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Abstract
Censored survival data are common in clinical trial studies. We propose a uni-
fied framework for sensitivity analysis to censoring at random in survival data
using multiple imputation and martingale, called SMIM. The proposed frame-
work adopts the 𝛿-adjusted and control-based models, indexed by the sensitiv-
ity parameter, entailing censoring at random and a wide collection of censor-
ing not at random assumptions. Also, it targets a broad class of treatment effect
estimands defined as functionals of treatment-specific survival functions, taking
into account missing data due to censoring. Multiple imputation facilitates the
use of simple full-sample estimation; however, the standard Rubin’s combining
rulemay overestimate the variance for inference in the sensitivity analysis frame-
work. We decompose the multiple imputation estimator into a martingale series
based on the sequential construction of the estimator and propose the wild boot-
strap inference by resampling themartingale series. The new bootstrap inference
has a theoretical guarantee for consistency and is computationally efficient com-
pared to the nonparametric bootstrap counterpart.We evaluate the finite-sample
performance of the proposed SMIM through simulation and an application on an
HIV clinical trial.

KEYWORDS
delta adjustment, jump-to-reference, restrictive mean survival time, restrictive mean time loss,
wild-bootstrap

1 INTRODUCTION

Censored survival outcomes are common in clinical trial
research of chronic diseases. Three assumptions about the
censoringmechanismhave beenproposed: censoring com-
pletely at random (CCAR), censoring at random (CAR),
and censoring not at random (CNAR). Common survival
analysis methods assume CCAR and CAR that patients
censored at 𝑡 and patients uncensored at 𝑡 with the same
history have the same distribution of the entire current
and future variables. This assumption will be violated if
sicker subjects are more likely to withdraw from the study,
even after accounting for their observed history, leading

to CNAR. Unfortunately, the censoring assumptions are
often not testable empirically. Inappropriate assumptions
may lead to biased conclusions. Regulatory agencies, such
as the FDA, and the national research council (NRC, 2010)
recommend sensitivity analyses to assess the robustness of
study conclusions to unverifiable assumptions.
In this article, we distinguish different reasons for

censoring including administrative reasons and nonad-
ministrative reasons. For the latter, we consider patient
premature dropout, which could be a case of CNAR. Many
sensitivity analysis approaches have been developed for
CNAR survival data. One approach is to specify a range
of the residual dependence of the hazard of censoring
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times on the event times for the sensitivity parameter;
see, for example, Rotnitzky et al. (2001), Scharfstein and
Robins (2002), and Rotnitzky et al. (2007). A different
approach is to directly specify patternmixture models (Lit-
tle, 1993) for event times for censored and uncensored
patients and impute the missing outcomes for the cen-
sored subjects. Zhao et al. (2014) considered Kaplan–Meier
curves to impute data, which, however, cannot include
covariates. Alternatively, the 𝛿-adjusted (Jackson et al.,
2014; Lipkovich et al., 2016) and control-based (Lu et al.,
2015; Atkinson et al., 2019)models are flexible to accommo-
date auxiliary information for sensitivity analysis of unver-
ifiable missing data assumptions. Due to the transparency,
these models have been widely used in applied research to
handle missing data (e.g., NRC, 2012; Ratitch et al., 2013).
For generality, we consider a class of 𝛿-adjusted/control-
based Coxmodels for censoring due to premature dropout,
indexed by sensitivity parameter 𝛿. In 𝛿-adjustedmodels, 𝛿
is a parameter comparing the outcome distribution of the
subjects after nonadministrative censoring with the out-
come distribution of the same subjects had they remained
on study. Our framework extends readily to multiple rea-
sons by adopting different 𝛿’s for different groups. Control-
based models assume that the event hazard for censored
subjects in the active treatment group is higher (more con-
servative) or similar to those in the control group (Gao
et al., 2017). In superiority trials, the control-based models
are appealing to clinical scientists since they would proce-
dure conservative conclusions about the treatment effect
if the experimental treatment is hypothesized to be better
than the control treatment.
Another important question arises regarding the

estimand of interest for treatment comparison in the pres-
ence of missing data. Following the International Council
for Harmonization (ICH) E9 (R1) addendum, estimands
should be clearly defined that describe the quantity to be
estimated including how to handle intercurrent events
such as premature dropout (ICH, 2019). In this article, we
consider a treatment policy strategy, which evaluates treat-
ment effect for all randomized patients on time to event
endpoint regardless of the deviation of treatment such as
taking rescue medication or treatment switch. When the
time to event data are censored due to premature dropout,
the primary analysis often assumes CAR which implicitly
assumes that the hazard function for a dropout patient is
the same as that for a non-dropout patient after adjusting
for baseline variables included in the model. For survival
sensitivity analysis using 𝛿-adjusted models, Lipkovich
et al. (2016) considered a marginal proportional hazards
parameter, an additional structural assumption entailing
a constant ratio of the hazard rates between the treatment
groups. However, this parameter may be misleading
(Hernán, 2010) if the proportional hazards assumption

is violated as in the 𝛿-adjusted models. Alternatively, we
consider a broad class of treatment effect estimands
defined as functionals of the treatment-specific survival
functions, such as the restrictedmean survival time (RMST,
Chen and Tsiatis, 2001), that is, the expectation of survival
time restricted to a finite time 𝜏. Instead of focusing on a
constant hazards ratio, the RMST provides a time-evolving
profile of survival times for evaluating the treatment
effect, without requiring additional model assumptions.
To implement sensitivity analysis, multiple imputation

(MI) is the most popular method. It consists of three steps:
first, fill the missing values by plausible values to cre-
ate multiple complete data sets; second, apply standard
full-sample methods to analyze the multiple imputed data
sets; and third, use Rubin’s combining rule to summarize
the results for inference. Because of its intuitive appeal,
MI is recommended by the NRC as one of its preferred
approaches to addressing missing data (NRC, 2012). How-
ever, many studies have realized that Rubin’s variance esti-
mator is not always consistent for general purposes (e.g.,
Yang and Kim, 2016). A sufficient condition for the validity
of the MI inference is the congeniality condition. Roughly
speaking, it requires the imputation model to be correctly
specified and the subsequent analysis to be compatible
with the imputationmodel. Evenwith a correctly specified
imputationmodel, Yang and Kim (2016) showed that MI is
not necessarily congenial for the method of moments esti-
mation, so common statistical procedures may be incom-
patible with MI. This phenomenon becomes pronounced
for adopting MI for general sensitivity analysis in clini-
cal trials.
Lu et al. (2015) and Liu and Pang (2016) demon-

strated that Rubin’s combining rule is often conservative
in control-based imputation. To overcome the conserva-
tive of Rubin’s combining rule, several authors suggested
the nonparametric bootstrap to obtain the standard errors
(e.g., Lu et al., 2015); however, the nonparametric boot-
strap requires repeating imputation and analysis for all
bootstrap samples and therefore causes a huge computa-
tion burden. Recently, Guan and Yang (2019) proposed the
wild-bootstrap inference of a martingale representation of
the MI estimator; however, their method is only applica-
ble to continuous or binary outcomes but not censored
survival outcomes. The standard nonparametric bootstrap
requires resampling individual observations and repeating
the imputation and analysis procedures; on the contrary,
the wild-bootstrap uses an auxiliary zero-mean, unit vari-
ance random multiplier on the martingale residuals for
variance estimation without re-imputation.
In this article, we propose a unified framework of sur-

vival sensitivity analysis for a class of functional estimands
via MI. Specifically, the missing event times are imputed
by a 𝛿-adjusted or control-based Cox model for each
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treatment group. We derive a novel martingale represen-
tation of the proposed MI estimator. The martingale rep-
resentation is inspired by the sequential construction of
theMI estimator, namely,model parameter estimation and
imputations. This new representation invokes the easy-
to-implement wild-bootstrap inference with a theoretical
guarantee for consistency. Moreover, unlike the nonpara-
metric bootstrap, we do not require repeating imputation
and analysis for the bootstrap resamples and therefore
largely reduce the computation burden. The new SMIM
(Survival sensitive analysis usingMultiple Imputation and
Martingale) framework is fairly flexible to accommodate
a wide collection of censoring assumptions and treatment
effect estimands.

