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ABSTRACT

Nearest neighbor imputation has a long tradition for handling item nonre-
sponse in survey sampling. In this article, we study the asymptotic properties
of the nearest neighbor imputation estimator for general population param-
eters, including population means, proportions and quantiles. For variance
estimation, we propose novel replication variance estimation, which is
asymptotically valid and straightforward to implement. The main idea is to
construct replicates of the estimator directly based on its asymptotically lin-
ear terms, instead of individual records of variables. The simulation results
show that nearest neighbor imputation and the proposed variance estimation
provide valid inferences for general population parameters.
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1. INTRODUCTION

In survey sampling, nearest neighbor imputation is popular for dealing with item
nonresponse. In nearest neighbor imputation, for each unit with missing data,
the nearest neighbor is identified among respondents based on the vector of fully
observed covariates and then is used as a donor for hot deck imputation (Little &
Rubin, 2002). Although nearest neighbor imputation has a long history of applica-
tion, there are relatively few papers on investigating its statistical properties. Sande
(1979) used nearest neighbor imputation in business surveys. Lee and Särndal
(1994) studied different methods of nearest neighbor imputation by simulation.
Chen and Shao (2000, 2001) developed asymptotic properties for the nearest neigh-
bor imputation estimator of population means. Shao and Wang (2008) proposed
methods for constructing confidence intervals for population means and quan-
tiles with nearest neighbor imputation. Kim et al. (2011) applied nearest neighbor
imputation for the US Census long form data. However, most of these studies
focused on mean estimation or a one-dimensional covariate in the context of a
simple random sample, which is restrictive both theoretically and practically.

In the empirical economics literature, nearest neighbor imputation (also known
as matching) has been widely used in evaluation research for adjusting the dis-
tribution of covariates among different treatment groups; see Stuart (2010) for a
survey of matching estimators. Abadie and Imbens (2006, 2008, 2011, 2012, 2016)
systematically studied the asymptotic properties of the matching estimators for the
average treatment effects with a finite number of matches. In particular, Abadie
and Imbens (2006, 2012) derived the asymptotic distribution for the matching
estimators that match directly on the covariates using a martingale representation.
Abadie and Imbens (2016) and Yang et al. (2016) further showed that the match-
ing estimators that match on the estimated propensity score are consistent and
asymptotically normal. However, these studies are restricted to mean estimation
and non-survey data.

Empirical researchers are often interested in various finite population quantities,
such as the population means, proportions and quantiles, to name a few (Francisco
and Fuller, 1991; Wu and Sitter, 2001; Berger and Skinner, 2003). Some corre-
sponding sample estimators should be treated differently than others. For example,
estimators of population quantiles involve nondifferentiable functions of estimated
quantities. Moreover, there often are more than one covariate available to facilitate
nearest neighbor imputation for survey data. The current framework of nearest
neighbor imputation does not fully cover inferences in these settings.

In this article, we provide a framework of nearest neighbor imputation for gen-
eral parameter estimation in survey sampling. In general, the nearest neighbor
imputation estimator is not root-n consistent Abadie and Imbens (2006), where n
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is the sample size. Based on a scalar matching variable summarizing all covariates
information, we show that nearest neighbor imputation can provide consistent esti-
mators for a fairly general class of parameters. If the matching variable is chosen
to be the mean function of the outcome given the covariates, our method resem-
bles predictive mean matching imputation (Rubin, 1986; Little, 1988; Heitjan
and Little, 1991). However, unlike predictive mean matching imputation, nearest
neighbor imputation does not require the mean function be correctly specified. Its
consistency only requires the matching variable satisfy certain Lipschitz continuity
conditions; see Section 3 for details.

The asymptotic results suggest that variance estimation can proceed based on a
large sample approximation to the normal distribution but requires additional esti-
mation for the variance function of the outcome given the covariates. To avoid such
complication, we consider replication variance estimation (Rust and Rao, 1996;
Wolter, 2007; Mashreghi et al., 2016), which has gained popularity in practice
because of its intuitive appeal. Intrinsically, the nearest neighbor imputation esti-
mator with fixed number of matches is not smooth. The lack of smoothness makes
the conventional replication methods invalid for variance estimation (Abadie and
Imbens, 2008). This is because the conventional replication method distorts the
distribution of the number of times each unit is used as a match, ki . We provide a
heuristic illustration using an unrealistic but insightful example. Suppose in a sam-
ple of size 2n, let Sequence 1 be the first n observations, and let Sequence 2 be the
last n observations. Further, suppose that each observation in Sequence 1 matches
to that of Sequence 2. Therefore, the distribution of ki is degenerated to 1 with
probability 1. On the other hand, for the conventional bootstrap, the distribution of
k∗
i , where k∗

i is the number of times each unit is used as a match in the bootstrapping
sample, would have a different distribution from ki . Therefore, the conventional
bootstrap fails to preserve the distribution of ki . If the number of matches increases
with the sample size, such as in the “kernel matching” estimators of Heckman et al.
(1998), both ki and k∗

i are infinite in the original and conventional bootstrapping
samples, and therefore the conventional bootstrap works in this setting. To address
the non-smoothness due to the fixed number of matches, subsampling (Politis et al.,
1999) and m out of n bootstrap (Bickel et al., 2012) can be used; however, their con-
sistency relies critically on the choice of the size for subsampling. Unfortunately,
there is no clear guidance on how to choose these values in practice. Alternatively,
Otsu and Rai (2016) proposed a wild bootstrap method for the matching estimator
based on the full vector of covariates in the context of non-survey data. Adusumilli
(2017) developed a novel bootstrap procedure for the matching estimator based on
the estimated propensity score, built on the notion of “potential errors.” His simu-
lation study also demonstrated the superior performance of the bootstrap method
relative to using the asymptotic distribution for inference.
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We propose new replication variance estimation for nearest neighbor imputation
for general parameters in the context of survey data. To address the non-smoothness
of the matching estimator, we construct replicates of the estimator directly based on
the linear representation of the nearest neighbor imputation estimator. In this way,
the distribution of ki can be preserved, which leads to valid variance estimation.
Furthermore, our replication variance method is flexible, which can accommodate
bootstrap and jackknife, among others. To assess the performance of the proposed
replicate variance estimator, we run a Monte Carlo simulation study. The sim-
ulation results show that the proposed estimator outperforms the conventional
replication estimator under various data-generating mechanisms and sampling
schemes.

The rest of the article is organized as follows. In Section 2, we introduce the
setup and notation and describe the nearest neighbor imputation estimators for
general parameters from survey data. In Section 3, we present the main results
of the article, which establish asymptotic distributions for the nearest neighbor
imputation estimators. In Section 4, we propose a replication method for variance
estimation and establish its consistency. In Section 5, we evaluate the finite sample
properties of the proposed procedure via Monte Carlo simulation studies under
different sampling schemes. Section 6 concludes. Technical details are deferred to
the Appendices.

