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Abstract
Predictive mean matching imputation is popular for
handling item nonresponse in survey sampling. In this
article, we study the asymptotic properties of the pre-
dictive mean matching estimator for finite-population
inference using a superpopulation model framework.
We also clarify conditions for its robustness. For vari-
ance estimation, the conventional bootstrap inference is
invalid for matching estimators with a fixed number of
matches due to the nonsmoothness nature of the match-
ing estimator. We propose a new replication variance
estimator, which is asymptotically valid. The key strat-
egy is to construct replicates directly based on the linear
terms of the martingale representation for the match-
ing estimator, instead of individual records of variables.
Simulation studies confirm that the proposed method
provides valid inference.

K E Y W O R D S
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1 INTRODUCTION

Predictive mean matching imputation (Heitjan & Little, 1991; Little, 1988; Rubin, 1986) is used
widely to compensate for item nonresponse in survey sampling. First, it is a hot deck method
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(Ford, 1983), because the donors for a missing value are actually observed values from respon-
dents. Using real values instead of artificial values for imputation is often preferred in government
statistical agencies. Second, it is a special version of nearest neighbor imputation. In nearest
neighbor imputation, the vector of the auxiliary variables is directly used in determining the near-
est neighbor for each nonrespondent, whereas in predictive mean matching imputation, a scalar
predictive mean function is used in determining the nearest neighbor. Schenker and Taylor (1996)
and Horton and Lipsitz (2001) advocated predictive mean matching imputation for its robustness
against model misspecification.

Although these imputation methods have a long history of application, there are relatively few
articles that investigate their theoretical properties. Chen and Shao (2000, 2001) have developed
a nice set of asymptotic theories for the nearest neighbor imputation estimator. Beaumont and
Bocci (2009) developed a model-based variance estimator for the nearest neighbor imputation
estimator. Kim, Fuller, and Bell (2011) studied nearest neighbor imputation with an application
to the U.S. census long form data. Yang and Kim (2019) provided theoretical investigation of
the nearest neighbor imputation estimator for general population parameters, including popula-
tion means, proportions, and quantiles. Vink, Frank, Pannekoek, and Buuren (2014) and Morris,
White, and Royston (2014) adopted predictive mean matching as a tool for multiple imputations.
In econometrics, Abadie and Imbens (2006, 2008, 2011, 2016) studied the matching estimator for
causal effects from observational studies. To the best of our knowledge, a theoretical investiga-
tion of predictive mean matching for finite-population inference in survey sampling seems to be
lacking.

Predictive mean matching is implemented in two steps. First, the predictive mean function is
specified and estimated from the respondents. Second, for each nonrespondent, the nearest neigh-
bor is identified among the respondents based on the estimated predictive mean function. Then,
the observed outcome value of the nearest neighbor is used for imputation. Because the predictive
mean function is estimated prior to matching, it is necessary to account for the uncertainty due
to parameter estimation. The typical Taylor expansion technique is not applicable, because of the
nonsmooth nature of matching. Our proposal is based on the technique developed by Andreou
and Werker (2012), which offers a general approach for deriving the limiting distribution of statis-
tics that involve estimated nuisance parameters. This technique has been successfully used by
Abadie and Imbens (2016) for the matching estimators of the average causal effects based on the
estimated propensity score. We extend their results to the predictive mean matching estimator
in survey sampling. Abadie and Imbens (2016) clarified the seemingly paradoxical phenomenon
that matching on the estimated propensity score improves the estimation of the average causal
effect compared with matching on the true propensity score. However, we note that matching on
the estimated predictive mean function can either increase or decrease the estimation efficiency
compared with matching on the true predictive mean function. This is because the propensity
score is not pertinent to the true values of the population mean parameters, while the predictive
mean function is. In addition, we provide a condition for the robustness of the predictive mean
matching estimator that allows the predictive mean function to be misspecified to some extent.

For variance estimation of the predictive mean matching estimator, Morris et al. (2014) sug-
gested using multiple imputation without theoretical justification. We consider an alternative
route for variance estimation based on replication methods (Efron, 1979; Wolter, 2007). Lack of
smoothness makes the conventional replication methods invalid for the predictive mean match-
ing estimator. If the number of matches increases with the sample size, such as in kernel matching
and local linear matching (Heckman, Ichimura, Smith, & Todd, 1998; Heckman, Ichimura, &
Todd, 1997), the matching estimator is asymptotically smooth, which enables the conventional
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replication methods for inference. When the number of matches remains fixed, Abadie and
Imbens (2008) demonstrated the failure of the bootstrap for matching estimators in the setting
with independently and identically distributed data. This is because the nonparametric bootstrap
cannot preserve the distribution of the number of times that each unit is used as a match. To
overcome this issue, Otsu and Rai (2017) proposed a wild bootstrap procedure for the matching
estimator when matching is directly based on the covariates. Following the two-step procedure
for the predictive mean matching estimator, the variability of the matching estimator results from
three sources: sampling, estimation of the predictive mean function, and matching. We propose
a new replication variance estimation procedure, which faithfully takes these sources of variabil-
ity into account. Toward that end, we construct replicates of the estimator following the steps for
the predictive mean matching estimator. First, we construct replicates of the nuisance parameter
estimators in the predictive mean function. Second, based on the martingale representation of the
predictive mean matching estimator, we construct replicates of the matching estimator directly
based on its linear terms with the replicated nuisance parameters. In this way, the distribution of
the number of times that each unit is used as a match can be retained, which leads to valid vari-
ance estimation. Utilizing the parallelism between the replication procedure and the predictive
mean matching procedure, we demonstrate the consistency of the proposed replication variance
estimator by extending the technique of Andreou and Werker (2012) to the replication process.
Furthermore, our replication method is flexible and can accommodate bootstrap and jackknife,
among others.

The rest of this article is organized as follows. In Section 2, we introduce the basic setup for the
survey sample data with nonresponse and the predictive mean matching procedure. In Section 3,
we establish and compare the asymptotic distributions of the predictive mean matching estimator
when the predictive mean function is known or estimated. In Section 4, we propose the new
replication variance estimators and establish their consistency. In Section 5.1, we evaluate the
finite sample performance of the proposed methods via a simulation study. In Section 5.2, we
apply the proposed methods to a real survey example estimating the academic performance of
schools in California based on the academic performance index (API) program. We end with a
brief discussion in Section 6. All proofs are deferred to Appendix.

2 BASIC SETUP

2.1 Notation and assumptions

Let N = {(xi, yi, 𝛿i) ∶ i = 1,… ,N} denote a finite population, where N is known, a vector of
covariates xi is always observed, yi is the study variable, which is subject to missingness, and 𝛿i is
the response indicator of yi, that is, 𝛿i = 1 if yi is observed and 0 if it is missing. The 𝛿i's are defined
throughout the finite population as in Fay (1991), Shao and Steel (1999), and Kim, Navarro, and
Fuller (2006). To fix ideas, we focus on estimating the finite population mean 𝜇 = N−1 ∑N

i=1 yi,
although our framework can be extended to general population quantities; see Section 6. Let A
denote an index set of the sample selected under a probability sampling design. Let Ii be the sam-
pling indicator, that is, Ii = 1 if unit i is selected into the sample, and Ii = 0 otherwise. We assume
that 𝜋i, the probability of selection of i, is positive and known throughout the sample.

To facilitate imputation and theoretical derivation, we consider a superpopulation framework,
where we assume that N is a random sample from a superpopulation model 𝜁 . We first make the
following assumption for the missing data process.



842 YANG and KIM

Assumption 1 (Missing at random and positivity). (i) The missing data process satisfies pr(𝛿 = 1|x, y) = pr(𝛿 = 1|x), denoted by p(x); and (ii) with probability 1, p(x) > 𝜖 for a constant 𝜖 > 0.

Assumption 1 (i) states that the missingness depends only on x but not on the unobserved
value y (Rubin, 1976). Although this assumption is not testable, researchers can collect a rich set
of covariates that are associated with both the outcome and the missingness process to ensure
this assumption holds. Assumption 1 (ii) indicates that for any possible value x, there is a posi-
tive probability for the unit with such characteristic to respond. Positivity is testable based on the
empirical distribution of x between the respondents and the nonrespondents. When the positivity
assumption is violated, the distribution of x from the respondents and that from the nonre-
spondents may not fully overlap. Then the matching discrepancy of the nonrespondents in the
nonoverlapping region and their nearest neighbors among the respondents would be large even
when the sample size grows, and therefore any matching estimators would be biased. In this case,
one may consider trimming the sample (Yang & Ding, 2018; Yang, Imbens, Cui, Faries, & Kadzi-
ola, 2016), which however, changes the target population and the parameter of interest. In this
article, we focus on the case when positivity holds and leaves the issue of limited overlap to our
future work.

