48.5 83.8 94.6 95.2

– ψ̂disc,g 280.9 310.1 54.3 95.8 286.1 324.6 0.1 1.1
“POM” means the potential outcome mean function E{H(ψ∗) | V u, T > u}; � (is correctly

specified), × (is misspecified)



20 Biometrics,

Table S3: Results of sensitivity analysis for the effect of time to HAART initiation on the CD4
count at year 2: the unit is cells/mm3 per month

Parameter Est SE lower .95 upper .95 p-val
ψ∗1 0.57 11.83 -22.62 23.75 0.96
ψ∗2 -0.36 0.36 -1.07 0.35 0.32
ψ∗3 3.50 8.08 -12.34 19.33 0.67
ψ∗4 -0.04 0.19 -0.41 0.33 0.83
ψ∗5 6.32 4.89 -3.28 15.91 0.20
ψ∗6 -25.32 14.06 -52.87 2.23 0.07
ψ∗7 0.40 0.34 -0.27 1.08 0.24
ψ∗8 0.54 0.66 -0.75 1.83 0.41
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