2. BASIC SETUP

Let FN = {(xi , yi , δi) : i = 1, . . . , N} denote a finite population of size N , where
xi is a p-dimensional vector of covariates, which is always observed, yi is the
outcome that is subject to missingness, and δi is the response indicator of yi , i.e.,
δi = 1 if yi is observed and δi = 0 if it is missing. The δi’s are defined throughout
the finite population, as in Shao and Steel (1999) and Kim et al. (2006). We
assume that FN is a random sample from a superpopulation model ζ , and N

is known. Our objective is to estimate the finite population parameter defined
through μg = N−1 ∑N

i=1 g(yi) for some known g( · ), or ξN = inf{ξ : SN (ξ ) ≥ 0},
where SN (ξ ) = N−1 ∑N

i=1 s(yi − ξ ), and s( · ) is a univariate real function. These
parameters are fairly general, which cover many parameters of interest in survey
sampling. For example, let g(y) = y, μg ≡ N−1 ∑N

i=1 yi is the population mean
of y. Let g(y) = I (y < c) for some constant c, μg ≡ N−1 ∑N

i=1 I (yi < c) is the
population proportion of y less than c. Let s(yi − ξ ) = I (yi − ξ ≤ 0) − α, ξN is
the population αth quantile.

Let A denote an index set of the sample selected by a probability sampling
design. Let Ii be the sampling indicator function, i.e., Ii = 1 if unit i is selected into
the sample, and Ii = 0 otherwise. The sample size is n = ∑N

i=1 Ii . Suppose that πi ,
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the first-order inclusion probability of unit i, is positive and known throughout the
sample. If yi were fully observed throughout the sample, the sample estimator of
μg and ξN are μ̂g = N−1 ∑

i∈A π−1
i g(yi) and ξ̂ = inf{ξ : ŜN (ξ ) ≥ 0} with ŜN (ξ ) =

N̂−1 ∑
i∈A π−1

i s(yi − ξ ) and N̂ = ∑
i∈A π−1

i is an estimator for N . Even with a
known N , it is necessary to use N̂ ; we articulate this point in Example 3.

We make the following assumption for the missing data process.

Assumption 1.
(Missing at random and positivity)The missing data process satisfies P (δ =
1 | x, y) = P (δ = 1 | x), denoted by p(x). With probability 1, p(x) > ε for a
constant ε > 0.

We focus on the imputation estimators of μg and ξN given by μ̂g,I =
N−1 ∑

i∈A π−1
i

{
δig(yi) + (1 − δi)g(y∗

i )
}

and ξ̂I = inf{ξ : ŜI (ξ ) ≥ 0}, respec-

tively, where ŜI (ξ ) = N̂−1 ∑
i∈A π−1

i

{
δis(yi − ξ ) + (1 − δi)s(y∗

i − ξ )
}
, and y∗

i

is an imputed value of yi for unit i with δi = 0.
To find suitable imputed values, we use nearest neighbor imputation. Let

d(xi , xj ) be a distance function between xi and xj . For example, d(xi , xj ) =
||xi − xj ||, where ||x|| = (xTx)1/2. Other norms of the form ||x||D = (xTDx)1/2,
where D is a positive definite symmetric matrix D, are equivalent to the Euclidean
norm, because ||x||D = {(Qx)T(Qx)}1/2 = ||Qx|| with QTQ = D. In particular,
Mahalanobis distance is commonly used, where D = �̂−1 with �̂ the empirical
covariance matrix of x.

The classical nearest neighbor imputation can be described in the following
steps:

Step 1. For each unit i with δi = 0, find the nearest neighbor from the respon-
dents with the minimum distance between xi and xj , for j ∈ AR ≡ {j ∈
A : δi = 1}. Let i(1) be the index set of its nearest neighbor, which satisfies
d(xi(1), xi) ≤ d(xj , xi), for all j ∈ AR .

Step 2. The nearest neighbor imputation estimators of μg and ξN are computed
by

μ̂g,NNI = 1

N

∑
i∈A

1

πi

{
δig(yi) + (1 − δi)g(yi(1))

}
, (1)

and ξ̂NNI = inf{ξ : ŜNNI(ξ ) ≥ 0}, respectively, with

ŜNNI(ξ ) = 1

N̂

∑
i∈A

1

πi

{
δis(yi − ξ ) + (1 − δi)s(yi(1) − ξ )

}
. (2)
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In (1) and (2), the imputed values are real observations obtained from the current
sample.

3. MAIN RESULTS

For asymptotic inference, we use the framework of Isaki and Fuller (1982), where
the asymptotic properties of estimators are established under a fixed sequence of
populations and a corresponding sequence of random samples. Specifically, let a
sequence of nested finite populations be given by FN1 ⊂ FN2 ⊂ FN3 ⊂ · · · . Also,
let a sequence of samples of sizes {nt : t = 1, 2, 3, . . .} be constructed from the
sequence of populations with an increasing sample size n1 < n2 < n3 < · · · . For
the ease of exposition, we omit the dependence of Nt and nt on t . Denote EP ( · )
and varP ( · ) to be the expectation and the variance under the sampling design,
respectively. We impose the following regularity conditions on the sampling
design.

Assumption 2.
(1) There exist positive constants C1 and C2 such that C1 ≤ Nn−1πi ≤ C2, for
i = 1, . . . , N ; (2) the sampling fraction is negligible; i.e., nN−1 = o(1); (3)
the sequence of the Horvitz–Thompson estimators μ̂g,HT = N−1 ∑

i∈A π−1
i g(yi)

satisfies varP (μ̂g,HT) = O(n−1) and {varP (μ̂g,HT)}−1/2(μ̂g,HT − μg) | FN →
N (0, 1) in distribution, as n → ∞.