2 SETUP

2.1 Notation and estimands

Without loss of generality, we focus on randomized clini-
cal trials that compare a new treatment to a control treat-
ment. We assume that the subjects constitute a random
sample from a larger population. Let 𝑋𝑖 be a vector of
covariates for subject 𝑖, and let 𝐴𝑖 be a binary treatment,
1 for the active treatment and 0 for the control treatment.
Let 𝑇𝑖 and 𝐶𝑖 denote the time to a clinical event and
the time to censoring, respectively. The full set of vari-
ables is 𝐹𝑖 = (𝑋𝑖, 𝐴𝑖, 𝑇𝑖, 𝐶𝑖). In the presence of censoring,
denote 𝑈𝑖 = 𝑇𝑖 ∧ 𝐶𝑖 , where ∧ represents the minimum of
two values, and 𝐼𝑖 = 𝟏(𝑇𝑖 ≤ 𝐶𝑖). To distinguish different
reasons for censoring, denote 𝑅𝑖 = 1 if censoring is due
to administrative reasons and 𝑅𝑖 = 2 if censoring is due
to premature dropout. The observed set of variables is
𝑂𝑖 = {𝑋𝑖, 𝐴𝑖, 𝑈𝑖, 𝐼𝑖, (1 − 𝐼𝑖)𝑅𝑖}. We use 𝑂1∶𝑘 to denote the
𝑘 copies {𝑂1, … , 𝑂𝑘}. For the total of 𝑛 subjects, let 𝑛1 =∑𝑛

𝑖=1
𝐴𝑖 and 𝑛0 =

∑𝑛

𝑖=1
(1 − 𝐴𝑖). Let the treated subjects

be indexed by 𝑖 = 1, … , 𝑛1, and let the control subjects be
indexed by 𝑖 = 𝑛1 + 1, … , 𝑛.
For treatment comparison, define 𝜆𝑎(𝑡) = limℎ→0 ℎ−1ℙ

(𝑡 ≤ 𝑇 < 𝑡 + ℎ ∣ 𝑇 ≥ 𝑡, 𝐴 = 𝑎) and 𝑆𝑎(𝑡) = ℙ (𝑇 ≥ 𝑡 ∣ 𝐴 =

𝑎) as the treatment-specific hazard rate and survival func-
tion at time 𝑡, respectively, for 𝑎 = 0, 1. Under a pro-
portional hazards assumption, one can focus on estimat-
ing the log hazard ratio 𝛽 = log{𝜆1(𝑡)∕𝜆0(𝑡)}. However,
the proportional hazards assumption may be problematic,
especially when two survival curves cross. Alternatively,
we focus on treatment effect estimands defined as func-
tionals of treatment-specific survival distributions, Δ𝜏 =

Ψ𝜏{𝑆1(𝑡), 𝑆0(𝑡)}with someprespecified constant 𝜏. This for-
mulation covers a broad class of estimands favored in the
context of nonproportional hazards; see examples of Δ𝜏

below.

Example 1 (Treatment effect estimands). With a proper
choice of Ψ𝜏(⋅), Δ𝜏 represents the following measures
of treatment effect: (a) the difference in survival at a
fixed time point 𝜏, Δ𝜏 = 𝑆1(𝜏) − 𝑆0(𝜏); (b) the differ-
ence of treatment-specific 𝜏-RMSTs (restrictive mean sur-
vival times) Δ𝜏 = 𝜇1,𝜏 − 𝜇0,𝜏, where 𝜇𝑎,𝜏 = ∫ 𝜏

0
𝑆𝑎(𝑡)d𝑡 for

𝑎 = 0, 1; (c) the difference of weighted 𝜏-RMSTs Δ𝜏 =

∫ 𝜏

0
𝜔(𝑡){𝑆1(𝑡) − 𝑆0(𝑡)}d𝑡, where the nonnegative weight

function 𝜔(𝑡) provides differentiable importance at differ-
ent times; (d) the ratio of 𝜏-RMTLs (restrictive mean time
lost) Δ𝜏 = {𝜏 − ∫ 𝜏

0
𝑆1(𝑡)d𝑡}∕{𝜏 − ∫ 𝜏

0
𝑆0(𝑡)d𝑡}; (e) the differ-

ence of 𝜏th quantiles (e.g., medians) of survivals Δ𝜏 =

𝑞1,𝜏 − 𝑞0,𝜏, where 𝑞𝑎,𝜏 = inf𝑞{𝑆𝑎(𝑞) ≤ 𝜏}.

For identifiability, 𝜏 should be chosen properly. For the
estimands in (a)–(d), we restrict 𝜏 to be smaller than 𝑡min,
the minimum of the largest observed survival times in the
two treatment groups. Similarly, for the 𝜏th quantiles in (e),
we require 𝜏 >max{𝑆0(𝑡min), 𝑆1(𝑡min)}.

2.2 Simple full-sample estimator and
asymptotic linearity

If the event times are fully observed, standard full-sample
estimators can apply. To estimate 𝑆𝑎(𝑡), a simple esti-
mator is the sample proportion �̂�𝑎,𝑛(𝑡) = 𝑛−1

𝑎

∑𝑛

𝑖=1
𝟏(𝐴𝑖 =

𝑎)𝟏(𝑇𝑖 ≥ 𝑡), for 𝑎 = 0, 1. Then, a plug-in estimator of Δ𝜏 is
Δ̂𝜏,𝑛 = Ψ𝜏{�̂�1,𝑛(𝑡), �̂�0,𝑛(𝑡)}.
To establish a unified framework, it is important to note

that Δ̂𝜏,𝑛 is asymptotically linear for all estimands given in
Example 1. Under mild regularity conditions, we have

Δ̂𝜏,𝑛 − Δ𝜏 =

1∑
𝑎=0

∫
𝜏

0

𝜓𝑎(𝑡)
{
�̂�𝑎,𝑛(𝑡) − 𝑆𝑎(𝑡)

}
d𝑡 + 𝑜𝑝(𝑛−1∕2),

(1)
for bounded variation functions 𝜓𝑎(⋅).

Lemma 1 (Asymptotic linear characterizations). For
all estimands in Example 1, the full-sample estima-
tors have the following asymptotic linear character-
izations. (a) For the difference in the survivals at a
fixed time point 𝜏, Δ̂𝜏,𝑛 = �̂�1,𝑛(𝜏) − �̂�0,𝑛(𝜏), correspond-
ing to (1) with 𝜓1(𝑡) = −𝜓0(𝑡) = 𝟏(𝑡 = 𝜏). (b) For the
difference of 𝜏-RMSTs, Δ̂𝜏,𝑛 = ∫ 𝜏

0
{�̂�1,𝑛(𝑡) − �̂�0,𝑛(𝑡)}d𝑡,

corresponding to (1) with 𝜓1(𝑡) = −𝜓0(𝑡) = 1. (c)
For the difference of weighted 𝜏-RMSTs, Δ̂𝜏,𝑛 =

∫ 𝜏

0
𝜔(𝑡){�̂�1,𝑛(𝑡) − �̂�0,𝑛(𝑡)}d𝑡, corresponding to (1) with

𝜓1(𝑡) = −𝜓0(𝑡) = 𝜔(𝑡). (d) For the ratio of 𝜏-RMTLs,
Δ̂𝜏,𝑛 = {𝜏 − ∫ 𝜏

0
�̂�1,𝑛(𝑡)d𝑡}∕{𝜏 − ∫ 𝜏

0
�̂�0,𝑛(𝑡)d𝑡}, corre-

sponding to (1) with 𝜓1(𝑡) = −{𝜏 − ∫ 𝜏

0
𝑆0,𝑛(𝑢)d𝑢}−1 and

𝜓0(𝑡) = −Δ𝜏{𝜏 − ∫ 𝜏

0
𝑆0,𝑛(𝑢)d𝑢}−1. (e) For Δ𝜏 = 𝑞1,𝜏 − 𝑞0,𝜏,
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TABLE 1 Algorithm of multiple imputation

Step MI-1. Create 𝑚 complete data sets by filling in missing
times to event with imputed values generated
from an imputation model.

