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SUMMARY

Multiple imputation is widely used for estimation in situations where there are missing data. Rubin
(1987) provided an easily applicable formula for multiple imputation variance estimation, but its validity
requires the congeniality condition of Meng (1994), which may not be satisfied for method of moments
estimation. We give the asymptotic bias of Rubin’s variance estimator when method of moments estimation
is used in the complete-sample analysis for each imputed dataset. A new variance estimator based on over-
imputation is proposed to provide asymptotically valid inference in this case.

Some key words: Bayesian method; Congeniality; Missingness at random; Proper imputation; Survey sampling.

1. INTRODUCTION

Imputation is often used to handle missing data. If imputed values are treated as if they were observed,
variance estimates will generally be too small (Ford, 1983). To account for the uncertainty due to imputa-
tion, Rubin (1987, 1996) proposed multiple imputation.

Multiple imputation is set in a Bayesian framework. Rubin (1987) claimed that it can provide valid
frequentist inference in various applications (e.g., Clogg et al., 1991). On the other hand, as discussed by
Fay (1992), Kott (1995), Binder & Sun (1996), Fay (1996), Wang & Robins (1998), Robins & Wang (2000),
Nielsen (2003) and Kim et al. (2006), the multiple imputation variance estimator can be inconsistent.

For multiple imputation inference to be valid, imputations must be proper (Rubin, 1987). A sufficient
condition for this is the congeniality condition of Meng (1994), imposed on both the imputation model
and the subsequent complete-sample analysis, which is quite restrictive for general-purpose estimation.
Rubin’s variance estimator is otherwise inconsistent. Kim (2011) pointed out that multiple imputation that
is congenial for mean estimation is not necessarily congenial for proportion estimation, so some common
statistical procedures, such as moment estimators, can be incompatible with multiple imputation.

In this paper, we characterize the asymptotic bias of Rubin’s variance estimator when a method of
moments estimator is used in the complete-sample analysis and discuss an alternative variance estimator
that can provide asymptotically valid inference. The new variance estimator is compared with Rubin’s
variance estimator via simulations.

2. BASIC SET-UP

Suppose that the complete data consist of n observations (x1, y1), . . . , (xn, yn), which are independent
realizations of a random vector (X, Y ). For simplicity of presentation, assume that Y is a scalar response
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and X is a p-dimensional covariate. Suppose that xi is fully observed and yi is unobserved for some units
in the sample. Without loss of generality, assume that the first r units of yi are observed and the remaining
n − r units are missing. Let δi be the response indicator of yi , i.e., δi = 1 if yi is observed and δi = 0
otherwise. Let yobs = (y1, . . . , yr )

T and Xn = (x1, . . . , xn), and suppose that yi is missing at random in the
sense of Rubin (1976). The parameter of interest is η = E{g(Y )}, where g(·) is known. For example, if
g(y) = y, then η = E(Y ) is the population mean of Y ; and if g(y) = I (y < 1), then η = pr(Y < 1) is the
population proportion of Y values less than 1.

Assume that the conditional density f (y | x) belongs to a parametric class of models f (y | x; θ) (θ ∈ �)

but the marginal distribution of x is completely unspecified. To generate imputed values for missing
outcomes from f (y | x; θ), we need to estimate the unknown parameter θ . The multiple imputation method
adopts a Bayesian approach and proceeds in three steps.

Step 1. Create M complete datasets by filling in missing values with imputed values generated from
the posterior predictive distribution. Specifically, to create the j th imputed dataset, first generate θ∗( j) from
the posterior distribution p(θ | Xn, yobs), and then generate y∗( j)

i from the imputation model f (y | xi ; θ∗( j))

for each missing yi .

Step 2. Apply the complete-sample estimation procedure to each imputed dataset. Let η̂( j) be the
complete-sample estimator of η = E{g(Y )} applied to the j th imputed dataset and V̂ ( j) the complete-
sample variance estimator for η̂( j).