Assumption 2 is widely accepted in survey sampling (Fuller, 2009).
We introduce additional notation. Let A = AR ∪ AM , where AR and AM are the

sets of respondents and nonrespondents, respectively. Define dij = 1 if yj (1) = yi ,
i.e., unit i is used as a donor for unit j ∈ AM and dij = 0 otherwise. We write μ̂g,NNI

in (1) as

μ̂g,NNI = 1

N

⎧⎨
⎩

∑
i∈A

1

πi

δig(yi) +
∑
j∈A

1 − δj

πj

∑
i∈A

δidij g(yi)

⎫⎬
⎭

= 1

N

∑
i∈A

δi

πi

(1 + ki)g(yi), (3)

with
ki =

∑
j∈A

πi

πj

(1 − δj )dij . (4)

Under simple random sampling, ki = ∑
j∈A (1 − δj )dij is the number of times that

unit i is used as the nearest neighbor for nonrespondents.
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We first study the asymptotic properties of μ̂g,NNI. Let μg(x) ≡ E{g(y) | x} and
σ 2

g (x) ≡ var{g(y) | x}, where the expectation and variance are taken with respect
to the superpopulation model. We use the following decomposition:

n1/2(μ̂g,NNI − μg) = DN + BN , (5)

where

DN = n1/2

[
1

N

∑
i∈A

1

πi

{
μg(xi) + δi(1 + ki){g(yi) − μg(xi)

} − μg

]
, (6)

and

BN = n1/2

N

∑
i∈A

1

πi

(1 − δi){μg(xi(1)) − μg(xi)}. (7)

The difference μg(xi(1)) − μg(xi) accounts for the matching discrepancy, and
BN contributes to the asymptotic bias of the matching estimator. In general,
if x is p-dimensional, Abadie and Imbens (2006) showed that d(xi(1), xi) =
OP (n−1/p). Therefore, for nearest neighbor imputation with p ≥ 2, the asymp-
totic bias is BN = OP (n1/2−1/p) �= oP (1). Abadie and Imbens (2011) proposed a
bias-adjustment using a nonparametric estimator μ̂g(x) that renders matching esti-
mators n1/2-consistent. This approach may not be convenient for general parameter
estimation.

To address for the matching discrepancy due to a non-scalar x, we propose
an alternative method. We first summarize the covariate information into a scalar
matching variable m = m(x) and then apply nearest neighbor imputation based on
this matching variable. For simplicity of notation, we may suppress the dependence
of m on x if there is no ambiguity. Let f1(m) and f0(m) be the conditional density
of m given δ = 1 and δ = 0, respectively. We assume the superpopulation model ζ

and the matching variable m satisfy the following assumption.

Assumption 3.
(1) The matching variable m has a compact and convex support, with den-
sity bounded and bounded away from zero. Suppose that there exist constants
C1L and C1U such that C1L ≤ f1(m)/f0(m) ≤ C1U ; (2) μg(x) and μs(ξ , x) ≡
E{s(y − ξ ) | x} satisfy a Lipschitz continuous condition: there exists a constant
C2 such that |μg(xi) − μg(xj )| < C2|mi − mj | and |μs(ξ , xi) − μs(ξ , xj )| <
C2|mi − mj | for any i and j ; (3) there exists δ > 0 such that E

{|g(y)|2+δ | x}
is uniformly bounded for any x, and E

{|s(y − ξ )|2+δ | x}
is uniformly bounded

for any x and ξ in the neighborhood of ξN .
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Assumption 3 (1) a convenient regularity condition (Abadie and Imbens 2006).
Assumption 3 (2) imposes a smoothness condition for μg(x), μs(ξ , x) and m(x),
which is not restrictive (Chen and Shao 2000). One simple example is when the
outcome distribution follows a single index model as E{g(y) | x} = φg(βT

0x), where
φg is a smooth function. There exists some nonparametric estimator β̂ that is root-n
consistent for β0; see Li and Racine (2007) for a textbook discussion. In this case,
m(x) can be taken as the linear predictor β̂Tx. By a judicious choice, the scalar
matching variable should ensure that Assumption 3 holds. If the mean function
of the outcome given the covariates is feasible, we can choose the matching vari-
able to be the conditional mean function. We note that in this case the proposed
nearest neighbor imputation reduces to the predictive mean matching imputation.
However, our method is more general than predictive mean matching imputation,
because the latter requires the mean function to be correctly specified. Assumption
3 (3) is a moment condition for establishing the central limit theorem.

We derive the asymptotic distribution of μ̂g,NNI in the following theorem, with
the proof deferred to the Appendices.

Theorem 1. Under Assumptions 1–3, n1/2
(
μ̂g,NNI − μg

) → N (0, Vg) in dis-
tribution, as n → ∞, where

Vg = V μ
g + V e

g (8)

with

V μ
g = lim

n→∞
n

N2
E

[
varP

{∑
i∈A

1

πi

μg(xi)

}]
,

V e
g = lim

n→∞
n

N2
E

[
N∑

i=1

{
Ii

πi

δi(1 + ki) − 1

}2

σ 2
g (xi)

]
,

and ki is defined in (4).

We now establish a similar result for ξ̂NNI, with the proof deferred to the
Appendices.

Theorem 2. Under Assumptions 1–3, suppose the population parameter ξN

and the population estimating function SN ( · ) satisfy regularity conditions in
Assumptions B.1 and B.2. We obtain the following asymptotic linearization
representation of ξ̂NNI:

n1/2(ξ̂NNI − ξN ) = −n1/2S ′(ξN )−1{ŜNNI(ξN ) − SN (ξN )} + oP (1), (9)



Nearest Neighbor Imputation for General Parameter Estimation 217

where S ′(ξN ) = dS(ξN )/dξ . It follows that n1/2(ξ̂NNI − ξN ) → N (0, Vξ ) in
distribution, as n → ∞, where

Vξ = S ′(ξN )−2var{ŜNNI(ξN )}, (10)

var{ŜNNI(ξN )} = lim
n→∞

n

N2
E

(
varP

[∑
i∈A

E{s(yi − ξN ) | xi}
πi

])

+ lim
n→∞

n

N2

N∑
i=1

E

({
Ii

πi

δi(1 + ki) − 1

}2

var [s(yi − ξN ) | xi]

)
, (11)

and ki is defined in (4).

For illustration, we use quantile estimation as an example.

Example 1: (Quantile estimation) The estimating function for the αth quantile is
s(yi − ξ ) = I (yi − ξ ≤ 0) − α, and the population estimating equation Sα,N (ξ ) =
FN (ξ ) − α, where FN (ξ ) = N−1 ∑N

i=1 I (yi ≤ ξ ). The nearest neighbor imputation
estimator ξ̂α,NNI is defined as

ξ̂α,NNI = inf{ξ : Ŝα,NNI(ξ ) ≥ 0},

where Ŝα,NNI(ξ ) = F̂NNI(ξ ) − α, F̂NNI(ξ ) = N̂−1 ∑
i∈A π−1

i δi(1 + ki)I (yi ≤ ξ ),
N̂ = ∑

i∈A π−1
i , and ki is defined in (4). Let F (ξ ) = P(y ≤ ξ ) be the cumulative

distribution function of y. Then, F̂NNI(ξ ) is a Hajek estimator for F (ξ ), which is
asymptotically equivalent to the one using N instead of N̂ . Even with a known N ,
it is necessary to use N̂ because F̂NNI(ξ ) for ξ = ∞ should be 1. The limiting func-
tion of Sα,N (ξ ) is Sα(ξ ) = F (ξ ) − α. The asymptotic linearization representation
of ξ̂α,NNI is