2.2 Nearest neighbor imputation

Nearest neighbor imputation hinges on imputing the missing outcome for each nonrespondent
by matching directly on the covariate among the respondents. Let A = AR ∪ AM , where AR = {i ∈
A ∶ 𝛿i = 1} and AM = {i ∈ A ∶ 𝛿i = 0} are the index sets of respondents and nonrespondents,
respectively. Nearest neighbor imputation can be described in the following steps:

Step 1. For each unit i with 𝛿i = 0, find the nearest neighbor from the respondents with the
minimum distance between xj and xi. Let 𝜈(i) be the index set of its nearest neighbor,
which satisfies d(x𝜈(i), xi) ≤ d(xj, xi), for j ∈ AR. For the distance function, we can use
the Euclidean norm d(xi, xj) = ||xi − xj||, where ||x|| = (xTx)1/2. Other norms of the form||x||D = (xTDx)1/2, where D is a positive definite symmetric matrix D, are equivalent to the
Euclidean norm, because ||x||D = {(Qx)T(Qx)}1∕2 = ||Qx|| with QTQ = D. In particular,
Mahalanobis distance is commonly used, where D = Σ̂−1 with Σ̂ the empirical covariance
matrix of x.

Step 2. The nearest neighbor imputation estimator of 𝜇 is

𝜇̂NNI =
1
N
∑
i∈A

1
𝜋i
{𝛿iyi + (1 − 𝛿i)y𝜈(i)} = 1

N
∑
i∈A

1
𝜋i
𝛿i(1 + ki)yi, (1)

where ki =
∑

j∈A𝜋i𝜋
−1
j (1 − 𝛿j)dij, and dij = 1 if 𝜈(j) = i, that is, unit i is used as a donor for

unit j ∈ AM , and dij = 0 otherwise.

Under simple random sampling, ki =
∑

j∈A(1 − 𝛿j)dij becomes the number of times that unit i is
used as a match for nonrespondents.

To study the asymptotic properties of Equation (1), define m(x) = E(y|x). Following Yang and
Kim (2019), we assume the following conditions hold.

Assumption 2. (i) The matching variable x has a compact and convex support, with its density
bounded and bounded away from zero. Let g1(xi) and g0(xi) be the conditional density of xi given
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𝛿i = 1 and 𝛿i = 0, respectively. There exist constants C1L and C1U such that C1L ≤ g1(xi)∕g0(xi) ≤
C1U almost surely; and (ii) m(x) is Lipschitz continuous in x; that is, there exists a constant C3
such that d{m(xi),m(xj)} ≤ C3d(xi, xj), for any i, j.

Denote Ep(⋅) and varp(⋅) to be the expectation and the variance under the sampling design,
respectively. For the asymptotics, we consider both the sample size n and the population size N
to go to infinity. We impose the following regularity conditions on the sampling design.

Assumption 3. (i) There exist positive constants C1 and C2 such that C1 ≤ 𝜋iNn−1 ≤ C2, for
i = 1,… ,N; (ii) the sampling fraction is negligible, nN−1 = o(1); (iii) let zi represent xi or yi, and let
the corresponding population quantity and the Horvitz–Thompson estimator be 𝜇z = N−1 ∑N

i=1 zi
and 𝜇̂z,HT = N−1∑

i∈A𝜋
−1
i zi, respectively, which satisfy that varp(𝜇̂z,HT) = O(n−1) and

{varp(𝜇̂z,HT)}−1∕2 × (𝜇̂z,HT − 𝜇z)|N →  (0, 1) in distribution, as n → ∞.

The conditions in Assumption 3 are widely accepted in survey sampling (Fuller, 2009,
chapter 1). Assumption 3 (ii) is a convenient condition to simplify theoretical derivations, which
can be relaxed; see Remark 1 and the discussion in Section 6.

We write n1∕2(𝜇̂NNI − 𝜇) = DN + BN , where

DN = n1∕2

(
1
N
∑
i∈A

1
𝜋i
[m(xi) + 𝛿i(1 + ki){yi − m(xi)}] − 𝜇

)
,

and

BN = n1∕2

N
∑
i∈A

1
𝜋i
(1 − 𝛿i){m(x𝜈(i)) − m(xi)}. (2)

The difference m(x𝜈(i)) − m(xi) in Equation (2) accounts for the matching discrepancy, and
BN contributes to the asymptotic bias of the matching estimator. In general, for a p-dimensional
matching variable x, Abadie and Imbens (2006) showed that d(x𝜈(i), xi) = Op(n−1/p). Therefore, if
matching is directly based on a p-vector covariate with p ≥ 2, the bias is

BN = n1∕2

N
∑
i∈A

1
𝜋i
(1 − 𝛿i){m(x𝜈(i)) − m(xi)}

= Op

{
n1∕2

N
∑
i∈A

1
𝜋i
(1 − 𝛿i)d(x𝜈(i); xi)

}
= Op(n1∕2−1∕p) ≠ op(1), (3)

where the second line of Equation (3) follows from Assumption 2 (ii) and Assumption 3 (i).
Herein, the probability distribution is the joint distribution of the sampling distribution and the
superpopulation model 𝜁 .

For bias correction, let m̂(x) be a consistent estimator of m(x), for example, using sieve esti-
mation (Chen, 2007; Newey, 1997). Then, we can estimate BN by B̂N = n1∕2N−1∑

i∈A𝜋
−1
i (1 −

𝛿i){m̂(x𝜈(i)) − m̂(xi)}. Under certain regularity conditions imposed on m̂(x) (Abadie & Imbens,
2011), B̂N is consistent for BN , that is, B̂N − BN = op(1). A bias-corrected nearest neighbor impu-
tation estimator of 𝜇 is

𝜇̃NNI =
1
N
∑
i∈A

1
𝜋i
{𝛿iyi + (1 − 𝛿i)y∗i }, (4)
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where y∗i = m̂(xi) + y𝜈(i) − m̂(x𝜈(i)). Although 𝜇̃NNI is asymptotically unbiased, the imputed value
y∗i may not be an actual realized value and therefore bias-corrected nearest neighbor imputation
is no longer a hot deck imputation method. To overcome the curse of dimensionality and mean-
while retain the hot deck imputation mechanism, we investigate predictive mean matching and
its asymptotic properties in the following section.

3 PREDICTIVE MEAN MATCHING

To reduce the dimension of the matching variable, we assume that

E(yi|xi) = m(xi; 𝛽∗) (5)

holds for every unit in the population, where m(⋅; 𝛽∗) is a function of x known up to 𝛽∗. Under
Assumption 1, let the normalized estimating equation for 𝛽∗ be

SN(𝛽) =
n1∕2

N
∑
i∈A

1
𝜋i
𝛿ig(xi; 𝛽){yi − m(xi; 𝛽)} = 0, (6)

where g(x; 𝛽) is any function that ensures that the solution to Equation (6) exists and is unique.
To simplify the presentation, let g(x; 𝛽) be ṁ(x; 𝛽) = 𝜕m(x; 𝛽)∕𝜕𝛽. General functions for g(x; 𝛽) can
be considered at the expense of heavier notation. Under certain regularity conditions specified in
Appendix, the solution to Equation (6), 𝛽, converges to 𝛽∗ in probability. Adjusting by the sam-
pling weight 𝜋−1

i in Equation (6) guarantees a consistent estimator of 𝛽∗ even under informative
sampling (Berg, Kim, & Skinner, 2016).

Under the model in Equation (5), predictive mean matching can be described as follows:

Step 1. Obtain a consistent estimator of 𝛽, denoted by 𝛽, by solving Equation (6). For each unit
i, obtain a predicted value of yi as m̂i = m(xi; 𝛽). Find the nearest neighbor of unit i with
𝛿i = 0 from the respondents with the minimum distance between m̂j and m̂i. As a slight
abuse of notation, let 𝜈(i) be the index of the nearest neighbor of unit i in AR, where
determination of the nearest neighbor is based on the estimated predictive mean function
m(xi; 𝛽), which satisfies d(m̂𝜈(i), m̂i) ≤ d(m̂j, m̂i), for any j ∈ AR.

Step 2. The imputation estimator based on predictive mean matching is

𝜇̂PMM = 1
N
∑
i∈A

1
𝜋i
{𝛿iyi + (1 − 𝛿i)y𝜈(i)}. (7)

In Equation (7), the imputed values are real observations. The imputation model is only used
for identifying the nearest neighbor, but not for creating the imputed values.

To study the asymptotic properties of the predictive mean matching estimator, we write
𝜇̂PMM = 𝜇̂PMM(𝛽) to reflect its dependence on 𝛽, where

𝜇̂PMM(𝛽) = 1
N
∑
i∈A

1
𝜋i
{𝛿iyi + (1 − 𝛿i)y𝜈(i)}

= 1
N

(∑
i∈A

1
𝜋i
𝛿iyi +

∑
j∈A

1 − 𝛿j

𝜋j

∑
i∈A

𝛿idijyi

)
= 1

N
∑
i∈A

𝛿i

𝜋i
(1 + k𝛽,i)yi, (8)
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with

k𝛽,i =
∑
j∈A

𝜋i

𝜋j
(1 − 𝛿j)dij. (9)

We first consider the case when 𝛽∗ and hence m(xi) = m(xi; 𝛽∗), denoted by mi for
abbreviation, are known. Suppose that the superpopulation model satisfies the following
assumption.