Step 3. Use the combining rule of Rubin (1987) to summarize the results from the multiply imputed
datasets. The multiple imputation estimator of η is η̂MI = M−1

∑M
j=1 η̂( j), and Rubin’s variance estimator is

V̂MI(η̂MI) = WM + (1 + M−1)BM , (1)

where WM = M−1
∑M

j=1 V̂ ( j) and BM = (M − 1)−1
∑M

j=1(η̂
( j) − η̂MI)

2.

If the method of moments estimator of η = E{g(Y )} is used in Step 2, the multiple imputation estimator
of η becomes

η̂MI = M−1
M∑

j=1

η̂( j) = n−1

⎧⎨
⎩

r∑
i=1

g(yi ) +
n∑

i=r+1

M−1
M∑

j=1

g(y∗( j)
i )

⎫⎬
⎭ , (2)

where η̂( j) = n−1{∑r
i=1 g(yi ) +∑n

i=r+1 g(y∗( j)
i )}. To derive the frequentist properties of η̂MI, we rely on

the Bernstein–von Mises theorem (van der Vaart, 2000, ch. 10), which states that under regularity con-
ditions, the posterior distribution p(θ | Xn, yobs) is asymptotically normal with mean θ̂ and variance I −1

obs

almost surely, where θ̂ is the maximum likelihood estimator of θ and I −1
obs is the inverse of the observed

Fisher information matrix, Iobs = −∑r
i=1 ∂2 log f (yi | xi ; θ̂ )/(∂θ∂θ T). If E{g(Y ) | xi ; θ} is sufficiently

smooth in θ , conditional on the observed data, we have plimM→∞M−1
∑M

j=1 g(y∗( j)
i ) = E[E{g(Y ) |

xi ; θ∗} | Xn, yobs] ∼= E{g(Y ) | xi ; θ̂}, where An
∼= Bn means An = Bn + op(1) if An and Bn are random

variables, or An = Bn + o(1) if An and Bn are nonrandom variables. Therefore, as M → ∞, η̂MI converges
to η̂MI,∞ = n−1{∑r

i=1 yi +∑n
i=r+1 m(xi ; θ̂ )}, where m(x; θ) = E{g(Y ) | x; θ}. The variance estimation of

η̂MI,∞ needs to appropriately account for the uncertainty associated with estimating θ , and this is usually
done by using linearization methods if the imputation models are known (Robins & Wang, 2000; Kim &
Rao, 2009). In the multiple imputation procedure, the uncertainty in the estimation of θ is reflected in the
variability between the multiply imputed datasets without referring to the imputation models. However,
Rubin’s variance estimator (1) requires restrictive conditions for valid inference.

3. MAIN RESULT

Rubin’s variance estimator is based on the decomposition

var(η̂MI) = var(η̂n) + var(η̂MI − η̂n) + 2 cov(η̂MI − η̂n, η̂n), (3)
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where η̂n is the complete-sample estimator of η. In Rubin’s variance estimator (1), WM estimates the
first term of (3) and (1 + M−1)BM estimates the second term of (3). Kim et al. (2006) proved that
E{(1 + M−1)BM} ∼= var(η̂MI − η̂n) for a fairly general class of estimators. Hence, if the complete-sample
variance estimator satisfies the condition E(V̂ ( j)) ∼= var(η̂n) for j = 1, . . . , M , the bias of Rubin’s variance
estimator is

bias(V̂MI) ∼= −2 cov(η̂MI − η̂n, η̂n). (4)

Thus, Rubin’s variance estimator is asymptotically unbiased if cov(η̂MI − η̂n, η̂n) ∼= 0; this was termed the
congeniality condition by Meng (1994). However, this condition does not hold for some common esti-
mators, such as method of moments estimators. Theorem 1 gives the asymptotic bias of Rubin’s variance
estimator as M → ∞. Its proof is outlined in the Supplementary Material.