ξ̂α,NNI − ξN = − F̂NNI(ξN ) − FN (ξN )

f (ξN )
+ oP (n−1/2), (12)

where f (ξ ) = dF (ξ )/dξ . Expression (12) is called the Bahadur-type representa-
tion for ξ̂α,NNI (Francisco and Fuller, 1991). The asymptotic variance of ξ̂α,NNI is
then given by (10) with S ′(ξN ) and ŜNNI(ξN ) replaced by f (ξN ) and F̂NNI (ξN ),
respectively.
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4. REPLICATION VARIANCE ESTIMATION

Theorems 1 and 2 suggest that variance estimation for the nearest neighbor impu-
tation estimators can be obtained using the sample analogues of the asymptotic
variance formulas. This approach involves estimation of the variance function of
the outcome given the covariates. Alternatively, we consider replication variance
estimation (Rust and Rao, 1996; Wolter, 2007).

Let μ̂g be the Horvitz–Thompson estimator of μg. The replication variance
estimator of μ̂g takes the form of

V̂rep(μ̂g) =
L∑

k=1

ck(μ̂(k)
g − μ̂g)2, (13)

where L is the number of replicates, ck is the kth replication factor and μ̂(k)
g is

the kth replicate of μ̂g . For μ̂g = ∑
i∈A ωig(yi), we can write the replicate of μ̂g

as μ̂(k)
g = ∑

i∈A ω
(k)
i g(yi), where ω

(k)
i is the replication weight that account for the

complex sampling design. The replicates are constructed such that EP {V̂rep(μ̂g)} =
varP (μ̂g){1 + o(1)}.

Example 2: In the delete-1 jackknife method, we have L = n, ck = (n − 1)n−1,

ω
(k)
i =

{
(n − 1)−1 if i �= k,

0 if i = k,

under simple random sampling.

We now propose a new replication variance estimation for μ̂g,NNI. Let
ψi = μg(xi) + δi(1 + ki){g(yi) − μg(xi)} and μψ = N−1 ∑N

i=1 ψi . Then, the
Horvitz–Thompson estimator for μψ is ψ̂HT = ∑

i∈A ωiψi , where ωi = N−1π−1
i .

By Theorem 1, we have μ̂g,NNI − ψ̂HT = oP (n−1/2). Moreover, we have μψ −
μg = OP (N−1/2). Therefore,

μ̂g,NNI − μg = (μ̂g,NNI − ψ̂HT) + (ψ̂HT − μψ ) + (μψ − μg),

= oP (n−1/2) + (ψ̂HT − μψ ) + OP (N−1/2).

With negligible sampling fractions, i.e., nN−1 = o(1), μ̂g,NNI − μg = ψ̂HT − μψ +
oP (n−1/2). Then, it is sufficient to estimate var(ψ̂HT − μψ ) = E{varP (ψ̂HT − μψ )},
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which is essentially the sampling variance of ψ̂HT. This suggests that we can treat
{ψi : i ∈ A} as pseudo observations in applying the replication variance estimator.
Otsu and Rai (2016) used a similar idea to develop a wild bootstrap technique for the
matching estimators for the average treatment effects. To be specific, we construct
replicates of ψ̂HT as follows: ψ̂

(k)
HT = ∑

i∈A ω
(k)
i ψi . The replication variance esti-

mator of ψ̂HT is obtained by applying V̂rep( · ) in (13) for the above replicates ψ̂
(k)
HT.

It follows that E{V̂rep(ψ̂HT)} = var(ψ̂HT − μψ ){1 + o(1)} = var(μ̂g,NNI − μg){1 +
o(1)}. Because the pseudo observations ψ ′

i s involve unknown μg(x), we use a non-
parametric estimator μ̂g(x). Concretely, we adopt sieves estimators (Geman and
Hwang, 1982; Chen, 2007) which includes power series estimators as examples;
see the Appendices for details.

In summary, the new replication variance estimation for μ̂g,NNI proceeds as
follows:

Step 1. Obtain a sieves estimator for μg(x), denoted by μ̂g(x).
Step 2. Construct replicates of μ̂g,NNI as

μ̂
(k)
g,NNI =

∑
i∈A

ω
(k)
i [μ̂g(xi) + δi(1 + ki){g(yi) − μ̂g(xi)}], (14)

where ω
(k)
i is the kth replication weight for unit i.

Step 3. Apply V̂rep( · ) in (13) for the above replicates to obtain the replication
variance estimator of μ̂g,NNI.

We now consider a replication variance estimator for ξ̂NNI. Following the previous

section, we obtain the asymptotic variance of ξ̂NNI using var
{
ŜNNI(ξ )

}
and S ′(ξ ).

First, to estimate var
{
ŜNNI(ξ )

}
, we can use the similar replication variance esti-

mation earlier in this section by considering I (y < ξ ) and μs(ξ , x) instead of y and
μg(x). Second, to estimate S ′(ξ ), we follow the kernel-based derivative estimation
of Deville (1999):

Ŝ ′(ξ ) = 1

Nh

∑
i∈A

1

πi

∫
s(yi − x)K ′

(
ξ − x

h

)
dx (15)

where K( · ) is a kernel function, K ′(x) = dK(x)/dx, and h is the bandwidth.
UnderAssumption C.1 for the kernel function and bandwidth and previously stated
regularity conditions on the superpopulations and sampling designs, the kernel-
based estimator (15) is consistent for S ′(ξ ).
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In summary, the new replication variance estimation for ξ̂NNI proceeds as
follows:

Step 1. Obtain a sieves logit estimator for μs(ξ̂NNI, x), denoted by μ̂s(ξ̂NNI, x);
see the Appendices for details.

Step 2. Construct replicates of ŜNNI(ξ̂NNI) as

Ŝ
(k)
NNI(ξ̂NNI) =

∑
i∈A

ω
(k)
i [μ̂s(ξ̂NNI, xi) + δi(1 + ki){s(yi − ξ̂NNI) − μ̂s(ξ̂NNI, xi)}].

(16)
Step 3. Apply V̂rep( · ) in (13) for the above replicates to obtain the variance

estimator of ŜNNI(ξ̂NNI), denoted as V̂rep{ŜNNI(ξ̂NNI)}.
Step 4. Obtain the kernel-based derivative estimator Ŝ ′(ξ̂NNI), where Ŝ ′(ξ ) is

defined in (15).
Step 5. Calculate the variance estimator of ξ̂NNI as Ŝ ′(ξ̂NNI)−2V̂rep{ŜNNI(ξ̂NNI)}.
For illustration, we continue with Example 3.