Assumption 4. (i) The matching variable m(x) has a compact and convex support, with its den-
sity bounded and bounded away from zero. Let g1(mi) and g0(mi) be the conditional density
of mi given 𝛿i = 1 and 𝛿i = 0, respectively. There exist constants C1L and C1U such that C1L ≤

g1(mi)∕g0(mi) ≤ C1U almost surely; and (ii) there exists 𝛿 > 0 such that E(|yi|2+𝛿|xi) is uniformly
bounded for any xi.

Assumption 4 (i) is a convenient regularity condition for ease of notation (Abadie & Imbens,
2006). Assumption 4 (ii) is a moment condition for establishing the central limit theorem. For
discrete x, Assumption 4 (i) does not hold; however, our discussion below still applies. In this
case, when the predictive mean function includes all discrete x and their interactions, units with
the same x will have the same predictive mean and will be matched. In the presence of ties, we
can choose one of the matched units at random. This is similar to random hot deck imputation
with imputation cells defined through different levels of x.

We write

n1∕2{𝜇̂ PMM(𝛽) − 𝜇} = DN(𝛽) + BN(𝛽), (10)

where

DN(𝛽) =
n1∕2

N

(∑
i∈A

1
𝜋i
[m(xi; 𝛽) + 𝛿i(1 + k𝛽,i){yi − m(xi; 𝛽}] − 𝜇

)
, (11)

and

BN(𝛽) =
n1∕2

N
∑
i∈A

1
𝜋i
(1 − 𝛿i){m(x𝜈(i); 𝛽) − m(xi; 𝛽)}. (12)

As in Equation (2), the difference m(x𝜈(i); 𝛽∗) − m(xi; 𝛽∗) in Equation (12) accounts for the
matching discrepancy, and BN(𝛽∗) contributes to the asymptotic bias of the matching estimator.
For predictive mean matching, the matching variable is a scalar function m(x), and hence the bias
is BN(𝛽∗) = Op(n−1/2) = op(1) and therefore is negligible. We establish the asymptotic distribution
of 𝜇̂PMM(𝛽∗) as follows.

Theorem 1. Under Assumptions 1, 3, and 4, suppose that m(x) = E(y|x) = m(x; 𝛽∗) and 𝜎2(x) =
var(y|x). Then, n1∕2{𝜇̂PMM(𝛽∗) − 𝜇} →  (0,V1) in distribution, as n → ∞, where

V1 = V m + V e (13)
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with

V m = lim
n→∞

n
N2 E

[
varp

{∑
i∈A

𝜋−1
i m(xi)

}]
,

V e = lim
n→∞

n
N2 E

{ N∑
i=1

𝜋−1
i (1 − 𝜋i)𝛿i(1 + k𝛽∗,i)2𝜎2(xi)

}
,

and k𝛽,i is defined in Equation (9).

In Equation (13), we follow the same approach of Fay (1991) and Shao and Steel (1999) for
expressing the total variance by assuming that we first have a census with nonrespondents, and
then a sample is taken from the census.

Remark 1. The variance Equation (13) is based on the assumption that the sampling frac-
tion is negligible in the sense that n∕N = o(1). Extension to the setting with nonnegligible
sampling fraction is possible at the expense of heavier notation. For example, as we show
in Appendix, the asymptotic variance Equation (13) has an extra term of order O(n∕N),
nN−2 ∑N

i=1 E[{𝛿i(1 + 𝜅𝛽∗,i) − 1}2𝜎2(xi)], which cannot be ignored unless n∕N is negligible.

In practice, 𝛽∗ is unknown and therefore has to be estimated prior to matching. Follow-
ing Abadie and Imbens (2016), the following theorem presents the approximate distribution of
𝜇̂PMM(𝛽).

Theorem 2. Under Assumptions 1, 3, 4, and regularity conditions specified in Appendix, the
approximate distribution of n1∕2{𝜇̂PMM(𝛽) − 𝜇} is  (0,V2), as n → ∞, where 𝛽 is the solution to
Equation (6) and

V2 = V1 − 𝛾T
1 V−1

s 𝛾1 + 𝛾T
2 (𝜏

−1
𝛽∗ Vs𝜏

−1
𝛽∗ )𝛾2, (14)

V1 is defined in Equation (13), Vs = var{SN(𝛽∗)}, 𝛾1 = limn→∞nN−2E{
∑N

i=1 𝜋
−1
i (1 − 𝜋i)𝛿i(1 +

k𝛽∗,i)g(xi; 𝛽∗)𝜎2(xi)}, 𝛾2 = E{ṁ(x; 𝛽∗)}, and 𝜏𝛽 = E{p(x)ṁ(x; 𝛽) ṁ(x; 𝛽)T}.

Comparing the asymptotic variances of the predictive mean matching estimator in Theorems
1 and 2, the difference between V2 and V1,−𝛾T

1 V−1
s 𝛾1 + 𝛾T

2 (𝜏
−1
𝛽∗

Vs𝜏
−1
𝛽∗
)𝛾2, can be either positive, zero,

or negative. Thus, the estimation error in the predictive mean function should not be ignored.
This is different from the result in Abadie and Imbens (2016) that matching on the estimated
propensity score always improves the estimation efficiency when matching on the true propen-
sity score. To explain the difference, we note that the propensity score is not pertinent to the true
population mean of outcome; whereas the predictive mean function is, which is reflected through
the dependence of 𝜇 on 𝛽∗ and a nondegenerate 𝛾2. It is worth discussing the two variance mod-
ification terms. The variance reduction term −𝛾T

1 V−1
s 𝛾1 is due to the projection of the matching

estimator onto the space spanned by the score function of 𝛽∗. Therefore, if y is strongly asso-
ciated with the score function of 𝛽∗, then the efficiency gain by estimating 𝛽∗ instead of using
the true 𝛽∗ is large. On the other hand, if the predictive mean function changes quickly as 𝛽
changes in the sense that it has a large derivative with respect to 𝛽, ṁ(x; 𝛽∗), then matching on
m(x; 𝛽) will contribute a large increase of variance, 𝛾T

2 (𝜏
−1
𝛽∗

Vs𝜏
−1
𝛽∗
)𝛾2, compared with matching on

m(x; 𝛽∗).
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3.1 Robustness for the predictive mean function specification

To discuss the robustness of the predictive mean matching estimator with respect to specification
for the predictive mean function, let m(x; 𝛽) be a working model for E(y|x), 𝛽 be the estima-
tor of 𝛽 solving Equation (6), and 𝛽∗ be its probability limit. As a slight abuse of notation, we
also use m = m(x; 𝛽∗) for shorthand. We require the following assumption hold for the working
model.

Assumption 5. E(y|m) is Lipschitz continuous in m; that is, there exists a constant C3 such that|E(y|mi) − E(y|mj)| ≤ C4|mi − mj|, for any i, j.

For example, suppose that a scalar y given x follows a generalized linear model with E(y|x) =
g(xT𝛽∗), where g(⋅) is an unknown function. If one assumes the mean function m = xT𝛽∗, then
E(y|m) = g(𝛾∗m) with 𝛾∗ = 𝛽∗T(𝛽∗𝛽∗T)−1𝛽∗. Thus, Assumption 5 holds if g(⋅) is differentiable and
Assumption 4 holds. It is important to note that we cannot omit variables in x because we require
Assumption 1 hold to ensure missingness at random.

Theorem 3. Under Assumptions 1, 3, 4, and 5, the predictive mean matching estimator based on
the working model m(x; 𝛽∗) is consistent for 𝜇.

The result can be obtained directly from the decomposition Equation (10) by replacing m(x; 𝛽)
in DN(𝛽) and BN(𝛽) with E{y|m(x; 𝛽)}. The new term DN(𝛽∗) is still consistent for zero; by
Assumption 5, the new bias term becomes

|BN(𝛽∗)| = |||||n
1∕2

N
∑
i∈A

1
𝜋i
(1 − 𝛿i)

[
E
{

y|m(x𝜈(i); 𝛽∗)
}
− E

{
y|m(x(i); 𝛽∗)

}]|||||
≤

n1∕2

N
C4
∑
i∈A

1
𝜋i
(1 − 𝛿i) ||m(x𝜈(i); 𝛽∗) − m(xi; 𝛽∗)|| = Op

(
n−1∕2) .

We end this section by summarizing the theoretical findings of predictive mean matching.
Predictive mean matching provides a remedy to the curse of dimensionality by summarizing the
vector of covariates into a scalar predictive mean function as the matching variable, so that the
bias due to matching discrepancy is negligible. The predictive mean function is not necessar-
ily the correct conditional mean function and therefore provides some robustness against model
misspecification.

4 REPLICATION VARIANCE ESTIMATION

In this section, we propose replication variance estimation (Mashreghi, Haziza, & Léger, 2016;
Rust & Rao, 1996; Wolter, 2007) for valid inference based on predictive mean matching.

We first describe replication variance estimation for the case when yi is observed throughout
the sample. Let 𝜇̂ =

∑
i∈A𝜔iyi with 𝜔i = (N𝜋i)−1 be the Horvitz–Thompson estimator of 𝜇. The

replication variance estimator of 𝜇̂ takes the form of

V̂rep(𝜇̂) =
L∑

k=1
ck(𝜇̂(k) − 𝜇̂)2, (15)
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where L is the number of replicates, ck is the kth replication factor, and 𝜇̂(k) is the kth replicate of
𝜇̂. When 𝜇̂ =

∑
i∈A𝜔iyi, we can write the replicate of 𝜇̂ as 𝜇̂(k) =

∑
i∈A𝜔

(k)
i yi for some𝜔(k)

i for i ∈ A.
The replications are constructed such that E{V̂rep(𝜇̂)} = var(𝜇̂){1 + o(1)}.