Specifically, to create the 𝑗th imputed data set,
generate 𝑇

∗(𝑗)

𝑖 from the imputation model for
each missing 𝑇𝑖 .

Step MI-2. Apply a full-sample estimator of Δ𝜏 to each
imputed data set.

Denote the point estimator applied to the 𝑗th
imputed data set by Δ̂

(𝑗)
𝜏 .

Denote the variance estimator applied to the 𝑗th
imputed data set by �̂�(𝑗).

Step MI-3. Use Rubin’s combining rule to summarize the
results from the multiple imputed data sets.

The MI estimator of Δ𝜏 is Δ̂𝜏,mi = 𝑚−1 ∑𝑚

𝑗=1
Δ̂

(𝑗)
𝜏 ,

and
Rubin’s variance estimator is �̂�mi(Δ̂𝜏,mi) =

𝑚+1

(𝑚−1)𝑚

∑𝑚

𝑗=1
(Δ̂

(𝑗)
𝜏 − Δ̂𝜏,mi)

2 +
1

𝑚

∑𝑚

𝑗=1
�̂�(𝑗).

Δ̂𝜏,𝑛 = �̂�1,𝜏 − �̂�0,𝜏, where �̂�𝑎,𝜏 = inf𝑞{�̂�𝑎,𝑛(𝑞) ≤ 𝜏}, cor-
responding to (1) with 𝜓1(𝑡) = {�̇�1(𝑞1,𝜏)}

−1𝟏(𝑡 = 𝑞1,𝜏)

and 𝜓0(𝑡) = −{�̇�0(𝑞0,𝜏)}
−1𝟏(𝑡 = 𝑞0,𝜏), where �̇�𝑎(𝑞) =

d𝑆𝑎(𝑞)∕d𝑞.

2.3 MI and the outline of the proposed
SMIM framework

To facilitate applying full-sample estimators, MI proceeds
as described in Table 1. It is well known that Rubin’s
combining rule may overestimate the variance of the MI
estimator when the full-sample estimators are not self-
efficient. We provide an alternative decomposition of the
MI estimator, which invokes the wild bootstrap for con-
sistent variance estimation for general imputation models
and estimands.
In Step MI-1, we consider 𝛿-adjusted and control-based

Cox imputation models for sensitivity analysis. For exam-
ple, the 𝛿-adjusted Cox model assumes the treatment-
specific hazard rate of failing at time 𝑡 is 𝜆𝑎(𝑡 ∣ 𝑋𝑖)

without premature dropout and 𝛿𝜆𝑎(𝑡 ∣ 𝑋𝑖) after dropout,
for 𝑎 = 0, 1.
Based on the MI with Rubin’s combining rule in Step

MI-3, the variance estimator overestimates the true vari-
ance of Δ̂𝜏,mi. For rectification, we propose awild bootstrap
variance estimator (Wu, 1986) to replace Rubin’s combin-
ing rule; Theorem 2 in Section 4 shows that the proposed
variance estimator is consistent for general imputation
models and treatment effect estimands. Thewild bootstrap

procedure does not require repeating the missing data
imputation step (i.e., StepMI-1) and recalculating the point
estimator (i.e., Step MI-2) using resampling data, there-
fore it is computationally efficient comparedwith the naive
bootstrap.
The wild bootstrap variance estimator is motivated

by a novel martingale representation of the MI estima-
tor. Specifically, we show in Section 3 that the MI esti-
mator of Δ𝜏 can be represented as 𝑛1∕2(Δ̂𝜏,mi − Δ𝜏) =∑(1+𝑚)𝑛

𝑘=1
𝜉𝑛,𝑘 + 𝑜𝑝(1), where the series {

∑𝑘

𝑖=1
𝜉𝑛,𝑖 , 1 ≤ 𝑘 ≤

(1 + 𝑚)𝑛} along with properly defined 𝜎-fields is a martin-
gale array. This representation invokes the wild bootstrap
procedure that provides valid inference of theMI estimator
of Δ𝜏 (Pauly, 2011).

3 DELTA-ADJUSTED AND
CONTROL-BASEDMODELS

3.1 Primary analysis with the CAR
benchmark assumption

To motivate the imputation models for sensitivity
analysis, we first consider a CAR assumption that
𝐶𝑖 ⟂⟂ 𝑇𝑖 ∣ (𝐴𝑖, 𝑋𝑖), analogous to the missingness at ran-
dom assumption (Rubin, 1976) or the coarsening at
random assumption (Tsiatis, 2006). Under CAR, we
have 𝜆𝑎(𝑡 ∣ 𝑋𝑖) = limℎ→0 ℎ−1ℙ(𝑡 ≤ 𝑈𝑖 < 𝑡 + ℎ, 𝐼𝑖 = 1 ∣

𝑈𝑖 ≥ 𝑡, 𝑋𝑖, 𝐴𝑖 = 𝑎), for 𝑎 = 0, 1. Then, we can derive
𝑆𝑎(𝑡 ∣ 𝑋𝑖) = exp{− ∫ 𝑡

0
𝜆𝑎(𝑢 ∣ 𝑋𝑖)d𝑢}.

Following the common survival analysis literature (e.g.,
Chen and Tsiatis, 2001), we posit a conditional treatment-
specific Cox regression with covariate 𝑋𝑖; that is,

𝜆𝑎(𝑡 ∣ 𝑋𝑖) = 𝜆𝑎(𝑡)𝑒𝛽T
𝑎 𝑋𝑖 , (2)

where 𝜆𝑎(𝑡) is an unknown baseline hazard function and
𝛽𝑎 is a vector of unknown parameters for 𝑎 = 0, 1. Impor-
tantly, under model (2), we do not impose the restrictive
proportional hazards assumption on the treatment effect
because both 𝜆𝑎(𝑡) and 𝛽𝑎 can be different for the two treat-
ment groups. Let 𝜃 = {𝜆𝑎(⋅), 𝛽𝑎 ∶ 𝑎 = 0, 1} summarize the
infinite-dimensional parameter in the Cox model. Under
CAR, we can estimate 𝜃 from the standard software such
as “coxph” in R.
We adopt the counting process framework (Andersen

and Gill, 1982) to introduce the estimators and their large
sample properties. Define the counting process 𝑁𝑖(𝑡) =

𝟏(𝑈𝑖 ≤ 𝑡, 𝐼𝑖 = 1) of observing the event and the at-risk pro-
cess 𝑌𝑖(𝑡) = 𝟏(𝑈𝑖 ≥ 𝑡). Let 𝛽𝑎 be the maximum partial
likelihood estimator of 𝛽𝑎, for 𝑎 = 0, 1. We can estimate
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Λ𝑎(𝑡) = ∫ 𝑡

0
𝜆𝑎(𝑢)d𝑢 by the Breslow (1974) estimator

Λ̂𝑎(𝑡) = ∫
𝑡

0

�̂�𝑎(𝑢)d𝑢,

�̂�𝑎(𝑢)d𝑢 =

∑𝑛

𝑗=1
𝟏(𝐴𝑗 = 𝑎)d𝑁𝑗(𝑢)∑𝑛

𝑗=1 𝟏(𝐴𝑗 = 𝑎)𝑒𝛽T
𝑎 𝑋𝑗 𝑌𝑗(𝑢)

,

and estimate 𝑆𝑎(𝑡 ∣ 𝑋𝑖) by �̂�𝑎(𝑡 ∣ 𝑋𝑖) = exp{−Λ̂𝑎(𝑡)𝑒𝛽T
𝑎 𝑋𝑖 }.