THEOREM 1. Let η̂n = n−1
∑n

i=1 g(yi ) be the method of moments estimator of η = E{g(Y )} under com-

plete response. Assume that E(V̂ ( j)) ∼= var(η̂n) ( j = 1, . . . , M). Then, as M → ∞, the bias of Rubin’s
variance estimator is

bias(V̂MI) ∼= 2n−1(1 − p)
(

E[var{g(Y ) | X} | δ = 0] − mT
θ,0 I−1

θ mθ,1

)
, (5)

where p = r/n, Iθ = −E{∂2 log f (Y | X; θ)/(∂θ∂θ T)}, m(x; θ) = E{g(Y ) | x; θ}, mθ (x) = ∂m(x; θ)/∂θ ,
mθ,0 = E{mθ (X) | δ = 0} and mθ,1 = E{mθ (X) | δ = 1}.

Remark 1. Under missingness completely at random, (5) simplifies to

bias(V̂MI) ∼= 2p(1 − p){var(η̂r,MME) − var(η̂r,MLE)}, (6)

where η̂r,MME = r−1
∑r

i=1 g(yi ) and η̂r,MLE = r−1
∑r

i=1 E{g(Y ) | xi ; θ̂}, because

var(η̂r,MME) = r−1var{g(Y )} = r−1var[E{g(Y ) | X}] + r−1 E[var{g(Y ) | X}]
and

var(η̂r,MLE) ∼= r−1var[E{g(Y ) | X}] + r−1mT
θ I−1

θ mθ

with mθ = E{mθ (X)}. Result (6) shows that Rubin’s variance estimator is unbiased if and only if the
method of moments estimator is as efficient as the maximum likelihood estimator, that is, var(η̂r,MME) ∼=
var(η̂r,MLE). Otherwise, Rubin’s variance estimator is positively biased.

Remark 2. Under missingness at random, the bias of Rubin’s variance estimator can be zero, positive
or negative. Consider a simple linear regression model Y = X Tβ + ε, where ε ∼ N (0, σ 2). For g(Y ) = Y ,
if X contains 1, then the method of moments estimator n−1

∑n
i=1 yi is identical to the maximum likelihood

estimator n−1
∑n

i=1 xT
i β̂, where β̂ is the maximum likelihood estimator of β under complete response. Let

E0(·) = E(· | δ = 0) and E1(·) = E(· | δ = 1). By (5) in Theorem 1 and direct calculation, considering that
X contains 1, we have bias(V̂MI) ∼= 2n−1(1 − p)σ 2{1 − E0(X)T E1(X X T)−1 E1(X)} = 0. This is consistent
with Wang & Robins (1998) and Nielsen (2003). For a simple linear regression model with one covariate
X and no intercept, the method of moments estimator is strictly less efficient than the maximum likelihood
estimator (Matloff, 1981). The bias of Rubin’s variance estimator is

bias(V̂MI) ∼= 2n−1(1 − p)σ 2 E1(X2)−1{E1(X2) − E0(X)E1(X)}, (7)

which can be zero, positive or negative depending on the information for X in the respondent and nonre-
spondent groups.

4. ALTERNATIVE VARIANCE ESTIMATOR

We now discuss an alternative variance estimator that is unbiased regardless of whether the method
of moments estimator or the maximum likelihood estimator is used as the complete-sample estimator
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in multiple imputation. We first decompose the multiple imputation estimator as η̂MI = η̂MI,∞ +
(η̂MI − η̂MI,∞). The two terms are uncorrelated because, conditional on the observed data, η̂MI,∞ is constant
and the expectation of η̂MI − η̂MI,∞ is zero. So

var(η̂MI) = var(η̂MI,∞) + var(η̂MI − η̂MI,∞). (8)

Note that var(η̂MI − η̂MI,∞) can be estimated by M−1 BM (Kim et al., 2006, Lemma 2). We now focus on
estimating var(η̂MI,∞) in (8); the details are given in the Supplementary Material. We show that

var(η̂MI,∞) = V1 + V2 + V3, (9)

where V1 = n−1var{m(X; θ)}, V2 = r−1mT
θ I−1

θ mθ and V3 = n−1 p var[r−1
∑r

i=1{g(yi ) − m(xi ; θ̂ )}] ∼=
n−1 p(E[var{g(Y ) | X} | δ = 1] − mT

θ,1 I−1
θ mθ,1). The second term on the right-hand side of (9) reflects

the variability associated with using the estimated rather than the true value of θ in the imputed values;
the third term is the additional variance when the method of moments estimator is used instead of the
maximum likelihood estimator.