We illustrate the replication weights in the following examples.

Example 1. Suppose that Sample A was selected using simple random sampling. For the non-
parametric bootstrap, we have L = B, which is the number of bootstrap replicates, ck = B−1,
𝜔
(k)
i = n−1m(k)

i , where (m(k)
1 ,… ,m(k)

n ) is a multinomial random vector with n draws on n equal
probability cells.

Example 2. Suppose that Sample A was selected using probability proportional to size sam-
pling with𝜔i = N−1𝜋−1

i . For the delete-1 jackknife, we have L = n, ck = (n − 1)∕n, and𝜔(k)
i = n𝜔i∕

(n − 1) if i ≠ k, and 𝜔(k)
k = 0.

We now propose a new replication variance estimation for the predictive mean matching esti-
mator. We first consider 𝜇̂PMM(𝛽∗) with a known 𝛽∗ given in Equation (8). For simplicity, we
suppress the dependence of quantities on 𝛽∗. Let the individual linearized term be

𝜓i = m(xi) + 𝛿i(1 + ki){yi − m(xi)}, (16)

and the corresponding population quantity and the Horvitz–Thompson estimator be 𝜇𝜓 =
N−1 ∑N

i=1 𝜓i and 𝜓̂HT =
∑

i∈A𝜔i𝜓i, respectively. We can write

𝜇̂PMM − 𝜇 = (𝜇̂PMM − 𝜓̂HT) + (𝜓̂HT − 𝜇𝜓 ) + (𝜇𝜓 − 𝜇),

where 𝜇PMM − 𝜓̂HT = op(n−1∕2) by Theorem 1, and 𝜇𝜓 − 𝜇 = Op(N−1/2). Given that the sam-
ple fraction is negligible, that is, nN−1 = o(1), we have 𝜇̂PMM − 𝜇 = 𝜓̂HT − 𝜇𝜓 + op(n−1∕2). It
is then sufficient to estimate the variance of 𝜓̂HT − 𝜇𝜓 . Because Ep(𝜓̂HT − 𝜇𝜓 ) = 0, we have
var(𝜓̂HT − 𝜇𝜓 ) = E{varp(𝜓̂HT − 𝜇𝜓 )}, which is essentially the sampling variance of 𝜓̂HT. This
suggests that we can treat {𝜓i ∶ i ∈ A} as pseudo observations in applying the replication vari-
ance estimator. It is important to note that ki is treated as an intrinsic characteristic with
unit i in Equation (16). In this way, the distribution of ki can be preserved, unlike the naive
bootstrap methods. Otsu and Rai (2017) used a similar idea to develop a wild bootstrap tech-
nique (Wu, 1986) for a matching estimator by resampling the response variable based on the
residual values. More specifically, we construct the kth replicate of 𝜓̂HT as follows: 𝜓̂ (k)

HT =∑
i∈A𝜔

(k)
i 𝜓i, where 𝜔(k)

i is the replication weight that accounts for complex sampling design.
The replication variance estimator of 𝜓̂HT is obtained by applying V̂rep(⋅) in Equation (15) for
the above replicates 𝜓̂ (k)

HT. It follows that E{V̂rep(𝜓̂HT)} = var(𝜓̂HT − 𝜇𝜓 ){1 + o(1)} = var(𝜇̂PMM −
𝜇){1 + o(1)}.

We now consider 𝜇̂PMM(𝛽), which can be expressed as

𝜇̂PMM(𝛽) =
∑
i∈A

𝜔i[m(xi; 𝛽) + 𝛿i(1 + k𝛽,i){yi − m(xi; 𝛽)}] + op(n−1∕2).

Motivated by the two-step procedure for the predictive mean matching estimator, we propose a
parallel two-step procedure to construct the replicates of 𝜇̂PMM(𝛽):
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Step 1. Obtain the kth replicate of 𝛽, denoted as 𝛽(k), by solving

S(k)
N (𝛽) = n1∕2

∑
i∈A

𝜔
(k)
i 𝛿ig(xi; 𝛽){yi − m(xi; 𝛽)} = 0.

Step 2. Obtain the kth replicate as

𝜇̂
(k)
PMM(𝛽(k)) =

∑
i∈A

𝜔
(k)
i [m(xi; 𝛽(k)) + 𝛿i(1 + k

𝛽
∗
,i){yi − m(xi; 𝛽(k))}], (17)

where 𝛽
∗
= L−1 ∑L

l=1 𝛽
(l).

If 𝛽∗ were known, we would not need to replicate the estimation for 𝛽∗, and the above pro-
cedure would reduce to Step 2 only. As 𝛽∗ is estimated, Step 1 is necessary, because as shown
in Theorem 2, the predictive mean matching estimators by matching on the true and estimated
predictive mean function may have different asymptotic distributions.

To show the consistency of the proposed replication variance estimator, we cannot apply
the usual linearization technique (Kim & Rao, 2009) due to lack of smoothness. Utilizing the
parallelism between the replication procedure and the predictive mean matching procedure,
we demonstrate the consistency by extending the technique of Andreou and Werker (2012) to
the replication process. See Appendix for details. The consistency of the replication variance
estimator is presented in the following theorem.

Theorem 4. Under the assumptions in Theorem 2, for the Horvitz–Thompson estimator 𝜇̂, suppose
that V̂rep(𝜇̂) in Equation (15) is consistent for varp(𝜇̂). Then, the replication variance estimators for
𝜇̂PMM(𝛽) is consistent, that is, nV̂rep{𝜇̂PMM(𝛽)}∕V2 → 1 in probability, as n → ∞, where the replicates
of 𝜇̂PMM(𝛽) are given in Equation (17), and V2 is given in Equation (14).

5 EMPIRICAL STUDIES

5.1 A simulation study

In this simulation study, we investigate the performance of the proposed replication variance
estimator. For generating finite populations of size N = 50, 000: first, let x1i, x2i, and x3i be gener-
ated independently from Uniform[0, 1], and x4i, x5i, x6i, and ei be generated independently from
 (0, 1); then, let yi be generated from (P1) yi = −1 + x1i + x2i + ei, (P2) yi = −1.167 + x1i + x2i +
(x1i − 0.5)2 + (x2i − 0.5)2 + ei, and (P3) yi = −1.5 + x1i +… + x6i + ei. The parameter of interest
is 𝜇 = N−1 ∑N

i=1 yi. The covariates are fully observed, but yi is not. The response indicator of yi,
𝛿i, is generated from Bernoulli(pi) with logit{p(xi)} = 0.2 + x1i + x2i. This results in the average
response rate about 75%. To generate samples, we consider two sampling designs: (S1) simple
random sampling with n = 400; (S2) probability proportional to size sampling. In (S2), for each
unit in the population, we generate a size variable si as log(|yi + 𝜈i| + 4), where 𝜈i ∼  (0, 1). The
selection probability is specified as 𝜋i = 400si∕

∑N
i=1 si. Therefore, (S2) is informative, where units

with larger yi values have larger probabilities to be selected into the sample.
For estimation, we consider predictive mean matching imputation, nearest neighbor impu-

tation, and stochastic regression imputation. In stochastic regression imputation, for units with
𝛿i = 0, the imputation of yi is obtained as y∗i = ŷi + ê∗i , where ŷi = m(xi; 𝛽) and ê∗i is randomly
selected from the observed residuals {êi = yi − ŷi ∶ 𝛿i = 1}. For (P1) and (P2), we specify the
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predictive mean function to be m(x; 𝛽) = 𝛽0 + 𝛽1x1 + 𝛽2x2. Note that for (P1), m(x; 𝛽) is correctly
specified; whereas for (P2), m(x; 𝛽) is misspecified. For (P3), we specify the mean function to
be m(x; 𝛽) = 𝛽0 + 𝛽Tx, where x = (x1,… , x6). We construct 95% confidence intervals (CIs) using
(𝜇̂I − z0.975V̂ 1∕2

I , 𝜇̂I + z0.975V̂ 1∕2
I ), where 𝜇̂I is the point estimate and V̂I is the variance estimate

obtained by the proposed jackknife variance estimation. For stochastic regression imputation,
the kth replicate of 𝜇 is given by 𝜇̂(k)

REG(𝛽
(k)) =

∑
i∈A𝜔

(k)
i [m(xi; 𝛽(k)) + 𝛿i(1 + ki){yi − m(xi; 𝛽(k))}],

where 𝛽(k) is obtained from the estimating equation of 𝛽 based on the replication weights, and
ki is the number of times that êi is selected to impute the missing values of y based on the
original data.

Table 1 presents the simulation results based on 2,000 Monte Carlo samples. When the covari-
ate is two dimensional, all three imputation estimators have small biases, even when the mean
function is misspecified. In addition, the proposed jackknife method provides valid coverage
of CIs for the predictive mean matching and stochastic regression imputation estimators in all
scenarios. This suggests that the proposed replication method can be used widely even for stochas-
tic regression imputation. When the covariate is six dimensional, nearest neighbor imputation
presents large biases and low coverage rates. This is consistent with Equation (3).