3.2 Sensitivity analyses with 𝜹-adjusted
and control-based models

CAR is not empirically testable and may be question-
able for censoring due to premature dropout. We pro-
pose sensitive analysis using 𝛿-adjusted and control-based
models.

Assumption 1 (Delta-adjusted Cox model). The
treatment-specific hazard rate of failing at time 𝑡 is
𝜆𝑎(𝑡 ∣ 𝑋𝑖) given in (2) without premature dropout and is
𝛿𝜆𝑎(𝑡 ∣ 𝑋𝑖) after premature dropout (𝑅𝑖 = 2), for 𝑎 = 0, 1,
where 𝛿 > 0.

It can be seen that 𝛿 quantifies the degree of the depar-
ture from the CAR assumption. If 𝛿 = 1, we have CAR.
If 𝛿 > 1, the hazard increases after dropout, indicating a
worsening of condition after dropout. If 𝛿 < 1, the hazard
decreases after dropout, indicating an improvement of con-
dition after dropout. The larger the magnitude of 𝛿, the
larger the deviation from CAR. Without retrieving infor-
mation for the nonadministratively censored subjects, 𝛿

cannot be ascertained. Therefore, it is recommended to
vary 𝛿 in a wide range of plausible values for sensitivity
analysis. To fix ideas, we use the same 𝛿 for both treat-
ment groups, but it is easy to accommodate different 𝛿 val-
ues depending on the worsening/improvement condition
for different treatment groups. For example, if the control
group is a placebo group, it is reasonable to choose 𝛿 to
be one for the control subjects who were nonadministra-
tively censored. We illustrate the use of different 𝛿 for dif-
ferent treatment groups in Sections 5 (an application) and
S7 (simulation studies).
Control-based models (e.g., Carpenter et al., 2013) are

another popular and appealing class of sensitivity models
because of their reduced bias in favor of the experimental
treatment.

Assumption 2 (Control-based Cox model). The
treatment-specific hazard rate of failing at time 𝑡 is

𝜆𝑎(𝑡 ∣ 𝑋𝑖) given in (2) for 𝑎 = 0, 1 and is 𝛿𝜆0(𝑡 ∣ 𝑋𝑖) after
dropout (𝑅𝑖 = 2) for the treated, where 𝛿 ≤ 1.

The control-based Cox model with 𝛿 = 1 becomes the
jump-to-referencemodel (Atkinson et al., 2019). It assumes
that censored subjects on the active arm follow the same
distribution as similar subjects in the control group after
the censored time. This model is, for example, plausi-
ble for superiority trials if subjects on the control arm
received the standard care, and censoring on the active
arm is because subjects revert to the standard of care. For
generality, we also allow 𝛿 to be less than 1, such that
the treatment effect can be bracketed by the treatment
effect under CAR and that for the control arm (Lu et al.,
2015).
In fact, censoring due to dropout can be interpreted

as a time-dependent binary covariate, and 𝛿-adjusted and
control-based sensitivity models entail time-dependent
Cox models. Let the history of the information up to
time 𝑡 be𝐻𝑖(𝑡) = {𝑋𝑖, 𝑅𝑖, 𝑁𝑖(𝑢), 𝑌𝑖(𝑢) ∶ 𝑢 < 𝑡}. Because we
use 𝑅𝑖 = 2 to indicate premature dropout, Assumption 1
describes the time-dependent Cox model

𝜆1{𝑡 ∣ 𝐻𝑖(𝑡); 𝛿, 𝜃} = 𝜆1(𝑡)𝛿
𝟏(𝑅𝑖=2 & 𝑡>𝑈𝑖)𝑒𝛽T

1
𝑋𝑖 . (3)

Assumption 2 describes the time-dependent Cox model
with the hazard function, for 𝑎 = 0, 1,

𝜆𝑎{𝑡 ∣ 𝐻𝑖(𝑡); 𝛿,𝜃} =

⎧⎪⎪⎨⎪⎪⎩
𝜆0(𝑡)𝑒

𝛽T
0

𝑋𝑖 if 𝑎 = 0,

𝛿𝜆0(𝑡)𝑒
𝛽T

0
𝑋𝑖 if 𝑎 = 1, 𝑅𝑖 = 2, 𝑡 > 𝑈𝑖

𝜆1(𝑡)𝑒
𝛽T

1
𝑋𝑖 otherwise.

,

(4)

The de facto estimand for treatment policy takes into
account the likely attenuation of the treatment effect after
dropout. By (3) and (4), the de facto survival function is
𝑆sen

𝑎 (𝑡) = 𝔼[exp{− ∫ 𝑡

0
𝜆{𝑢 ∣ 𝐻𝑖(𝑢); 𝛿, 𝜃}d𝑢}], for 𝑎 = 0, 1.

Here we use the superscript “sen” to denote either
“𝛿-adj” or “cb” for the delta-adjusted or control-based
sensitivity model. The de facto treatment effect estimand
becomes Δsen

𝜏 = Ψ𝜏{𝑆
sen
1 (𝑡), 𝑆sen

0 (𝑡)}. If the sensitivity
parameter 𝛿 is not one, Δsen

𝜏 differs from Δ𝜏 in general.
By varying 𝛿 over a certain range, Δsen

𝜏 provides valuable
insights into the impact of possible departures from CAR,
allowing an investigator to assess the extent to which
the censoring assumption alters the treatment effect
estimator.
MI requires generating the missing values from the

imputation model in Step MI-1. From (3) or (4), one can
derive the conditional survival function 𝑆𝑎{𝑡 ∣ 𝐻𝑖(𝑡); 𝛿, 𝜃}
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for imputation. Consider the 𝛿-adjusted model for exam-
ple, if a treated subject 𝑖 withdrew from the treatment, the
conditional survival at 𝑡 > 𝑈𝑖 is

𝑆1{𝑡 ∣ 𝐻𝑖(𝑡); 𝛿, 𝜃} = 𝑒
− ∫ 𝑡

𝑈𝑖
𝛿𝜆1(𝑢∣𝑋𝑖)d𝑢

. (5)

Unlike the parametric models, sampling from the semi-
parametric Cox model is difficult. Following Lipkovich
et al. (2016), we introduce a general inverse transform
sampling scheme. Suppose we would like to generate 𝑇∗

𝑖
from (5) for 𝑡 ≥ 𝑈𝑖 . First, generate a random number 𝑢𝑖

from Unif[0, 𝑝𝑖], where 𝑝𝑖 = {𝑆1(𝑈𝑖 ∣ 𝑋𝑖)}
𝛿. Second, solve

{𝑆1(𝑇
∗
𝑖

∣ 𝑋𝑖)}
𝛿 = 𝑢𝑖 for 𝑇∗

𝑖
. Then, we show that given the

observed data 𝑂1∶𝑛,

ℙ
(
𝑇∗

𝑖
≥ 𝑡 ∣ 𝑂1∶𝑛

)
= ℙ

[
{𝑆1(𝑇

∗
𝑖

∣ 𝑋𝑖)}
𝛿 ≤ {𝑆1(𝑡 ∣ 𝑋𝑖)}

𝛿 ∣ 𝑂1∶𝑛

]
= ℙ

[
𝑢𝑖 ≤ {𝑆1(𝑡 ∣ 𝑋𝑖)}

𝛿 ∣ 𝑂1∶𝑛

]
= {𝑆1(𝑡 ∣ 𝑋𝑖)}

𝛿∕𝑝𝑖 = 𝑒
− ∫ 𝑡

𝑈𝑖
𝛿𝜆1(𝑢∣𝑋𝑖)d𝑢

is the target imputation model (5).
In practice,we neednumerical approximations to obtain

𝑇∗
𝑖
. Let 𝑇𝑎,max be the largest observed event time in treat-

ment group 𝑎 for 𝑎 = 0, 1. Because 𝑆𝑎(𝑡 ∣ 𝑋𝑖) is semi-
parametric, �̂�𝑎(𝑡 ∣ 𝑋𝑖) is only available for 𝑡 ≤ 𝑇𝑎,max .
Thus we require 𝜏 to be smaller than �̃�max = 𝑇0,max ∧

𝑇1,max , and then the imputed value 𝑇∗
𝑖
can be truncated

at �̃�max .
To summarize, the MI procedure proceeds as in Table 2,

where Step MI-1-3 and Step MI-1-3’ are used for 𝛿-
adjusted imputation model and control-based imputation
model, respectively.