Example 3: (Quantile estimation (Cont.)) Obtain a sieves logit estimator for
F (ξ ) = P (y ≤ ξ ) and a kernel-based estimator for f (ξ ), denoted as F̂ (ξ ) and f̂ (ξ ),
respectively. Construct replicates of F̂NNI(ξ̂α,NNI) as

F̂
(k)
NNI(ξ̂α,NNI) =

∑
i∈A

ω
(k)
i [F̂ (ξ̂α,NNI) + δi(1 + ki){I (yi ≤ ξ̂α,NNI) − F̂ (ξ̂α,NNI)}].

Apply V̂rep( · ) in (13) for the above replicates to obtain the replication variance
estimator of F̂NNI(ξ̂α,NNI), denoted as V̂rep{F̂NNI(ξ̂α,NNI)}. Calculate the variance
estimator of ξ̂α,NNI as f̂ (ξ̂α,NNI)−2V̂rep{F̂NNI(ξ̂α,NNI)}.

We present the consistency results for the proposed replication variance
estimators, with the proof presented in the Appendices.

Theorem 3. Suppose assumptions in Theorem 2 and Assumptions D.1 and D.2
for the sieves estimators hold. Suppose further that V̂rep(μ̂g) in (13) is consistent
for varp(μ̂g). Then, the replication variance estimator for μ̂g,NNI is consistent,
i.e., nV̂rep{μ̂g,NNI}/Vg → 1 in probability, as n → ∞, where the replicates of
μ̂g,NNI are given in (14), and Vg is given in (8).

Given that the kernel-based estimator Ŝ ′(ξ ) in (15) is consistent for S ′(ξ ), the
replication variance estimator for ξ̂NNI is consistent, i.e., nV̂rep{ξ̂NNI}/Vξ → 1
in probability, as n → ∞, where the replicates of ŜNNI(ξ̂NNI) are given in (16),
and Vξ is given in (11).
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5. SIMULATION STUDY

In this section, we investigate the finite-sample performance of the proposed repli-
cation method for variance estimation and constructing confidence intervals and
comparing them to conventional competitors.

For generating finite populations of size N = 50, 000: first, let x1i , x2i and x3i be
generated independently from Uniform[0, 1], and x4i , x5i and x6i and ei be gener-
ated independently from N (0, 1); then, let yi be generated under six mechanisms:
(P1) yi = −1 + x1i + x2i + ei , (P2) yi = −1.5 + x1i + x2i + x3i + x4i + ei , (P3)
yi = −1.5 + x1i + · · · + x6i + ei , (P4) yi = −1 + x1i + x2i + x2

1i + x2
2i − 2/3 +

ei , (P5) yi = −1.5 + x1i + x2i + x3i + x4i + x2
1i + x2

2i − 2/3 + ei and (P6) yi =
−1.5 + x1i + · · · + x6i + x2

1i + x2
2i − 2/3 + ei . The covariates are fully observed,

but yi is not. The response indicator of yi , δi , is generated from Bernoulli(pi) with
logit{p(xi)} = xT

i 1, where xi includes all corresponding covariates under each data-
generating mechanism and 1 is a vector of 1 with a compatible length. This results in
a 75% response rate, on average. The parameters of interest are μ = N−1 ∑N

i=1 yi ,
η = N−1 ∑N

i=1 I (yi < c), where c is the 80th percentile such that the true value of η

is 0.8, and the median ξ . To generate samples, we consider two sampling designs:
(S1) simple random sampling with n = 800 and (S2) probability proportional to
size sampling. In (S2), for each unit in the population, we generate a size variable si

as log (|yi + νi | + 4), where νi ∼ N (0, 1) and specify the selection probability as
πi = 400si/

∑N
i=1 si . Therefore, (S2) is endogenous (also known as informative),

where units with larger yi values have larger probabilities to be selected into the
sample.

For nearest neighbor imputation, the matching scalar variable m is set to be
the conditional mean function of y given x, m(x), approximated by power series
estimation. For investigating the effect of the matching variable, we consider
the power series including all first and second order terms under (P1)–(P3) and
only first order terms under (P4)–(P6), so that m(x) is correctly specified for the
mean function under (P1)–(P3) but misspecified under (P4)–(P6). We construct
95% confidence intervals using (μ̂I − z0.975V̂

1/2
I , μ̂I + z0.975V̂

1/2
I ), where μ̂I is

the point estimate and V̂I is the variance estimate obtained by conventional and
proposed jackknife variance estimation. In the conventional jackknife variance
estimation, the whole procedure of nearest neighbor imputation is repeated on
the replicated data sets for obtaining the replicates for the estimators. In the pro-
posed jackknife variance estimation, the kth replicates of μ̂NNI, η̂NNI and ξ̂NNI are
given by

μ̂
(k)
NNI =

n∑
i=1

ω
(k)
i [μ̂(xi) + δi(1 + ki){yi − μ̂(xi)}],
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η̂
(k)
NNI =

n∑
i=1

ω
(k)
i [μ̂η(xi) + δi(1 + ki){I (yi < c) − μ̂η(xi)}],

ξ̂
(k)
NNI(ξ̂NNI)

= f̂ (ξ̂NNI)
−2

n∑
i=1

ω
(k)
i [μ̂s(ξ̂NNI, xi) + δi(1 + ki){I (yi ≤ ξ̂NNI) − μ̂s(ξ̂NNI, xi)}],

where μ̂η(x), μ̂s(ξ , x) and f̂ (x) are nonparametric estimators of μη(x) = P (y <

c | x), μs(ξ , x) = P (y < ξ | x) and f (ξ ), respectively. These are obtained by kernel
regression using a Gaussian kernel with bandwidth h = 1.5n−1/5. We note that ki

is the number of times that yi is selected to impute the missing values of y based
on the original data and therefore is kept the same across replicated data sets. The
variance estimators are compared in terms of empirical coverage rate and relative
bias, {E(V̂I ) − V }/V , where V is the true variance estimated from Monte Carlo
samples.

Tables 1 and 2 present the simulation results under simple random sampling
and probability proportional to size sampling, respectively, based on 2, 000 Monte
Carlo samples. Under both sampling designs, the nearest neighbor imputation
estimator has small biases for all parameters μ, η and ξ , under (P1)–(P3) with m(x)
correctly specified for the mean function and (P4)–(P6) with m(x) misspecified for
the mean function. For variance estimation, as expected, the conventional jackknife
variance estimator is severely biased, indicating that the lack of smoothness of
the matching estimator needs to be taken into account in variance estimation. In
contrast, the proposed jackknife variance estimators provide satisfactory results
under both sampling designs and for all parameters. The relative biases are small
and the empirical coverage rates are close to the nominal coverage of 95% of
confidence. Overall, the simulation results suggest that the proposed replication
variance estimation works reasonably well under the settings we considered.