5.2 Real-life data analysis

To illustrate the methods proposed, we analyze data from the API program in California
(http://api.cde.ca.gov/). The API is computed for all California schools based on standardized
testing of students. The full population data consist of N = 6, 194 observations for all schools with
at least 100 students on various academic measures including the API for years 2000 and 1999
(api99, x1, and api00, y), percentage of students eligible for subsidized meals (meals, x2), percent-
age of English language learners (ell, x3), average parental education level (avg.ed, x4), percentage
of fully qualified teachers (full, x5), and number of students enrolled (enroll, x6). We are interested
in the population average of the API, 𝜇 = N−1 ∑N

i=1 yi, in California in year 2000. The original
data have full observations on the API, and therefore the population parameter of interest can be

T A B L E 1 Simulation results: Bias (×102) and SE (×102) of the point estimator, relative bias (RB) of jackknife
variance estimates (×102) and coverage rate (CR%) of 95% confidence intervals

PMM NNI SRI PMM NNI SRI

Bias SE Bias SE Bias SE RB CR RB CR RB CR

(S1) Simple random sampling

(P1) −0.15 6.46 −0.21 6.54 −0.23 6.44 4 95.2 3 95.1 5 95.8

(P2) −0.22 6.54 −0.25 6.55 −0.37 6.46 6 95.5 3 95.3 5 95.6

(P3) 1.90 11.85 18.59 11.06 0.11 11.17 5 95.1 4 63.8 4 95.5

(S2) Probability proportional to size sampling

(P1) 0.05 6.46 0.13 6.37 0.18 6.53 3 95.3 3 94.8 2 94.9

(P2) 0.30 6.52 0.12 6.47 0.16 6.60 2 95.3 0 95.3 3 94.9

(P3) 1.33 10.99 17.53 10.70 0.40 11.10 6 95.6 3 65.5 −3 95.6

Abbreviations: NNI, nearest neighbor imputation; PMM, predictive mean matching; SRI, stochastic regression imputation.



YANG and KIM 851

T A B L E 2 Bias and SE (×102) of the point estimator, and coverage rate (CR%) of 95% confidence
intervals for the population mean of the API with the true value 𝜇 = 664.7

Method Bias SE CR Bias SE CR

(P1) MCAR & (S1) SRS (P1) MCAR & (S2) PPS

CC 0.37 16.63 94.30 −0.29 16.08 95.10

PMM 0.49 13.06 94.95 0.27 12.14 95.30

(P2) MAR & (S1) SRS (P2) MAR & (S2) PPS

CC 43.66 15.01 17.75 43.34 14.97 19.55

PMM 1.48 13.31 94.70 1.04 12.40 95.45

Abbreviations: CC, complete case analysis; MAR, missingness at random; MCAR, missingness completely at
random; PMM, predictive mean matching; PPS, probability proportional to size sampling; SRS, simple random
sampling.

calculated with the true value 𝜇 = 664.7. So, the API is uniquely placed for demonstration of the
proposed methods.

In the population, we create artificial missingness. The response indicator of yi, 𝛿i, is generated
from Bernoulli(pi) with (P1) pi ≡ 0.65, representing missingness completely at random (Rubin,
1976), and (P2) logit{p(xi)} = 1 + 2x1i + x2i + x3i + x4i + x5i + x6i, representing missingness at ran-
dom, where all covariates are standardized with mean 0 and SD 1. This results in the average
response rate 65%. We generate samples under two sampling designs: (S1) simple random sam-
pling with n = 200; (S2) probability proportional to size sampling which is the same as in the
simulation study in Section 5.1.

For estimation, we consider complete case estimation and predictive mean matching impu-
tation. The complete case estimator is simply the weighted average of observed yi's weighted by
the sample weights. For the predictive mean matching estimator, we specify the mean function
to be m(x; 𝛽) = 𝛽0 + 𝛽Tx, where x = (x1,… , x6)′. We construct 95% CIs using (𝜇̂I − z0.975V̂ 1∕2

I , 𝜇̂I +
z0.975V̂ 1∕2

I ), where 𝜇̂I is the point estimate and V̂I is the variance estimate obtained by the proposed
jackknife variance estimation.

Table 2 summarizes the results based on 2,000 Monte Carlo samples. Under (P1) with miss-
ingness completely at random, both the complete case method and the predictive mean matching
method have small biases and coverage rates close to the 95% nominal coverage. Moreover, the
predictive mean matching method is more efficient than the complete case method with smaller
standard errors. Under (P2) with missingness at random, the complete case method has large
biases and low converge rates; whereas the predictive mean matching inference still has small
biases and good coverage rates.

6 DISCUSSION

Predictive mean matching is used widely to impute missing values to facilitate full-sample anal-
ysis. Variance estimation for predictive mean matching has been an important research gap in
survey sampling. We addressed this problem by proposing a simple two-step replication proce-
dure, which can faithfully reflect variability of the predictive mean matching estimator. In this
article, we assumed that the sampling fraction is negligible (see Assumption 3, ii). Following Shao
and Steel (1999) and Mashreghi, Léger, and Haziza (2014), we will extend the variance estimation
to handle the case of nonnegligible sampling fractions.
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We focused on inference of the population mean using predictive mean imputation, a hot-deck
type of imputation. The superiority of the hot deck imputation methods over the mean, ratio, and
regression imputation methods is that the hot-deck imputation methods provide asymptotically
valid distribution and quantile estimators (Andridge & Little, 2010; Chen & Shao, 2000). Yang and
Kim (2019) considered nearest neighbor imputation for the finite population parameter defined
through 𝜇g = N−1 ∑N

i=1 g(yi) for some known g(⋅), or 𝜉N = inf{𝜉 ∶ SN(𝜉) ≥ 0}, where SN(𝜉) =
N−1 ∑N

i=1 s(yi − 𝜉), and s(⋅) is a univariate real function. For example, let g(y) = y, 𝜇g = N−1 ∑N
i=1 yi

is the population mean of y. Let g(y) = I(y < c) for some constant c, 𝜇g = N−1 ∑N
i=1 I(yi < c) is the

population proportion of y less than c. Let s(yi − 𝜉) = I(yi − 𝜉 ≤ 0) − 𝛼, 𝜉N is the population 𝛼th
quantile. Extending the current framework using predictive mean matching to general parameter
estimation is feasible and will be pursued elsewhere.

Propensity score matching has been recently proposed for inferring causal effects of treat-
ments in the context of survey data; however, their asymptotic properties are underdeveloped
(Lenis, Nguyen, Dong, & Stuart, 2017). Because causal inference is inherently a missing data
problem (Ding & Li, 2018), the proposed methodology here can be easily generalized to investigate
the asymptotic properties of propensity score matching estimators with survey weights.
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APPENDIX

A1 Consistency of 𝜷
We provide regularity conditions and proof for the consistency of 𝛽 solving Equation (6).

Assumption A1 (Uniform weak convergence). sup𝛽∈|n−1∕2SN(𝛽) − S(𝛽)|→ 0 in probability
for some nonstochastic function S(𝛽), as n → ∞, where  is a closed set.

Assumption A1 is a high-level condition. Sufficient conditions for Assumption A1 include
Assumption 3 for sampling and assumption that m(x; 𝛽) and g(x; 𝛽) are continuous for 𝛽 ∈ .

Assumption A2 (Identifiability). S(𝛽) = 0 has a unique solution 𝛽∗. That is, for any 𝜖 > 0, there
exists a 𝛿 > 0 such that 𝛽 ∉ 𝜖(𝛽∗) implies |S(𝛽)| ≥ 𝛿, where 𝜖(𝛽∗) = {𝛽 ∈  ∶ ||𝛽 − 𝛽∗|| < 𝜖}.

To show that 𝛽 solving Equation (6) is consistent for 𝛽∗, for any 𝜖 > 0, we find 𝛿 > 0 such that

0 ≤ P{𝛽 ∉ 𝜖(𝛽∗)} ≤ P{|S(𝛽) − S(𝛽∗)| ≥ 𝛿}
= P{|S(𝛽) − n−1∕2SN(𝛽) + n−1∕2SN(𝛽) − S(𝛽∗)| ≥ 𝛿}
= P{|S(𝛽) − n−1∕2SN(𝛽)| ≥ 𝛿}

≤ P
{
sup
𝛽∈

|S(𝛽) − n−1∕2SN(𝛽)| ≥ 𝛿

}
→ 0,

as n → ∞.

A2 Proof for Theorem 1
Based on the decomposition in Equation (10), we write

n1∕2{𝜇̂ PMM(𝛽∗) − 𝜇} = DN(𝛽∗) + BN(𝛽∗), (A1)

where DN(𝛽) and BN(𝛽) are defined in Equations (11) and (12), respectively. For simplicity, we
introduce the following notation: mi = m(xi; 𝛽∗) and ei = yi − mi.