For variance estimation, we use over-imputation: imputation is carried out for both the units with miss-
ing outcomes and those with observed outcomes. Over-imputation has been used to reduce disclosure risks
(Reiter, 2004), as well as in model diagnostics for multiple imputation (Honaker et al., 2011; Blackwell
et al., 2015).

Let ḡ∗
i = M−1

∑M
k=1 g(y∗(k)

i ) and d(k)
i = g(y∗(k)

i ) − ḡ∗
i (i = 1, . . . , n; k = 1, . . . , M). Define

CM,n = 1

n2(M − 1)

M∑
k=1

n∑
i=1

(d∗(k)
i )2, CM,r = 1

n2(M − 1)

M∑
k=1

r∑
i=1

(d∗(k)
i )2,

DM,n = 1

M − 1

M∑
k=1

(
1

n

n∑
i=1

d∗(k)
i

)2

− CM,n, DM,r = 1

M − 1

M∑
k=1

(
1

n

r∑
i=1

d∗(k)
i

)2

− CM,r .

The key insight is based on the following observations:

E(CM,n) ∼= n−1 E[var{g(Y ) | X}], E(CM,r ) ∼= n−1 pE[var{g(Y ) | X} | δ = 1],

E(DM,n) ∼= r−1mT
θ I−1

θ mθ , E(DM,r ) ∼= r−1 p2mT
θ,1 I−1

θ mθ,1.

Therefore, the first term on the right-hand side of (9) can be estimated by

V̂1 = 1

n(n − 1)

⎧⎨
⎩

n∑
i=1

ḡ∗2
i − 1

n

(
n∑

i=1

ḡ∗
i

)2
⎫⎬
⎭− 1

M
CM,n, (10)

the second term can be estimated by
V̂2 = DM,n, (11)

and the third term can be estimated by

V̂3 ≡ CM,r − DM,r . (12)

Combining the estimators of the three terms on the right-hand side of (9), we obtain the new multiple
imputation variance estimator.

THEOREM 2. Under the assumptions of Theorem 1, a multiple imputation variance estimator is

V̂MI = V̂1 + V̂2 + V̂3 + 1

M
BM , (13)

where V̂1, V̂2 and V̂3 are defined in (10)–(12) and BM is the usual between-imputation variance in (1). As
n → ∞, the multiple imputation variance estimator is asymptotically unbiased for estimating the variance
of the multiple imputation estimator in (2).
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248 S. YANG AND J. K. KIM

Remark 3. For small M , negative estimates of the variance may occur. In this case, we define V̂ +
1 =

max(V̂1, 0), V̂ +
2 = max(V̂2, 0) and V̂ +

3 = max(V̂3, 0), so that each estimate of nonnegative quantities is
guaranteed to be nonnegative. The price we pay for setting negative values to zero is a slight increase in
bias, but this disappears for large M . Notably, the upward bias is essentially negligible in our simulation
study in § 5.

Remark 4. To account for the uncertainty in the variance estimator with a small to moderate imputation
size, a 100(1 − α)% interval estimate for η is η̂MI ± tν,1−α/2V̂ 1/2

MI , where

ν = (M − 1)V̂ 2
MI

D2
M,n + D2

M,r + M−2 B2
M − 2p2 DM,n DM,r + 2M−1(1 − p)2 DM,n BM

(14)

is an approximate number of degrees of freedom based on the Satterthwaite (1946) method; see the
Supplementary Material.

Remark 5. The variance estimator (13) is also asymptotically unbiased when η̂n is the maximum like-
lihood estimator of η = E{g(Y )}, so the proposed variance estimator is applicable whether the maximum
likelihood or method of moments estimator is used. The price we pay for the better performance of our vari-
ance estimator is a slight increase in computational complexity and data storage space: it requires M + 1
datasets, with M of them including the over-imputations and the last containing the original observed data.
However, compared to the most common method of multiple imputation, it requires only one additional
copy of imputations. When one’s main concern is with valid inference, our proposed variance estimator
based on over-imputation is preferred to Rubin’s estimator. In addition, given over-imputations, the sub-
sequent inference does not require knowledge of the imputation models. This is important because data
analysts typically do not have access to all the information used for imputation. Our study would advo-
cate over-imputation at the time of imputation, which not only allows imputers to assess the adequacy
of the imputation models but also enables analysts to carry out valid inference without knowledge of the
imputation models.