4 WILD BOOTSTRAP INFERENCE
BASED ONMARTINGALE SERIES

4.1 A novel martingale representation

For variance estimation, the key insight is that the MI esti-
mator is intrinsically created in a sequential manner: first,
the imputation model is fitted based on the observed data;
second, the missing data are drawn from the imputation
model conditioned on the observed data. This conceptual-
ization leads to a martingale representation of the MI esti-
mator by expressing the MI estimator in terms of a series
of random variables that have mean zero conditional on
the sigma-algebra generated from the preceding variables.
We provide heuristic steps below toward linearizing theMI
estimator and forming the proper sigma-algebra and regu-
late details to the Web Appendix.

TABLE 2 Algorithm of sensitivity analysis using 𝛿-adjusted
and control-based imputation models via multiple imputation

Step MI-1-1. Fit a Cox model assuming CAR; denoted by
𝑆𝑎(𝑡 ∣ 𝑋𝑖; �̂�).

Step MI-1-2. For administratively censored subject 𝑖 with
(𝐴𝑖, 𝐼𝑖 , 𝑅𝑖) = (𝑎, 0, 1), compute
𝑝𝑖 = 𝑆𝑎(𝑈𝑖 ∣ 𝑋𝑖; �̂�).

Draw a uniform random value 𝑢𝑖 ∼ Unif[0, 𝑝𝑖].
Impute the event time 𝑇∗

𝑖 as the solution of
𝑢𝑖 = 𝑆𝑎(𝑡 ∣ 𝑋𝑖; �̂�).

Numerically, we use
𝑇∗

𝑖 = arg max𝑡∈ {𝑆𝑎(𝑡 ∣ 𝑋𝑖; �̂�) ≥ 𝑢𝑖}, where  is
the set of realized times to event or censoring
with the largest value being �̃�max .

This will ensure that the imputed event time falls
between the censoring time and �̃�max .

Step MI-1-3. For nonadministratively censored subject 𝑖 with
(𝐴𝑖, 𝐼𝑖 , 𝑅𝑖) = (𝑎, 0, 2), compute
𝑝𝑖 = {𝑆𝑎(𝑈𝑖 ∣ 𝑋𝑖; �̂�)}𝛿 .

Draw a uniform random value 𝑢𝑖 ∼ Unif[0, 𝑝𝑖].
Impute the event time 𝑇∗

𝑖
as the solution of

𝑢𝑖 = {𝑆𝑎(𝑡 ∣ 𝑋𝑖; �̂�)}𝛿 .
Numerically, we use

𝑇∗
𝑖

= arg max𝑡∈ [{𝑆𝑎(𝑡 ∣ 𝑋𝑖; �̂�)}𝛿 ≥ 𝑢𝑖].
Step MI-1-3’. For nonadministratively censored subject 𝑖 with

(𝐴𝑖, 𝐼𝑖 , 𝑅𝑖) = (0, 0, 2), draw 𝑇∗
𝑖
by Step MI-1-3

with 𝑎 = 0 and 𝛿 = 1.
For nonadministratively censored subject 𝑖 with

(𝐴𝑖, 𝐼𝑖 , 𝑅𝑖) = (1, 0, 2), draw 𝑇∗
𝑖
by Step MI-1-3

with 𝑎 = 0 and 𝛿, that is, using the
corresponding control distribution.

We first focus on treatment group 𝑎 = 1. To unify the
notation, let 𝑇

∗(𝑗)
𝑖

denote the 𝑗th imputed value for subject
𝑖 if subject 𝑖was censored and the observed 𝑇𝑖 if we observe
subject 𝑖’s event time. By the imputation mechanism, 𝑇∗(𝑗)

𝑖

follows the conditional survival distribution 𝑆1{𝑡 ∣ 𝐻𝑖(𝑡); �̂�}

for 𝑡 ≥ 𝑈𝑖 , where 𝜃 = {𝜆𝑎(⋅), 𝛽𝑎 ∶ 𝑎 = 0, 1}. Then, for 𝑡 ∈

[0, 𝜏], it is insightful to express

𝑛1∕2
{
�̂�1,mi(𝑡) − 𝑆sen

1 (𝑡)
}

=
𝑛1∕2

𝑚𝑛1

𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐴𝑖

{
𝟏
(
𝑇

∗(𝑗)
𝑖

≥ 𝑡
)

− 𝑆sen
1 (𝑡)

}
=

𝑛1∕2

𝑚𝑛1

𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐴𝑖{1 − 𝑌𝑖(𝑡)}

×
[
𝟏(𝑇

∗(𝑗)
𝑖

≥ 𝑡) − 𝑆1{𝑡 ∣ 𝐻𝑖(𝑡); �̂�}
]

(6)

+
𝑛1∕2

𝑛1

𝑛∑
𝑖=1

𝐴𝑖

[
𝑆1{𝑡 ∣ 𝐻𝑖(𝑡); �̂�} − 𝑆sen

1 (𝑡)
]
. (7)
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Here, we use the total sample size 𝑛 for scaling; we will use
the same scaling for the estimators for the control group
and the treatment effect.
We analyze the two terms in (6) and (7), separately.

First, because the imputations are independent given the
observed data, it follows that the individual terms in (6) are
independentmean-zero terms conditional on the observed
data. Second, because the term in (7) depends on �̂�, by
exploiting the counting process theory, we express

𝑛1∕2

𝑛1

𝑛∑
𝑖=1

𝐴𝑖

[
𝑆1{𝑡 ∣ 𝐻𝑖(𝑡); �̂�} − 𝑆sen

1 (𝑡)
]

=
𝑛1∕2

𝑛1

𝑛∑
𝑖=1

𝐴𝑖

[
𝑌𝑖(𝑡) + {1 − 𝑌𝑖(𝑡)}(1 − 𝐼𝑖)𝑆1{𝑡 ∣ 𝐻𝑖(𝑡); 𝜃}

− 𝑆sen
1 (𝑡)

]
(8)

+
𝑛1∕2

𝑛1

𝑛∑
𝑖=1

𝐴𝑖𝜙11,𝑖(𝑡) +
𝑛1∕2

𝑛1

𝑛∑
𝑖=1

(1 − 𝐴𝑖)𝜙10,𝑖(𝑡) + 𝑜𝑝(1),

(9)

where the exact expressions of𝜙11,𝑖(𝑡) and𝜙10,𝑖(𝑡) are given
in Section S4. Importantly, 𝜙11,𝑖(𝑡) reflects the estimation
of {𝜆1(⋅), 𝛽1}, 𝜙10,𝑖(𝑡) reflects the estimation of {𝜆0(⋅), 𝛽0},
and 𝔼{𝜙11,𝑖(𝑡)} = 𝔼{𝜙10,𝑖(𝑡)} = 0. Note that in the sensitiv-
ity analysis using the 𝛿-adjusted models, the imputation
for the treated group uses the information only from the
treated group, so 𝜙10,𝑖(𝑡) = 0 for all 𝑖; while in the sensitiv-
ity analysis using the control-basedmodels, the imputation
for the treated group uses information fromboth treatment
groups, so 𝜙11,𝑖(𝑡) ≠ 0 and 𝜙10,𝑖(𝑡) ≠ 0 for all 𝑖. Also, by def-
inition, the expectation of the term in (8) is zero. Together,
𝑛1∕2{�̂�1,mi(𝑡) − 𝑆sen