Under Assumption 4, for the predictive mean matching estimator, m𝜈(i) − mi = Op(1).
Together with Assumption 3, we evaluate the order of BN(𝛽∗) as

BN(𝛽∗) =
n1∕2

N
∑
i∈A

1
𝜋i
(1 − 𝛿i)(m𝜈(i) − mi) = Op(n−1∕2) = op(1).

Therefore, Equation (A1) reduces to n1∕2{𝜇̂PMM(𝛽∗) − 𝜇} = DN(𝛽∗) + op(1). Then, to study the
asymptotic properties of n1∕2{𝜇̂PMM(𝛽∗) − 𝜇}, we only need to study the asymptotic properties of
DN(𝛽∗). We express
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DN(𝛽∗) =
n1∕2

N

[∑
i∈A

1
𝜋i
{mi + 𝛿i(1 + k𝛽∗,i)ei} − 𝜇

]

= n1∕2

N

N∑
i=1

(
Ii

𝜋i
− 1

)
mi +

n1∕2

N

N∑
i=1

(
Ii

𝜋i
− 1

)
𝛿i(1 + k𝛽∗,i)ei

+ n1∕2

N

N∑
i=1

(mi − 𝜇) +
n1∕2

N

N∑
i=1

𝛿i(1 + k𝛽∗,i)ei (A2)

= n1∕2

N

N∑
i=1

(
Ii

𝜋i
− 1

)
mi +

n1∕2

N

N∑
i=1

(
Ii

𝜋i
− 1

)
𝛿i(1 + k𝛽∗,i)ei + op(1), (A3)

given that nN−1 = o(1). Using the conditioning argument, we can verify that the covariance of the
two terms in Equation (A3) is zero. Thus, the asymptotic variance of DN(𝛽∗) is

var

{
n1∕2

N

N∑
i=1

(
Ii

𝜋i
− 1

)
mi

}
+ var

{
n1∕2

N

N∑
i=1

(
Ii

𝜋i
− 1

)
𝛿i(1 + k𝛽∗,i)ei

}
.

The first term, as n → ∞, becomes

V m = lim
n→∞

n
N2 E

{
varp

(∑
i∈A

mi

𝜋i

)}
,

and the second term, as n → ∞, becomes

V e = plim n
N2

N∑
i=1

1 − 𝜋i

𝜋i
𝛿i(1 + k𝛽∗,i)2var(ei|xi).

The remaining is to show that Ve = O(1). To do this, the key is to show that the moments of k𝛽∗,i
are bounded. Under Assumption 4, some algebra yields

𝜔k̃𝛽∗,i ≤ k𝛽∗,i ≤ 𝜔k̃𝛽∗,i, (A4)

for some constants 𝜔 and 𝜔, where k̃𝛽∗,i =
∑n

j=1(1 − 𝛿j)dij is the number of unit i used as a match
for the nonrespondents. Under Assumption 4, k̃𝛽∗,i = Op(1) and E(k̃𝛽∗,i) and E(k̃2

𝛽∗,i) are uniformly
bounded over n (Abadie & Imbens, 2006, lemma 3); therefore, together with Equation (A4), we
have k𝛽∗,i = Op(1) and E(k𝛽∗,i) and E(k2

𝛽∗,i) are uniformly bounded over n. Therefore, simple algebra
yields Ve = O(1).

Combining all results, the asymptotic variance of n1∕2{𝜇̂PMM(𝛽∗) − 𝜇} is Vm + Ve. By the
central limit theorem, the result in Theorem 1 follows.

A3 Proof for Remark 1
If the sampling fraction is asymptotically nonnegligible, the asymptotic variance of the terms in
Equation (A2) is

var

[
n1∕2

N

N∑
i=1

{𝛿i(1 + k𝛽∗,i) − 1}ei

]
= nN−2

N∑
i=1

E[{𝛿i(1 + 𝜅𝛽∗,i) − 1}2𝜎2(xi)] = O(n∕N).
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Because Ii∕𝜋i − 1 given N is design unbiased, by the conditioning argument, the covariance of
n1∕2N−1 ∑N

i=1{𝛿i(1 + k𝛽∗,i) − 1}ei and the other terms in Equation (A3) is zero. This completes the
proof for the statement in Remark 1.

A4 Le Cam's third Lemma
Consider two sequences of probability measures (Q(N))∞N=1 and (P(N))∞N=1. Assume that under P(N),
a statistic TN and the likelihood ratios dQ(N)∕dP(N) satisfy(

TN
log(dQ(N)∕dP(N))

)
→ 

{(
0

−𝜎2∕2

)
,

(
𝜏2 c
c 𝜎2

)}
in distribution, as N → ∞. Then, under Q(N), TN →  (c, 𝜏2) in distribution, as N → ∞. See Le
Cam and Yang (1990), Bickel, Klaassen, Ritov, and Wellner (1993), and van der Vaart (2000) for
textbook discussions.

A5 Proof for Theorem 2
Let P be the distribution of (xi, yi, 𝛿i, Ii), for i = 1,… ,N, induced by the marginal distribution of
xi, the conditional distribution of yi given xi, the conditional distribution of 𝛿i given (xi, yi), and
the conditional distribution of Ii given (xi, yi, 𝛿i). Consider P to be restricted by the moment con-
dition through the predictive mean function Equation (5) with the true parameter value 𝛽∗. The
consistent estimator 𝛽 is the solution to the normalized estimating equation

SN(𝛽) =
n1∕2

N

N∑
i=1

Ii

𝜋i
𝛿ig(xi; 𝛽){yi − m(xi; 𝛽)} = 0. (A5)

To discuss the asymptotic properties of 𝜇̂PMM(𝛽), we rely on Le Cam's third lemma and
consider a parametric model P𝛽 defined locally around 𝛽∗ with a density

exp{n1∕2(𝛽 − 𝛽∗)T𝜏𝛽∗V−1
s SN(𝛽∗) − 2−1n(𝛽 − 𝛽∗)TΛ−1(𝛽 − 𝛽∗)}

E[exp{n1∕2(𝛽 − 𝛽∗)T𝜏𝛽∗V−1
s SN(𝛽∗) − 2−1n(𝛽 − 𝛽∗)TΛ−1(𝛽 − 𝛽∗)}]

. (A6)

Because under P𝛽∗, SN(𝛽∗) →  (0,Vs) in distribution, the normalizing constant in the
denominator converges to 1 as n → ∞. The Fisher information under the parametric model
Equation (A6) is nΛ−1. Therefore, 𝛽 is efficient under Equation (A6).

We now consider sequences that are local to 𝛽∗, 𝛽N = 𝛽∗ + n−1/2h, indexed by N. In our con-
text, we have the population size N goes to infinity with sample size n. Consider (xi, yi, 𝛿i, Ii),
for i = 1,… ,N, with the local shift P𝛽N (Bickel et al., 1993). We make the following regularity
assumption:

Assumption A3. (i) The superpopulation model is regular (Bickel et al., 1993, pp. 12–13); (ii)
under P𝛽N : SN(𝛽N) →  (0,Vs) in distribution, as n → ∞; (iii) 𝜏𝛽 is nonsingular around 𝛽∗, and
n1∕2(𝛽 − 𝛽N) = 𝜏−1

𝛽∗
SN(𝛽N) + op(1); (iv) for all bounded continuous functions h(x, y, 𝛿, I), the condi-

tional expectation E𝛽N{h(x, y, 𝛿, I) | x, 𝛿 = 1} converges in distribution to E{h(x, y, 𝛿, I) | x, 𝛿 = 1},
where E𝛽N denotes the expectation taken with respect to P𝛽N .

We now sketch a heuristic proof for Theorem 2.
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Under Equation (A6), the likelihood ratio under P𝛽N is

log(dP𝛽∗∕dP𝛽N ) = −hT𝜏𝛽∗V−1
s SN(𝛽∗) +

1
2

hTΛ−1h + op(1)

= −hT𝜏𝛽∗V−1
s SN(𝛽N) −

1
2

hTΛ−1h + op(1),

where the second equality follows by the Taylor expansion of SN(𝛽∗) at 𝛽N .
We can derive that under P𝛽N ,

⎛⎜⎜⎝
n1∕2{𝜇̂PMM(𝛽N) − 𝜇(𝛽N)}

n1∕2(𝛽 − 𝛽N)
log(dP𝛽∗∕dP𝛽N )

⎞⎟⎟⎠ → 

⎧⎪⎨⎪⎩
⎛⎜⎜⎝

0
0

−1
2

hTΛ−1h

⎞⎟⎟⎠ ,
⎛⎜⎜⎝

V1 𝛾T
1 𝜏

−1
𝛽∗

−𝛾T
1 V−1

s 𝜏𝛽∗h
𝜏−1
𝛽∗
𝛾1 Λ −h

−hT𝜏𝛽∗V−1
s 𝛾1 −hT hTΛ−1h

⎞⎟⎟⎠
⎫⎪⎬⎪⎭ (A7)

in distribution, as n → ∞. Herein, we write 𝜇 = 𝜇(𝛽N) to reflect its dependence on 𝛽N . We then
express 𝜇(𝛽N) = 𝜇(𝛽∗) + 𝛾T

2 (n
−1∕2h) + o(n−1∕2), and use the shorthand 𝜇 for 𝜇(𝛽∗).