6. CONCLUDING REMARKS

We focus on inference of general population parameters when the outcome is
missing at random in survey data using nearest neighbor imputation, a hot-deck
type of imputation. The superiority of the hot deck imputation methods over the
mean, ratio and regression imputation methods is that the hot deck imputation
methods provide not only asymptotically valid mean estimators but also valid dis-
tribution and quantile estimators. This article establishes asymptotic properties of
the nearest neighbor imputation estimators based on a scalar variable summarizing
all covariate information. Because of the non-smooth nature of nearest neighbor
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Table 1. Simulation Results for The Population Mean μ, the Population
Proportion η = 0.8 and the Population Median ξ Under Simple Random

Sampling: Bias (×102) and Standard Error (SE × 102) of the Point Estimator,
Relative Bias of Jackknife Variance Estimates (RB × 102) and Coverage Rate

(CR %) of 95% Confidence Intervals.

Simple Random Sampling

Prop JK Conv JK

m(x) Bias SE RB CR RB CR

μ (P1) c 0.00 4.87 0.1 94.9 >1,000 100
(P2) c 0.12 6.08 0.5 95.3 >1,000 100
(P3) c 1.09 8.42 2.2 95.3 >1,000 100
(P4) m −0.10 5.41 3.6 96.0 >1,000 100
(P5) m 0.20 6.59 0.1 95.4 >1,000 100
(P6) m 1.17 8.81 0.3 94.8 >1,000 100

η (P1) c 0.00 1.77 0.4 95.0 >1,000 100
(P2) c 0.00 1.53 −0.1 94.9 >1,000 100
(P3) c −0.01 1.50 −5.1 94.7 >1,000 100
(P4) m 0.03 1.63 6.1 95.4 >1,000 100
(P5) m 0.05 1.48 4.3 95.5 >1,000 100
(P6) m −0.01 1.47 −0.7 94.9 >1,000 100

ξ (P1) c −0.25 6.15 2.7 94.8 >1,000 100
(P2) c −0.40 7.60 2.5 94.7 >1,000 100
(P3) c −0.37 10.19 4.0 94.6 >1,000 100
(P4) m −0.25 7.09 3.2 94.6 >1,000 100
(P5) m −0.35 8.17 7.2 96.0 >1,000 100
(P6) m −0.54 10.78 1.8 94.1 >1,000 100

Prop JK: Proposed jackknife variance estimation; Conv JK: conventional jackknife variance estimation.
c: correctly specified and m: misspecified.

imputation, we propose a novel replication method for variance estimation based
on linearization of the estimator, which is asymptotically valid, while the con-
ventional replication methods are not. Simulation results show that, under various
scenarios, the proposed method outperforms the conventional counterparts. Cou-
pled with the proposed replication procedure, the nearest neighbor imputation
inference is straightforward to implement requiring only software routines for
existing estimators.

In the empirical economic literature, as an important example in evaluation
research, causal inference of treatment effects can be viewed from a missing data
perspective (e.g., Ding and Li, 2018). Propensity score matching has been recently
proposed for inferring causal effects of treatments in the context of survey data;
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Table 2. Simulation Results for the Population Mean μ, the Population
Proportion η = 0.8 and the Population Median ξ Under Probability Proportional

to Size Sampling: Bias (×102) and Standard Error (SE × 102) of the Point
Estimator, Relative Bias of Jackknife Variance estimates (RB × 102) and

Coverage Rate (CR %) of 95% Confidence Intervals.

Probability Proportional to Size

Prop JK Conv JK

m(x) Bias SE RB CR RB CR

μ (P1) c 0.07 4.71 1.8 95.4 >1,000 100
(P2) c 0.20 5.71 6.1 95.9 >1,000 100
(P3) c 0.73 7.71 6.0 96.1 >1,000 100
(P4) m −0.06 5.29 2.4 95.5 >1,000 100
(P5) m 0.22 6.08 7.0 95.9 >1,000 100
(P6) m 0.99 8.23 5.4 95.1 >1,000 100

η (P1) c −0.01 1.89 −6.0 94.5 >1,000 100
(P2) c 0.02 1.63 −1.9 95.3 >1,000 100
(P3) c 0.08 1.66 −5.5 94.4 >1,000 100
(P4) m 0.02 1.79 −4.0 95.2 >1,000 100
(P5) m 0.03 1.60 1.8 95.2 >1,000 100
(P6) m 0.08 1.67 −8.7 93.7 >1,000 100

ξ (P1) c −0.31 6.34 6.2 94.8 >1,000 100
(P2) c −0.06 8.30 0.8 94.5 >1,000 100
(P3) c −0.42 11.36 5.4 94.6 >1,000 100
(P4) m −0.32 7.57 4.1 94.0 >1,000 100
(P5) m −0.34 8.91 7.0 94.8 >1,000 100
(P6) m −0.49 12.22 2.2 94.4 >1,000 100

Prop JK: Proposed jackknife variance estimation; Conv JK: conventional jackknife variance estimation;
c: correctly specified and m: misspecified.

however, their asymptotic properties are underdeveloped (Lenis et al., 2017). The
proposed methodology here can be easily generalized to investigate the asymptotic
properties of propensity score matching estimators with survey weights.

Our methodology and theoretical results for nearest neighbor imputation rep-
resent an important building block for future developments. Such developments
can follow three lines. First, extending the current theory to non-negligible sam-
pling fractions is possible; see, e.g., Mashreghi et al. (2014). For non-negligible
sampling fraction, note that

var
(
μ̂g,NNI − μg

) = var
(
ψ̂HT − μψ

)
+ var

(
μψ − μg

) + o(n−1)
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and var
(
μψ − μg

) = O(N−1). Thus, we can add a model-based estimator of

var
(
μψ − μg

)
in addition to the replication variance estimator for var(ψ̂HT − μψ ).

Second, instead of choosing the nearest neighbor as a donor for missing items, we
can consider fractional imputation (Kim and Fuller, 2004; Yang et al., 2013; Kim
and Yang, 2014; Yang and Kim, 2016) using K (K > 1) nearest neighbors. Third,
writing yi = xiRi and using the fact that xi is always observed, we can apply near-
est neighbor imputation only to impute Ri , which can be called nearest neighbor
ratio imputation.
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APPENDICES

The Appendices include proofs of Theorems 1–3 and additional technical details.