1 (𝑡)} decomposes into the summation of
three terms (6), (8), and (9) with (conditional) mean zero,
and converges to a Gaussian process in [0, 𝜏]. Similarly, we
obtain a similar asymptotic linearization of �̂�0,mi(𝑡) given
in (S3)–(S5).
We now leverage the unified linear characterization (1)

to express the MI estimator for various treatment effect
estimands. Combining (1) and the above decompositions
of �̂�1,mi(𝑡) and �̂�0,mi(𝑡), we derive

𝑛1∕2(Δ̂𝜏,mi − Δ𝜏) = 𝑛1∕2
[
Ψ𝜏{�̂�1,mi(𝑡), �̂�0,mi(𝑡)} − Δ𝜏

]
=

(1+𝑚)𝑛∑
𝑘=1

𝜉𝑛,𝑘 + 𝑜𝑝(1), (10)

𝜉𝑛,𝑘 =
𝑛1∕2

𝑛1 ∫
𝜏

0

𝜓1(𝑡)𝐴𝑖

[
𝜙11,𝑖(𝑡) + 𝑌𝑖(𝑡)

+ {1 − 𝑌𝑖(𝑡)}(1 − 𝐼𝑖)𝑆1{𝑡 ∣ 𝐻𝑖(𝑡); 𝜃} − 𝑆sen
1 (𝑡)

]
d𝑡,

for 𝑘 = 𝑖 (1 ≤ 𝑖 ≤ 𝑛1), (11)

𝜉𝑛,𝑘 =
𝑛1∕2

𝑚𝑛1 ∫
𝜏

0

𝜓1(𝑡)𝐴𝑖{1 − 𝑌𝑖(𝑡)}

×
[
𝟏
(
𝑇

∗(𝑗)
𝑖

≥ 𝑡
)

− 𝑆1{𝑡 ∣ 𝐻𝑖(𝑡); �̂�}
]
d𝑡,

for 𝑘 = 𝑛1 + (𝑖 − 1)𝑚 + 𝑗 (1 ≤ 𝑖 ≤ 𝑛1, 1 ≤ 𝑗 ≤ 𝑚),

(12)

𝜉𝑛,𝑘 =
𝑛1∕2

𝑛0 ∫
𝜏

0

𝜓0(𝑡)(1 − 𝐴𝑖)[𝜙10,𝑖(𝑡) + 𝜙0,𝑖(𝑡) + 𝑌𝑖(𝑡)

+{1 − 𝑌𝑖(𝑡)}(1 − 𝐼𝑖)𝑆0{𝑡 ∣ 𝐻𝑖(𝑡); 𝜃} − 𝑆sen
0 (𝑡)

]
d𝑡,

(13)
for 𝑘 = (1 + 𝑚)𝑛1 + 𝑖, (𝑛1 + 1 ≤ 𝑖 ≤ 𝑛),

𝜉𝑛,𝑘 =
𝑛1∕2

𝑚𝑛0 ∫
𝜏

0

𝜓0(𝑡)(1 − 𝐴𝑖){1 − 𝑌𝑖(𝑡)}

×
[
𝟏(𝑇

∗(𝑗)
𝑖

≥ 𝑡) − 𝑆0

{
𝑡 ∣ 𝐻𝑖(𝑡); �̂�

}]
d𝑡,

for 𝑘 = (1 + 𝑚)𝑛1 + 𝑛0 + (𝑖 − 1)𝑚

+ 𝑗(𝑛1 + 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚). (14)

To gain intuitions, based on the decomposition in (10), the
first 𝑛1 terms of 𝜉𝑛,𝑘 contribute to the variability of �̂�1,mi

because of the unknown parameters, and the next 𝑚𝑛1

terms of 𝜉𝑛1,𝑘 contribute to the variability of �̂�1,mi because
of the imputations given the estimated parameter values,
reflecting the sequential MI procedure. Other terms have
similar explanations.
We form the sigma-algebra {𝑛,𝑘 ∶ 1 ≤ 𝑘 ≤ (1 + 𝑚)𝑛}

s.t. 𝔼(𝜉𝑛,𝑘 ∣ 𝑛,𝑘−1) = 0 for all 𝑘; thus,{
𝑘∑

𝑖=1

𝜉𝑛,𝑖 ,𝑛,𝑘, 1 ≤ 𝑘 ≤ (1 + 𝑚)𝑛

}
is a martingale for each 𝑛 ≥ 1. (15)

We focus on the 𝜉𝑛,𝑘 terms in (11) and (12) for treat-
ment group 𝑎 = 1, because the discussion for the 𝜉𝑛,𝑘

terms in (13) and (14) for treatment group 𝑎 = 0 is
similar and is presented in the Web Appendix. Obvi-
ously, for 𝑘 = 𝑖 (1 ≤ 𝑖 ≤ 𝑛1) and 𝜉𝑛,𝑘 in (11), we have
𝔼(𝜉𝑛,1) = 0 and 𝔼(𝜉𝑛,𝑘 ∣ 𝑂1∶𝑘−1) = 𝔼(𝜉𝑛,𝑘) = 0, and thus
we let 𝑛,𝑘 = 𝜎(𝑂1, … , 𝑂𝑘). For 𝑘 = 𝑛1 + (𝑖 − 1)𝑚 + 𝑗,
where 𝑖 = 1, … , 𝑛1 and 𝑗 = 1, … , 𝑚, and 𝜉𝑛,𝑘 in
(12), under the regularity conditions, we have
𝔼(𝜉𝑛,𝑘 ∣ 𝑂1, … , 𝑂𝑛1

, 𝑇
∗(1)
1 , … , 𝑇

∗(𝑗)
𝑖

) = 0, and thus we
let 𝑛,𝑘 = 𝜎(𝑂1, … , 𝑂𝑛1

, 𝑇
∗(1)
1 , … , 𝑇

∗(𝑗)
𝑖

).
The martingale representation allows us to character-

ize the asymptotic distribution of Δ̂𝜏,mi with the proof pre-
sented in Section S4.
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Theorem 1. Under Assumptions 1/2, and S1 (regular-
ity conditions), 𝑛1∕2(Δ̂𝜏,mi − Δ𝜏) →  (0, 𝑉sen

𝜏,mi
), as 𝑛 → ∞,

where 𝑉sen
𝜏,mi

is a finite variance given in (S23).

4.2 Wild bootstrap for the MI estimator

The martingale representation invokes the wild or
weighted bootstrap procedure (Wu, 1986; Liu, 1988)
that provides valid variance estimation and inference of
the linear statistic for martingale difference arrays. Pauly
(2011) proved the validity of the wild bootstrap re-sampling
under the conditions of a general central limit theorem
(CLT). Guan and Yang (2019) applied the wild bootstrap
for a martingale series in the context of causal inference
with observational studies.
Based on the martingale representation (10), we pro-

pose the wild bootstrap procedure to estimate the vari-
ance of Δ̂𝜏,mi. The martingale representation relies on
unknown quantities, requiring approximations. We then
estimate (i) 𝑆sen

𝑎 (𝑡) by �̂�𝑎,mi, (ii) 𝜙11,𝑖(𝑡), 𝜙10,𝑖(𝑡), and 𝜙0,𝑖(𝑡)

by �̂�11,𝑖(𝑡), �̂�10,𝑖(𝑡), and �̂�0,𝑖(𝑡), and (iii) 𝑆𝑎{𝑡 ∣ 𝐻𝑖(𝑡); 𝜃} by
𝑆𝑎{𝑡 ∣ 𝐻𝑖(𝑡); �̂�}, for 𝑎 = 0, 1.
Based on the above approximations, the wild bootstrap

inference proceeds as in Table 3.
Theorem 2 shows the asymptotic validity of the above

bootstrap inference method.