By Le Cam's third lemma, under P𝛽∗ , we have(
n1∕2{𝜇̂PMM(𝛽N) − 𝜇}

n1∕2(𝛽 − 𝛽N)

)
→ 

{(
−𝛾T

1 V−1
s 𝜏𝛽∗h − 𝛾T

2 h
−h

)
,

(
V1 𝛾T

1 𝜏
−1
𝛽∗

𝜏−1
𝛽∗
𝛾1 Λ

)}
in distribution, as n → ∞. Replacing 𝛽N by 𝛽∗ + n−1/2h yields that under P𝛽∗ ,(

n1∕2{𝜇̂PMM(𝛽∗ + n−1∕2h) − 𝜇}
n1∕2(𝛽 − 𝛽∗)

)
→ 

{(
−𝛾T

1 V−1
s 𝜏𝛽∗h − 𝛾T

2 h
0

)
,

(
V1 𝛾T

1 𝜏
−1
𝛽∗

𝜏−1
𝛽∗
𝛾1 Λ

)}
in distribution, as n → ∞.

Heuristically, if the normal distribution was exact, then

n1∕2{𝜇̂ PMM(𝛽∗ + n−1∕2h) − 𝜇}|n1∕2(𝛽 − 𝛽∗) = h ∼  (−𝛾T
2 h,V1 − 𝛾T

1 V−1
s 𝛾1). (A8)

Given n1∕2(𝛽 − 𝛽∗) = h, we have 𝛽∗ + n−1∕2h = 𝛽, and hence 𝜇̂PMM(𝛽∗ + n−1∕2h) = 𝜇̂PMM(𝛽).
Integrating Equation (A8) over the asymptotic distribution of n1∕2(𝛽 − 𝛽∗), we derive

n1∕2{𝜇̂ PMM(𝛽) − 𝜇} ∼  (0,V1 − 𝛾T
1 V−1

s 𝛾1 + 𝛾T
2 Λ𝛾2). (A9)

The formal technique to derive Equation (A9) can be find in Andreou and Werker (2012).
Equation (A9) gives the result in Theorem 2.

In the following, we provide the proof to Equation (A7). Asymptotic normality of
n1∕2{𝜇̂PMM(𝛽N) − 𝜇} under P𝛽N follows from Theorem 1. Asymptotic joint normality of n1∕2(𝛽 −
𝛽N) and log(dP𝛽∗∕dP𝛽N ) follows from Assumption A3. Therefore, the remaining is to show that,
under P𝛽N : (

DN(𝛽N)
SN(𝛽N)

)
→ 

{(
0
0

)
,

(
V1 𝛾

T
1

𝛾1 Vs

)}
(A10)

in distribution, as n → ∞. To prove Equation (A10), consider the linear combination c1DN(𝛽N) +
cT

2 SN(𝛽N), which has the same limiting distribution as
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CN = c1
n1∕2

N

N∑
i=1

(
Ii

𝜋i
− 1

)
m(xi; 𝛽N) + c1

n1∕2

N

N∑
i=1

(
Ii

𝜋i
− 1

)
𝛿i(1 + k𝛽N ,i){yi − m(xi; 𝛽N)}

+cT
2

n1∕2

N

N∑
i=1

(
Ii

𝜋i
− 1

)
𝛿ig(xi; 𝛽N){yi − m(xi; 𝛽N)},

given that nN−1 = o(1).
We analyze CN using the martingale theory. First, we rewrite CN =

∑N
k=1 𝜉N,k, where

𝜉N,k = c1
n1∕2

N

(
Ik

𝜋k
− 1

)
m(xk; 𝛽N) + c1

n1∕2

N

(
Ik

𝜋k
− 1

)
𝛿k(1 + k𝛽N ,k){yk − m(xk; 𝛽N)}

+cT
2

n1∕2

N

(
Ik

𝜋k
− 1

)
𝛿kg(xk; 𝛽N){yk − m(xk; 𝛽N)}.

Consider the 𝜎-fields N,k = 𝜎{x1,… , xN , 𝛿1,… , 𝛿N , y1,… , yk, I1,… , Ik} for 1 ≤ k ≤ N. Then,{ i∑
k=1

𝜉N,k,N,i, 1 ≤ i ≤ N}

}

is a martingale for each N ≥ 1. Therefore, the limiting distribution of CN can be studied using
the martingale central limit theorem (Billingsley, 1995, theorem 35.12). Under Assumption 4,
and the fact that k𝛽N ,k has uniformly bounded moments, it follows that

∑N
k=1 E𝛽N (|𝜉N,k|2+𝛿) → 0

for some 𝛿 > 0. It then follows that Lindeberg's condition in Billingsley's theorem holds. As
a result, we obtain that under P𝛽N , CN →  (0, 𝜎2) in distribution, as n → ∞, where 𝜎2 =
plim

∑N
k=1 E𝛽N (𝜉

2
N,k|N,k−1). Assumption A3 further implies the following expressions:

𝜎2 = plim
N∑

k=1
E𝛽N (𝜉

2
N,k|N,k−1)

= c2
1plim n

N2

N∑
k=1

E𝛽N

[{(
Ik

𝜋k
− 1

)
m(xk; 𝛽N)

}2|N,k−1

]

+c2
1plim n

N2

N∑
k=1

E𝛽N

([(
Ik

𝜋k
− 1

)
𝛿k(1 + k𝛽N ,k){yk − m(xk; 𝛽N)}

]2|N,k−1

)

+2cT
2 plim n

N2

N∑
k=1

E𝛽N

[(
Ik

𝜋k
− 1

)2

𝛿k(1 + k𝛽N ,k)g(xk; 𝛽N){yk − m(xk; 𝛽N)}2|N,k−1

]
c1

+cT
2 plim n

N2

N∑
k=1

E𝛽N

[(
Ik

𝜋k
− 1

)2

𝛿kg(xk; 𝛽N)g(xk; 𝛽N)T{yk − m(xk; 𝛽N)}2|N,k−1

]
c2

= c2
1plim n

N2 varp

(∑
k∈A

mk

𝜋k

)
+ c2

1plim n
N2

N∑
k=1

1 − 𝜋k

𝜋k
𝛿k(1 + k𝛽∗,k)2𝜎2(xk)

+2cT
2 plim n

N2

N∑
k=1

1 − 𝜋k

𝜋k
𝛿k(1 + k𝛽∗,k)g(xk; 𝛽∗)𝜎2(xk)c1



YANG and KIM 859

+cT
2 plim n

N2

N∑
k=1

1 − 𝜋k

𝜋k
𝛿kg(xk; 𝛽∗)g(xk; 𝛽∗)T𝜎2(xk)c2

= c2
1V m + c2

1V e + 2cT
2𝛾1c1 + cT

2 Vsc2.

By the martingale central limit theorem, under P𝛽N , Equation (A10) follows.

A6 Proof for Theorem 4
The replication method implicitly induces replication weights 𝜔∗

i and random variables ui such
that E∗(𝜔∗

i ui) = N−1𝜋−1
i and var∗(𝜔∗

i ui) = N−2(1 − 𝜋i)𝜋−2
i , for i = 1,… ,N, where E∗(⋅) and var∗(⋅)

denote the expectation and variance for the resampling given the observed data. For example,
in delete-1 jackknife under probability proportional to size sampling with nN−1 = o(1), we
have 𝜔(k)

i = (n − 1)−1n𝜔i if i ≠ k, and 𝜔(k)
k = 0. Then, the induced random variables ui follows a

two-point mass distribution as

ui =

{
1, with probability n−1

n
,

0, with probability 1
n
,

and weights 𝜔∗
i = (n − 1)−1n𝜔i. It is straightforward to verify that E∗(𝜔∗

i ui) = 𝜔i = N−1𝜋−1
i and

var∗{(𝜔∗
i ui)2} = (n − 1)−1𝜔2

i ≈ n−1N−2(1 − 𝜋i)𝜋−2
i .

The kth replicate of 𝛽, 𝛽(k), can be viewed as one realization of 𝛽∗ which is the solution to the
estimating equation

S∗
N(𝛽) = n1∕2

∑
i∈A

𝜔∗
i ui𝛿ig(xi; 𝛽){yi − m(xi; 𝛽)} = 0. (A11)

Let P∗ be the distribution of z∗i = (xi, yi, 𝛿i, Ii, 𝜔
∗
i ui), for i = 1,… ,N, given the observed data

induced by bootstrap resampling satisfying

E∗{S∗
N(𝛽)} = n1∕2E∗

[∑
i∈A

𝜔∗
i ui𝛿ig(xi; 𝛽){yi − m(xi; 𝛽)}

]
= n1∕2

N
∑
i∈A

1
𝜋i
𝛿ig(xi; 𝛽){yi − m(xi; 𝛽)} = 0,

and

E∗{S∗
N(𝛽)S

∗
N(𝛽)

T} = E∗[{S∗
N(𝛽) − SN(𝛽)}{S∗

N(𝛽) − SN(𝛽)}T]

= nE∗

[∑
i∈A

(
𝜔∗

i ui −
1

N𝜋i

)2

𝛿ig(xi; 𝛽)g(xi; 𝛽)T{yi − m(xi; 𝛽)}2

]
= n

N2

∑
i∈A

1 − 𝜋i

𝜋2
i

𝛿ig(xi; 𝛽)g(xi; 𝛽)T{yi − m(xi; 𝛽)}2.