APPENDIX A: PROOF FOR THEOREM 1

With a scalar matching variable m, we have

BN = n1/2

N

∑
i∈A

1

πi

(1 − δi){μg(xi(1)) − μg(xi)}

≤ n1/2

N

∑
i∈A

1

πi

(1 − δi) | mi(1) − mi |= oP (1),

where ≤ in the second line followed by Assumption 3 (2). Based on the
decomposition in (5), we can write

n1/2(μ̂g,NNI − μg) = DN + oP (1), (A.1)

where DN is defined in (6). Then, to study the asymptotic properties of
n1/2(μ̂g,NNI − μg), we only need to study the asymptotic properties of DN . For sim-
plicity, we introduce the following notation: μg,i ≡ μg(xi) and ei ≡ g(yi) − μg,i .
We express

DN = n1/2

N

[∑
i∈A

1

πi

{
μg,i + δi(1 + ki)ei

} −
N∑

i=1

g(yi)

]

= n1/2

N

N∑
i=1

(
Ii

πi

− 1

)
μg,i + n1/2

N

N∑
i=1

{
Ii

πi

δi(1 + ki) − 1

}
ei , (A.2)

and we can verify that the covariance of the two terms in (A.2) is zero. Thus,

var(DN ) = var

{
n1/2

N

N∑
i=1

(
Ii

πi

− 1

)
μg,i

}
+ var

[
n1/2

N

N∑
i=1

{
Ii

πi

δi(1 + ki) − 1

}
ei

]
.

As n → ∞, the first term becomes

V μ
g = lim

n→∞
n

N2
E

{
varP

(∑
i∈A

μg,i

πi

)}
,
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and the second term becomes

V e
g = plim

n

N2

N∑
i=1

{
Ii

πi

δi(1 + ki) − 1

}2

var(ei | xi).

The remaining is to show that V e
g = O(1). To do this, the key is to show that the

moments of ki are bounded. Under Assumption 2, it is easy to verify that

ωk̃i ≤ ki ≤ ω̄k̃i , (A.3)

for some constants ω and ω̄, where k̃i = ∑
j∈A (1 − δj )dij is the number of unit

i used as a match for the nonrespondents. Under Assumption 3, k̃i = OP (1) and
E(k̃i) and E(k̃2

i ) are uniformly bounded over n (Abadie and Imbens 2006, Lemma
3); therefore, together with (A.3), we have ki = OP (1) and E(ki) and E(k2

i ) are
uniformly bounded over n. Therefore, a simple algebra yields V e

g = O(1).
Combining all results, the asymptotic variance of n1/2(μ̂g,NNI − μg) is V

μ
g +

V e
g . By the central limit theorem, the result in Theorem 1 follows.

APPENDIX B: PROOF FOR THEOREM 2

Assumption B.1.
The following conditions hold for the population parameter ξN and the
population estimating function SN ( · ):

1. The population parameter ξN lies in a closed interval Iξ ;
2. the function s( · ) is bounded;
3. the population estimating function SN (ξ ) converges to S(ξ ) uniformly on Iξ

as N → ∞, and the equation S(ξ ) = 0 has a unique root in the interior of
Iξ ;

4. the limiting function S(ξ ) is strictly increasing and absolutely continuous
with finite first derivative in Iξ , and the derivative S ′(ξ ) is bounded away
from 0 for ξ in Iξ ; and

5. the population quantities

sup
ξ∈Is

Nα|SN (ξN + N−αξ ) − SN (ξN ) − S(ξN + N−αξ ) − S(ξN )| → 0,

and

sup
ξ∈Is

N−1
N∑

i=1

|s(yi − ξN − N−αξ ) − s(yi − ξN )| = OP (N−α),

where Is is a large enough compact set and α ∈ (1/4, 1/2].
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Assumption B.1 (5) holds with probability one under suitable assumptions on
the probability mechanism generating the yi’s and on the function s( · ), and there-
fore it is justifiable. Under Assumption B.1, by the standard arguments from the
theory on M-estimators (Serfling, 1980), ξ̂NNI is consistent for ξN . We further make
the following assumption.

Assumption B.2.
The nearest neighbor imputation estimator ξ̂NNI is root-n consistent for ξN .

Now, we give proof for Theorem 2. Under Assumptions B.1 and B.2, we can
write

ŜNNI(ξ̂NNI) − SN (ξN ) = {ŜNNI(ξN ) − SN (ξN )} + S ′(ξN )(ξ̂NNI − ξN ) + oP (n−1/2).
(B.1)

By Assumption B.1 (4), S(ξ ) is smooth, and therefore SN (ξN ) = OP (N−1),
ŜNNI(ξ̂NNI) = OP (n−1), and the left hand side of (B.1) is oP (n−1/2). Therefore,
we can obtain a linearization for ξ̂NNI as in (9).

Based on the linearization (9), the asymptotic variance is

Vξ = S ′(ξN )−2var{ŜNNI(ξN )}.

Following a similar derivation in the proof for Theorem 1, it is easy to show that

var{ŜN (ξ )} = lim
n→∞

n

N2
E

(
varP

[∑
i∈A

E{s(yi − ξ ) | xi}
πi

])

+ lim
n→∞

n

N2

N∑
i=1

{
Ii

πi

δi(1 + ki) − 1

}2

var [s(yi − ξ ) | xi] .

APPENDIX C: ASSUMPTIONS FOR KERNEL FUNCTIONS

Assumption C.1.
The following conditions hold for kernel function K( · ) and bandwidth h:

1. the kernel function K( · ) is absolutely continuous with nonzero finite
derivative K ′( · ) and

∫
K(x)dx = 1;

2. the bandwidth h → 0 and nh → ∞ as n → ∞;
3. there exists a constant c, such that |h−1K ′(x1/h) − h−1K ′(x2/h)| ≤ c|x1 −

x2| for any x1, x2 and an arbitrarily small h.
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Assumption C.1 states conditions on the smoothness and tail behavior of the
kernel functions. Popular kernel functions, including Epanechnikov, Gaussian and
triangle kernels, satisfy the required conditions.

APPENDIX D: SIEVES ESTIMATION

The method of sieves (Geman and Hwang, 1982) offers a powerful tool for estima-
tion for nonparametric or semiparametric models. See Chen (2007) for a textbook
discussion. In particular, the sieves can be constructed using linear spans of power
series. For illustration, we describe the power series estimator for μg(x) (Newey,
1997) and the series logit estimator for sξ (x) = I (y − ξ ≤ 0) − α (Hirano et al.,
2003; Ichimura and Linton, 2005).