Theorem 2. Under Assumptions 1/2, and S1 (regularity
conditions), we have

sup
𝑟

|||ℙ(𝑛1∕2𝑊∗
𝐿 ≤ 𝑟 ∣𝑂1∶𝑛

)
− ℙ

{
𝑛1∕2(Δ̂𝜏,mi − Δsen

𝜏 )≤ 𝑟
}|||→ 0,

in probability, as 𝑛 → ∞.

Weprovide the proof of Theorem2 in theWebAppendix,
which draws on the martingale central limit theory (Hall
and Heyde, 1980) and the asymptotic property of weighted
sampling of martingale difference arrays (Pauly, 2011).
Theorem 2 indicates that the distribution of the wild boot-
strap statistic consistently estimates the distribution of the
MI estimator.

5 AN APPLICATION

We apply the proposed semiparametric 𝛿-adjusted and
control-based Cox model to an HIV clinical trial. The ran-
domized double-blinded ACTG175 trial was conducted to
compare the treatment effect of a single nucleoside and
two nucleosides in adults with HIV (Hammer et al., 1996).
The data set is available in the R package 𝚜𝚙𝚎𝚏𝚏𝟸𝚝𝚛𝚒𝚊𝚕.

TABLE 3 Algorithm of wild bootstrap inference based on
martingale representation of the MI estimator

Step WB-1. Sample 𝑢𝑘 , for 𝑘 = 1, … , (1 + 𝑚)𝑛, that satisfy
𝔼(𝑢𝑘 ∣ 𝑂1∶𝑛) = 0, 𝔼(𝑢2

𝑘
∣ 𝑂1∶𝑛) = 1 and

𝔼(𝑢4
𝑘

∣ 𝑂1∶𝑛) < ∞.
Step WB-2. Compute the bootstrap replicate as

𝑊∗
𝐿 = 𝑛−1∕2 ∑(1+𝑚)𝑛

𝑘=1
�̂�𝑛,𝑘𝑢𝑘 ,

where �̂�𝑛,𝑘 is the empirical version of 𝜉𝑛,𝑘 by
replacing the unknown quantities with their
estimators and the one-dimensional integrals
by the numerical integration.

Step WB-3. Repeat Steps 1 and 2 𝐵 times, and estimate the
variance of Δ̂𝜏,mi by the sample variance of
these copies of 𝑊∗

𝐿 .

The event of interest was the progression of the dis-
ease defined as the first occurrence of more than 50%

decline in the CD4 cell count or death. For illustration pur-
poses, we compare the treatment effect between Zidovu-
dine monotherapy and Zidovudine plus Didanosine com-
bination therapy in a subgroup of participants who never
took any type of antiretroviral therapy before random-
ization. In this subgroup, there were 197 subjects in the
monotherapy group and 185 subjects in the combination
therapy group. There are 152 (82.2%) subjects in the Zidovu-
dine plus Didanosine combination therapy group and 144
(73.0%) subjects in Zidovudine monotherapy group cen-
sored. We focus on estimating the RMST with the trun-
cation time point 24 months because the ACTG175 study
required at least 24 months follow-up for subjects. While
re-analyzing the data, we assume CAR in the primary
analysis and assume the event times follow a Cox model
adjusting for age, and symptomatic indicator terms. This
model assumption is assessed based on the test of the pro-
portional hazards (Grambsch and Therneau, 1994) with a
p > 0.05 and thus is adopted in analyses. The estimated
RMST with 95% confidence interval is 22.1 (21.5,22.8)
months in the monotherapy group versus 23.0 (22.6,23.5)
in the combination therapy. The estimated between-group
RMST difference with 95% confidence interval is 0.92
(0.15,1.68). p = 0.019 indicates a statistically significant
improvement of the combination therapy compared with
the monotherapy. We also analyze the data using a direct
estimator of RMST (Tian et al., 2014) without imputa-
tion using the survRM2 package. The results are close to
the 𝛿-adjusted method when 𝛿 = 1, because both meth-
ods assume CAR. However, the direct estimator does not
require a Cox model for missing data imputation.
We conduct the sensitivity analysis based on the 𝛿-

adjusted and control-based method to evaluate the impact
of plausible departures from CAR in the primary analy-
sis. One of the main objectives of the ACTG175 trial was to
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TABLE 4 Analysis of the ACTG175 trial data

Zidovudine Zidovudine plus

(𝒏 = 𝟏𝟗𝟕)

Didanosine
(𝒏 = 𝟏𝟖𝟓) Difference

𝑴𝒆𝒕𝒉𝒐𝒅 RMST SE RMST SE RMST (95% CI) SE p-Value
Primary and sensitivity analysis with wild bootstrap
𝛿 = 1 22.10 0.28 23.04 0.22 0.92 (0.15, 1.68) 0.39 0.019
𝛿 = 2 22.10 0.28 23.00 0.23 0.88 (0.11, 1.64) 0.39 0.024
𝛿 = 3 22.10 0.28 22.97 0.23 0.84 (0.18, 1.61) 0.39 0.031
𝛿 = 4 22.10 0.28 22.93 0.23 0.81 (0.04, 1.58) 0.39 0.038
𝛿 = 5 22.10 0.28 22.90 0.23 0.78 (0.02, 1.55) 0.39 0.047
Control-based 22.12 0.31 23.00 0.23 0.88 (0.12, 1.65) 0.39 0.023
Primary and sensitivity analysis with Rubin’s combining rule
𝛿 = 1 22.12 0.31 23.04 0.24 0.92 (0.14, 1.69) 0.39 0.020
𝛿 = 2 22.12 0.31 23.00 0.25 0.88 (0.10, 1.67) 0.40 0.027
𝛿 = 3 22.12 0.31 22.97 0.25 0.84 (0.06, 1.63) 0.40 0.034
𝛿 = 4 22.12 0.31 22.93 0.26 0.81 (0.02, 1.60) 0.40 0.043
𝛿 = 5 22.12 0.31 22.90 0.26 0.78 (-0.01, 1.59) 0.40 0.054
Control-based 22.12 0.31 23.00 0.25 0.87 (0.08, 1.65) 0.40 0.030
(Tian et al., 2014) 22.11 0.31 23.05 0.24 0.88 (0.11, 1.66) 0.40 0.026

Note: In 𝛿-adjusted sensitivity analysis, the value of 𝛿 applied to subjects who were nonadministrative censored in the Zidovudine plus Didanosine group.

evaluate the additional benefit with the combination ther-
apy on top of Zidovudine. Therefore, we treat the Zidovu-
dine monotherapy group as the control group and the
Zidovudine plus Didanosine combination therapy as the
test treatment group. In the sensitivity analysis, we con-
sider subjects censored before 24 months as censored for
nonadministrative reasons and subjects censored after 24
months as censored for administrative reasons. For the
imputation models in both 𝛿-adjusted and control-based
methods, we assume CAR for nonadministratively cen-
sored subjects in the combination therapy group or cen-
sored in themonotherapy group. In 𝛿-adjustedmethod, the
𝛿-adjustment is applied to the primary Cox model for sub-
jects who were nonadministratively censored in the com-
bination therapy group. The analysis model is the result-
ing patten-mixture model carried out by MI with 𝑚 = 50.
We estimate the standard errors by Rubin’s combining rule
and the proposed wild bootstrap method with 𝐵 = 100.
Table 4 summarizes the results. The estimated within-

and between-group standard errors from the wild boot-
strap are smaller than that from Rubin’s combining rule
for all evaluated methods. This is coherent with the find-
ings in the simulation study. From the p-value of each 𝛿,
the estimated tipping point of the sensitivity analysis is
larger than 5 by using wild bootstrap and between 4 and 5
by using Rubin’s rule. The results from the proposed wild
bootstrap method demonstrate stronger evidence for the
robustness of the primary analysis compared with the con-
servativeRubin’s rule. From the sensitivity results based on

the wild bootstrap, to eliminate the statistical significance
of the treatment effect, the hazard of those subjects who
were nonadministratively censored should be more than
five times higher than subjects with the observed event
times in the same group. The control-based method also
provides p-values smaller than 0.05 by using both Wild
Bootstrap and Rubin’s rule. Therefore, the findings from
the primary analysis are robust to the censoring assump-
tion.