We consider an auxiliary parametric model P𝛽 defined locally around 𝛽 with a density

exp{n1∕2(𝛽 − 𝛽)T𝜏𝛽∗V−1
s S∗

N(𝛽) − 2−1n(𝛽 − 𝛽)TΛ−1(𝛽 − 𝛽)}

E∗[exp{n1∕2(𝛽 − 𝛽)T𝜏𝛽∗V−1
s S∗

N(𝛽) − 2−1n(𝛽 − 𝛽)TΛ−1(𝛽 − 𝛽)}]
. (A12)
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Consider sequences that are local to 𝛽, 𝛽∗N = 𝛽 + n−1∕2h, indexed by N, and z∗i , for i = 1,… ,N,
with the local shift P𝛽∗N . We make the following regularity assumptions:

Assumption A4. (i) Model Equation (A12) is regular; (ii) under P𝛽∗N : S∗
N(𝛽

∗
N) →  (0,Vs) in

distribution, as n → ∞; (iii) n1∕2(𝛽∗ − 𝛽∗N) = 𝜏−1
𝛽∗

S∗
N(𝛽

∗
N) + op(1); (iv) for all bounded continuous

functions h(z∗i ), the conditional expectation E∗
𝛽∗N
{h(z∗i )} converges in distribution to E∗

𝛽
{h(z∗i )} ,

where E𝛽∗N is the expectation under P𝛽∗N .

Under Equation (A12), the likelihood ratio under P𝛽∗N is

log(dP𝛽∕dP𝛽∗N ) = −hT𝜏𝛽∗V−1
s S∗

N(𝛽) +
1
2

hT𝜏𝛽∗V−1
s 𝜏𝛽∗h + op(1)

= −hT𝜏𝛽∗V−1
s S∗

N(𝛽
∗
N) −

1
2

hT𝜏𝛽∗V−1
s 𝜏𝛽∗h + op(1),

where the second equality follows by the Taylor expansion of S∗
N(𝛽) at 𝛽∗N .

The kth replication of 𝜇̂PMM(𝛽), 𝜇̂(k)
PMM(𝛽(k)), can be viewed as one realization of

𝜇̂∗
PMM(𝛽∗) =

∑
i∈A

𝜔∗
i ui[m(xi; 𝛽∗) + 𝛿i(1 + k

𝛽
∗
,i){yi − m(xi; 𝛽∗)}]. (A13)

We can derive that under P𝛽∗N , the sequence [n1∕2{𝜇̂∗
PMM(𝛽∗N) − 𝜇̂PMM(𝛽∗N)} n1∕2(𝛽∗ − 𝛽∗N)

T

log(dP𝛽∕dP𝛽∗N )]T has the same limiting distribution as in Equation (A7). Then, following the same
argument in the Proof of Theorem 2, we can obtain that the asymptotic conditional variance of
n1∕2𝜇̂∗

PMM(𝛽∗), given the observed data, is V2.
The remaining is to show that, under P𝛽∗N given the observed data:(

n1∕2{𝜇̂∗
PMM(𝛽∗N) − 𝜇̂PMM(𝛽∗N)}

S∗
N(𝛽

∗
N)

)
→ 

{(
0
0

)
,

(
V1 𝛾

T
1

𝛾1 Vs

)}
(A14)

in distribution, as n → ∞. To prove Equation (A14), given the observed data, consider the
linear combination c1n1∕2{𝜇̂∗

PMM(𝛽∗N) − 𝜇̂PMM(𝛽∗N)} + cT
2 S∗

N(𝛽
∗
N), which has the same limiting dis-

tribution as

C∗
N = c1n1∕2

N∑
i=1

Ii

(
𝜔∗

i ui −
1

N𝜋i

)
m(xi; 𝛽∗N)

+c1n1∕2
N∑

i=1
Ii

(
𝜔∗

i ui −
1

N𝜋i

)
𝛿i(1 + k𝛽∗N ,i){yi − m(xi; 𝛽∗N)}

+cT
2 n1∕2

N∑
i=1

Ii

(
𝜔∗

i ui −
1

N𝜋i

)
𝛿ig(xi; 𝛽∗N){yi − m(xi; 𝛽∗N)}.

This is because under P𝛽∗N , the extra term in C∗
N compared with c1n1∕2{𝜇̂∗

PMM(𝛽∗N) −
𝜇̂PMM(𝛽∗N)} + cT

2 S∗
N(𝛽

∗
N) is

n1∕2
N∑

i=1

Ii

N𝜋i
𝛿ig(xi; 𝛽∗N){yi − m(xi; 𝛽∗N)} = n1∕2

N

N∑
i=1

Ii

𝜋i
𝛿ig(xi; 𝛽){yi − m(xi; 𝛽)} + Op(𝛽∗N − 𝛽)

= 0 + Op(n−1∕2) = op(1).
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We analyze C∗
N using the martingale theory. First, we rewrite C∗

N =
∑N

k=1 𝜉
∗
N,k, where

𝜉∗N,k = c1n1∕2Ik

(
𝜔∗

kuk −
1

N𝜋i

)
m(xk; 𝛽∗N) + c1n1∕2Ik

(
𝜔∗

kuk −
1

N𝜋i

)
𝛿k(1 + k𝛽∗N ,k){yk − m(xk; 𝛽∗N)}

+cT
2 n1∕2Ik

(
𝜔∗

kuk −
1

N𝜋i

)
𝛿kg(xk; 𝛽∗N){yk − m(xk; 𝛽∗N)},

for 1 ≤ k ≤ N. Consider the 𝜎-fields

∗
N,k = 𝜎{x1,… , xN , I1,… , IN , 𝛿1,… , 𝛿N , y1,… , yN , 𝜔

∗
1u1,… , 𝜔∗

kuk}

for 1 ≤ k ≤ N. Then,
{∑i

k=1 𝜉
∗
N,k,

∗
N,i, 1 ≤ i ≤ N

}
is a martingale for each N ≥ 1. As a result, we

obtain that under P𝛽∗N , C∗
N →  (0, 𝜎̃2) in distribution, as n → ∞, where

𝜎̃2 = plim
N∑

k=1
E∗
𝛽∗N
(𝜉∗2

N,k|N,k−1)

= c2
1plimn

N∑
k=1

E∗
𝛽∗N

[{
Ik

(
𝜔∗

kuk −
1

N𝜋i

)
m(xk; 𝛽∗N)

}2|N,k−1

]

+c2
1plimn

N∑
k=1

E∗
𝛽∗N

([
Ik

(
𝜔∗

kuk −
1

N𝜋i

)
𝛿k(1 + k𝛽∗N ,k){yk − m(xk; 𝛽∗N)}

]2|N,k−1

)

+2cT
2 plimn

N∑
k=1

E∗
𝛽∗N

[
Ik

(
𝜔∗

kuk −
1

N𝜋i

)2

𝛿k(1 + k𝛽∗N ,k)g(xk; 𝛽∗N){yk − m(xk; 𝛽∗N)}
2c1|N,k−1

]

+cT
2 plimn

N∑
k=1

E∗
𝛽∗N

[
Ik

(
𝜔∗

kuk −
1

N𝜋i

)2

𝛿kg(xk; 𝛽∗N)g(xk; 𝛽∗N)
T{yk − m(xk; 𝛽∗N)}

2|N,k−1

]
c2

= c2
1plim n

N2

N∑
k=1

Ik(1 − 𝜋k)
𝜋2

k

m(xk; 𝛽)2 + c2
1plim n

N2

N∑
k=1

Ik(1 − 𝜋k)
𝜋2

k

𝛿k(1 + k𝛽,k)
2{yk − m(xk; 𝛽)}2

+2cT
2 plim n

N2

N∑
k=1

Ik(1 − 𝜋k)
𝜋2

k

𝛿k(1 + k𝛽,k)g(xk; 𝛽){yk − m(xk; 𝛽)}2c1

+cT
2 plim n

N2

N∑
k=1

Ik(1 − 𝜋k)
𝜋2

k

𝛿kg(xk; 𝛽)g(xk; 𝛽)T{yk − m(xk; 𝛽)}2c2

= c2
1plim n

N2

N∑
k=1

1 − 𝜋k

𝜋k
m(xk; 𝛽∗)2 + c2

1plim n
N2

N∑
k=1

1 − 𝜋k

𝜋k
𝛿k(1 + k𝛽∗,k)2𝜎2(xk)

+2cT
2 plim n

N2

N∑
k=1

1 − 𝜋k

𝜋k
𝛿k(1 + k𝛽∗,k)g(xk; 𝛽∗)𝜎2(xk)c1

+cT
2 plim n

N2

N∑
k=1

1 − 𝜋k

𝜋k
𝛿kg(xk; 𝛽∗)g(xk; 𝛽∗)T𝜎2(xk)c2.

Therefore, by the martingale central limit theorem, conditional on the observed data under
P𝛽∗N , Equation (A14) follows. This completes the proof.