5. SIMULATION STUDY

We conducted a simulation study with two settings. For the first setting, 5000 Monte Carlo samples
of size n = 2000 were independently generated from Yi = β Xi + ei , where β = 0·1, Xi ∼ exp(1) and
ei ∼ N (0, σ 2

e ) with σ 2
e = 0·5. In the sample, we assume that Xi is fully observed but Yi is not. Let δi be the

response indicator of yi and let δi ∼ Ber(pi ), where pi = 1/{1 + exp(−φ0 − φ1xi )}. We consider two sce-
narios: (i) (φ0, φ1) = (−1·5, 2); (ii) (φ0, φ1) = (3,−3), with the average response rate being about 0·6. The
parameters of interest are η1 = E(Y ) and η2 = pr(Y < 0·15). For multiple imputation, M = 500 imputed
values were independently generated from the linear regression model using the Bayesian regression impu-
tation procedure discussed in Schenker & Welsh (1998), where β and σ 2

e are treated as independent with
prior density proportional to σ−2

e . For each imputed dataset, we employed the following complete-sample
point estimators and variance estimators: η̂1,n = n−1

∑n
i=1 yi , η̂2,n = n−1

∑n
i=1 I (yi < 0·15), V̂ (η̂1,n) =

n−1(n − 1)−1
∑n

i=1(yi − η̂1,n)
2 and V̂ (η̂2,n) = (n − 1)−1η̂2,n(1 − η̂2,n). The relative bias of the variance

estimator was calculated as {E(V̂MI) − var(η̂MI)}/var(η̂MI) × 100%. The 100(1 − α)% confidence inter-
vals were calculated as (η̂MI − tν,1−α/2

√
V̂MI, η̂MI + tν,1−α/2

√
V̂MI), where tν,1−α/2 is the 100(1 − α/2)%

quantile of the t distribution with ν degrees of freedom. For Rubin’s method, ν = (M − 1)λ−2 with
λ = (1 + M−1)BM/{WM + (1 + M−1)BM} (Barnard & Rubin, 1999). In our method, ν is as given in (14).
The coverage was calculated as the percentage of Monte Carlo samples for which the true value falls within
the confidence interval.

From Table 1 we can see that for η1 = E(Y ), under scenario (i), the relative bias of Rubin’s vari-
ance estimator is 94·1%, consistent with (7) with E1(X2) − E0(X)T E1(X) > 0, where E1(X2) = 3·38,
E1(X) = 1·45 and E0(X) = 0·48. Under scenario (ii), the relative bias of Rubin’s variance estimator is
−20·1%, consistent with (7) with E1(X2) − E0(X)T E1(X) < 0, where E1(X2) = 0·37, E1(X) = 0·47 and
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Table 1. Relative biases of two variance estimators together with the mean width and coverages of two
interval estimates under two scenarios for the first simulation setting

Relative bias Mean width (×103) Mean width (×103) Coverage (×102) Coverage (×102)
(%) for 90% CI for 95% CI for 90% CI for 95% CI

Scenario Rubin B-C Rubin B-C Rubin B-C Rubin B-C Rubin B-C

(i) η1 94·1 −0·1 32 23 38 27 98 90 99 95
η2 114·6 −1·2 22 15 27 18 98 90 100 95

(ii) η1 −20·1 0·3 51 58 61 69 85 90 92 95
η2 −9·1 0·1 31 33 37 39 87 90 93 95

CI, confidence interval; η1, E(Y ); η2, pr(Y < 0·15); Rubin, the variance estimator of Rubin (1987); B-C, the proposed
bias-corrected variance estimator.