Power Series Estimator for μg(x)

We consider continuous g(y) and power series estimation for μg(x) with K terms
in the series, where K increases with n. Let p be the dimension of X. Consider a
sequence of power functions

pK (x) = (p1(x), . . . , pK (x))T , (D.1)

where pj (x) = xλj ≡ x
λj1
1 × · · · × x

λjp
p with λj = (λj1, . . . , λjp), and |λj | =∑p

k=1 λjk is nondecreasing in j .
For simplicity of the presentation, let the first r units be the respondents,

i.e., δi = 1 for i = 1, . . . , r . From the observations {(xi , yi) : i = 1, . . . , r}, the
power series estimator of μg(x) can be calculated as the predicted value
obtained from a weighted regression of g(yi) on pK (xi). To be precise, let P =(
pK (x1), . . . , pK (xr )

)T
and Gr = (g(y1), . . . , g(yr ))T. A power series estimator of

μg(x) takes the form

μ̂g(x) = pK (x)T(P TWP )−P TWGr , (D.2)

where W is a diagonal matrix with the ith diagonal element π−1
i , and (P TWP )−

denotes a generalized inverse of a matrix P TWP .
Suppose the following assumption holds for establishing the fast convergence

rate of μ̂g(x) in (D.2).

Assumption D.1.

1. The support of x is a Cartesian product of compact intervals;
2. μg(x) is s-times continuously differentiable at x with s/p > 1;
3. the number of series K = O(nν) with 0 < ν < 1/3.
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Assumption D.1 (2) requires μg(x) to be sufficiently smooth, depending on
the dimension of x and the number of derivatives of μg(x). Assumption D.1 (3)
requires the number of series increases at a certain rate.

Lemma D.1. Under Assumption D.1, the power series estimator μ̂g(x) in (D.2)

satisfies that supx |μ̂g(x) − μg(x)| = OP

(√
K3/n + K1−s/p

)
= oP (1).

The proof of Lemma D.1 can be found in Newey (1997).

Series Logit Estimator for μs(ξ , x) = E{I (y − ξ ≤ 0) | x} − α

Denote pξ (x) = E{I (y ≤ ξ ) | x} and logit(a) = {1 + exp ( − a)}−1. The series logit
estimator for pξ (x) can be obtained as

p̂ξ (x) = logit{pK (x)Tπ̂K}, (D.3)

where pK (x) is defined in (D.1), and

π̂K = arg max
π

∑
i∈A

π−1
i

(
I (yi − ξ ≤ 0)logit{pK (xi)

Tπ}+

I (yi − ξ > 0)[1 − logit{pK (xi)
Tπ}]

)
.

Suppose that the following assumption holds for establishing the fast convergence
rate of the series logit estimator p̂ξ (x) in (D.3).

Assumption D.2.

1. The support of x is a Cartesian product of compact intervals;
2. pξ (x) is s times continuously differentiable with s/p ≥ 3;
3. pξ (x) is bounded away from zero and one on the support of x;
4. the density of x is bounded away from zero on the support of x;
5. the number of series K = O(nν) with ν < 1.

Lemma D.2. Under Assumption D.2, the series logit estimator p̂ξ (x) in (D.3)
satisfies that supx |p̂ξ (x) − pξ (x)| = OP

(√
K/n + K1−(s/2p)

)

The proof of Lemma D.2 can be found in Hirano et al. (2003).
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Remark 4. When the dimension of x, p, becomes larger, Assumption D.1 (2)
and Assumption D.2 (2) typically require more stringent smoothness on μg(x)
and pξ (x) in x. Alternatively, we can estimate μg(x) and pξ (x) by applying the
power series constructed based on mi = m(xi), i.e., using the 1-dimensional
variable mi .

APPENDIX E: PROOF FOR THEOREM 3

The replication method implicitly induces replication random variables ui and
weights ω∗

i such that E∗(ω∗
i ui) = N−1π−1

i and E∗{(ω∗
i ui)2} = N−2(1 − πi)π

−2
i ,

for i = 1, . . . , N , where E∗( · ) denotes the expectation for resampling given the
observed data. For example, in delete-1 jackknife under simple random sampling
with nN−1 = o(1), we have πi = nN−1, L = n, ck = (n − 1)n−1 and ω

(k)
i = (n −

1)−1 if i �= k and ω
(k)
k = 0. The induced random variables ui follows a two-point

mass distribution as

ui =
{

1, with probability (n − 1)n−1,

0, with probability n−1,

and weights ω∗
i = (n − 1)−1. It is straightforward to verify that E∗(ω∗

i ui) = n−1 =
N−1π−1

i and E∗{(ω∗
i ui)2} = (n − 1)−1n−1 ≈ N−2(1 − πi)π

−2
i .

In what follows, we use P ∗( · ) to denote the probability mass or density func-
tion induced from resampling given the observed data and use the supscript ∗ to
indicate the random variables resulting from one replication sampling. Then, the
kth replication of μ̂g,NNI, μ̂

(k)
g,NNI, can be viewed as one realization of

μ̂∗
g,NNI =

∑
i∈A

ω∗
i [μ̂g(xi) + δi(1 + ki){g(yi) − μ̂g(xi)}]ui

=
∑
i∈A

ω∗
i [μg(xi) + δi(1 + ki){g(yi) − μg(xi)}]ui

+
∑
i∈A

ω∗
i {(1 − δi) + δiki}{μ̂g(xi) − μg(xi)}ui

=
∑
i∈A

ω∗
i ψiui + R∗

N , (E.1)

where R∗
N = ∑

i∈A ω∗
i {(1 − δi) + δiki}{μ̂g(xi) − μg(xi)}ui .
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We now show E∗
{(

n1/2R∗
N

)2
}

→ 0 in probability. We write

E∗
{(

n1/2R∗
N

)2
}

= nNE
{
(ω∗

1u1)2
} 1

N

∑
i∈A

{(1 − δi) + δiki}2{μ̂g(xi) − μg(xi)}2

+2nN (N − 1)E∗ (
ω∗

1ω
∗
2u1u2

) 1

N (N − 1)

∑
i �=j∈A

{(1 − δi) + δiki}

×{(1 − δj ) + δj kj }{μ̂g(xi) − μg(xi)}{μ̂g(xj ) − μg(xj )}.

Because of Assumption 2 (1), and the facts that nNE
{
(ω∗

1u1)2
} = O(1), nN (N −

1)E∗ (
ω∗

1ω
∗
2u1u2

) = O(1), the uniform convergence of μ̂g(x) to μg(x) in Lemma
D.1, and E(kl

i ) is uniformly bounded over n and for any l > 0, we obtain

E∗
{(

n1/2R∗
N

)2
}

→ 0 in probability. Then, by the Markov inequality, we obtain

for any ε, P ∗ (
n1/2|R∗

N | > ε
) → 0 in probability.

It then becomes straightforward to verify that V̂rep( · ) applied to μ̂
(k)
g,NNI is

consistent for var(ψ̄n) and therefore for var(μ̂g,NNI).
The proof for the second part of Theorem 3 is similar and therefore omitted.
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