Table 2. Relative biases of two variance estimators together with the mean width and coverages of two
interval estimates under two scenarios of missingness for the second simulation setting

Relative bias Mean width (×103) Mean width (×103) Coverage (×102) Coverage (×102)
(%) for 90% CI for 95% CI for 90% CI for 95% CI

M Rubin B-C Rubin B-C Rubin B-C Rubin B-C Rubin B-C

Missingness completely at random
η1 10 2·6 2·7 60 61 72 73 90 90 95 95

30 1·9 2·5 60 61 72 72 90 90 95 95

η2 10 29·7 2·1 22 19 26 23 94 90 98 95
30 29·2 2·6 21 19 26 23 94 90 98 95

Missingness at random
η1 10 1·9 2·1 59 60 71 71 90 90 95 95

30 1·4 1·2 59 59 70 71 90 90 95 95

η2 10 26·6 2·6 21 19 25 23 94 90 97 95
30 26·2 1·9 21 19 25 23 94 90 97 95

CI, confidence interval; η1, E(Y ); η2, pr(Y < 1); Rubin, the variance estimator of Rubin (1987); B-C, the proposed
bias-corrected variance estimator.

E0(X) = 1·73. The empirical coverage of Rubin’s method can be above or below the nominal coverage,
but our variance estimator is essentially unbiased.

For the second simulation setting, 5000 Monte Carlo samples of size n = 2000 were independently
generated from Yi = β0 + β1 Xi + ei , where β = (β0, β1) = (3,−1), Xi ∼ N (2, 1) and ei ∼ N (0, σ 2

e ) with
σ 2

e = 1. The parameters of interest are η1 = E(Y ) and η2 = pr(Y < 1). We considered two different fac-
tors. One is the response mechanism: missingness completely at random or missingness at random.
For missingness completely at random, δi ∼ Ber(0·6); for missingness at random, δi ∼ Ber(pi ) where
pi = 1/{1 + exp(−φ0 − φ1xi )} with (φ0, φ1) = (0·28, 0·1) and with an average response rate of about 0·6.
The other factor is the size of multiple imputation, M = 10 or 30.

Table 2 shows that Rubin’s variance estimator is unbiased for η1 = E(Y ), with absolute relative bias less
than 2·6%, and our variance estimator is comparable, with absolute relative bias less than 3·0%. Rubin’s
variance estimator is biased upward for η2 = pr(Y < 1), with absolute relative bias as high as 29·7%,
whereas our variance estimator reduces the absolute relative bias to less than 2·7%. As regards confidence
interval estimates, for η1 = E(Y ), the average length of confidence intervals from our method is slightly
larger than that for Rubin’s method, because (14) produces a smaller number of degrees of freedom. How-
ever, for η2 = pr(Y < 1), the average length of confidence intervals from our method is shorter even with
a smaller number of degrees of freedom, due to the overestimation of Rubin’s method. Rubin’s method
provides good empirical coverage for η1 = E(Y ), but the empirical coverage for η2 = pr(Y < 1) reaches
94% for 90% confidence intervals and 98% for 95% confidence intervals, due to variance overestimation.
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In contrast, our method provides more accurate coverage of confidence intervals for both η1 = E(Y ) and
η2 = pr(Y < 1).

6. DISCUSSION

Our method can be extended to a more general class of parameters η obtained by solving estimating
equations

∑n
i=1 U (η; xi , yi ) = 0, such as the mean of y, the proportion of y less than q, the pth quantile,

regression coefficients, and domain means. A similar approach could be used to characterize the bias of
Rubin’s variance estimator and to develop a bias-corrected variance estimator.

Another extension would be to develop unbiased variance estimation for the vector case of η with q > 1
components. As in the scalar case, we can construct multivariate analogues of the multiple imputation
estimator and the variance estimator; however, finding an adequate reference distribution for the statistic
(η̂MI − η)T V̂ −1

MI (η̂MI − η)/q is harder than in the scalar case. One potential solution is to make a simplifying
assumption that the fraction of missing information is equal for all the components of η, as discussed in
Li et al. (1994) and Xie & Meng (2015).
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes the proofs of Theorems 1 and 2, veri-
fication of unbiasedness of the new variance estimator when η̂n is the maximum likelihood estimator of
η = E{g(Y )}, and derivation of the approximate number of degrees of freedom.
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