6 CONCLUDING REMARKS

In this article, we provide a general framework for survival
sensitivity analysis based on semiparametric 𝛿-adjusted
and control-based Cox models to assess the impact of plau-
sible departures from CAR. The 𝛿-adjusted/control-based
models are flexible enough to accommodate different cen-
soring mechanisms by changing the sensitivity parameter.
MI facilitates the use of a simple full-sample estimator;
however, the standard Rubin’s combining rulemay be con-
servative or anti-conservative when the analysis method is
uncongenial to the imputation model (Robins and Wang,
2000). This is likely to occur in our general sensitivity
analysis framework when the full-sample estimator is
not an efficient estimator under the combined data and
imputation models. To overcome this issue, Wang and
Robins (1998) proposed consistent variance estimators
for imputation estimators in the missing data literature
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under a parametric imputation model, which, however,
is not applicable in our survival sensitivity analysis. We
reformulate the MI estimator as a martingale series based
on the sequential construction of the MI estimator and
propose the wild bootstrap inference based on resampling
the martingale series with a theoretical guarantee for con-
sistency. The current framework considers only baseline
covariates. If time-dependent covariates were available,
including them makes the CAR assumption more plau-
sible. However, the 𝛿-adjusted and control-based models
are still useful to conduct sensitivity analysis of assump-
tions about post-censoring behavior. Extending SMIM to
incorporate time-dependent covariates will be our future
work.
The proposed inferential framework targets consis-

tent estimation of the repeated-sampling variance of the
MI estimator. It appears paradoxical that the repeated-
sampling variance of theMI estimator may decrease as the
missingness rate increases; however, this phenomenon can
happen given that the true value of the estimand changes
with the missingness rate under the control-based impu-
tation models. Alternatively, to avoid the seemly paradoxi-
cal phenomenon, Cro et al. (2019) proposed a novel princi-
ple of information anchored analysis in the sense that the
information ratio between the analysis with missing data
and the analysis with full data is similar for the primary
analysis and the sensitivity analysis. Their research sug-
gested that the control-based imputationwithRubin’s vari-
ance estimate provides an information anchored analysis.
In survival sensitivity analysis using control-based impu-
tationmodels, Atkinson et al. (2019) showed by simulation
that Rubin’s combining rule is information-anchored.
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Web Appendix S1 provides the preliminary for the proofs. Web Appendix S2 establishes the

asymptotic linearization of Ŝ0,mi(t). Web Appendix S3 describes the σ−fields. Web Appendices

S4 and S5 provide the proofs of Theorem 1 and Theorem 2. Web Appendix S6 presents a

comprehensive simulation study.

Web Appendix S1 Preliminary

We adopt the counting process theory of Andersen and Gill (1982) in our theoretical framework.

We state the existing results which will be used in our proof throughout.

To simplify the exposition, we introduce additional notation. We use
p→ and

d→ to represent

“converge in probability as n → ∞” and “converge in distribution as n → ∞”, respectively.

Also, let n1/n→ p1 ∈ (0, 1) and n0/n→ p0 ∈ (0, 1), as n→∞. We do not state this condition

formally as an assumption because it holds trivially for most of clinical trials where the two

treatment groups are relatively balanced in their sample sizes.

Let X⊗li denote 1 for l = 0, Xi for l = 1, and XiX
T
i for l = 2. Define

U (l)
a (βa, t) =

1

na

n∑
i=1

1(Ai = a)X⊗li eβ
T
aXiYi(t), u

(l)
a (βa, t) = E

{
X⊗leβ

T
aXY (t)

}
,

where u
(l)
a (βa, t) is the expectation of U

(l)
a (βa, t), for l = 0, 1, 2. Moreover, define

Ea(βa, t) =
U

(1)
a (βa, t)

U
(0)
a (βa, t)

, ea(βa, t) =
u
(1)
a (βa, t)

u
(0)
a (βa, t)

.

The maximum partial likelihood estimator β̂a solves

Sa,n(βa) =
1

na

n∑
i=1

1(Ai = a)

ˆ τ

0

{
Xi −

U
(1)
1 (βa, u)

U
(0)
1 (βa, u)

}
dNi(u) = 0.

1



We state the standard asymptotic results for β̂a and λ̂a(·) requiring certain regularity con-

ditions. To avoid too many technical distractions, we omit the exact conditions in Assumption

S1 for the consistency and uniform convergency of the estimators of Cox models.

Assumption S1 i) (Positivity) There exists a constant c such that with probability one, Sa(t |

Xi) ≥ c > 0 for t in [0, τ ] and a = 0, 1. ii) Conditions A–D in Andersen and Gill (1982) hold

for treatment group a = 0, 1.

Following Andersen and Gill (1982), we have

n1/2a (β̂a − βa) = Γ−1a
1

n
1/2
a

n∑
i=1

1(Ai = a)Ha,i + op(1), (S1)

where Γa = E{−∂Sa,n(βa)/∂β
T
a } is the Fisher information matrix of βa, Ha,i =

´ L
0 {Xi −

ea(βa, u)}1(Ai = a)dMa,i(u), and

dMa,i(t) = dNi(u)− eβT
aXiYi(u)λa,0(u)du. (S2)

Moreover, n1/2{Sa(t | Xi; θ̂)−Sa(t | Xi)} converges uniformly to a Gaussian process in [0, L] for

all Xi.

Web Appendix S2 Asymptotic linearization of Ŝ0,mi(t)

To obtain the asymptotic linearization of Ŝ0,mi(t), we have

n1/2
{
Ŝ0,mi(t)− Ssen

0 (t)
}

=
n1/2

mn0

m∑
j=1

n∑
i=1

(1−Ai){1− Yi(t)}
[
1(T

∗(j)
i ≥ t)− S0{t | Hi(t); θ̂}

]
(S3)

+
n1/2

n0

n∑
i=1

(1−Ai) [Yi(t) + {1− Yi(t)}(1− Ii)S0{t | Hi(t); θ} − Ssen
0 (t)] (S4)

+
n1/2

n0

n∑
i=1

(1−Ai)φ0,i(t) + op(1), (S5)

where the exact expression of φ0,i(t) is given in Section Web Appendix S4, reflecting the esti-

mation of {λ0(·), β0}. In our context, the imputation for the control group uses the information

2



only from the control group. By the imputation and estimation procedures, (S3)–(S5) have

(conditional) mean zero.

Web Appendix S3 σ-fields for the martingales

We consider the σ-fields as follows

Fn,k =



σ (O1, . . . , Ok) , for k = i (1 ≤ i ≤ n1),

σ
(
O1, . . . , On1 , T

∗(1)
1 , . . . , T

∗(j)
i

)
, for k = n1 + (i− 1)m+ j

(1 ≤ i ≤ n1, 1 ≤ j ≤ m),

σ
(
O1, . . . , On1 , T

∗(1)
1 , . . . , T

∗(m)
n1 , for k = (1 +m)n1 + i

On1+1, . . . , Ok

)
, (n1 + 1 ≤ i ≤ n),

σ
(
O1, . . . , On1 , T

∗(1)
1 , . . . , T

∗(m)
n1 , for k = (1 +m)n1 + n0 + (i− 1)m+ j

On1+1, . . . , On, T
∗(1)
n1+1, . . . , T

∗(j)
i

)
, (n1 + 1 ≤ i ≤ n, 1 ≤ j ≤ m).

Web Appendix S4 Proof of Theorem 1

We first derive the martingale representation of the MI estimator under δ-adjusted Cox models

and control-based Cox models, separately. Then, we apply the martingale CLT to derive the

asymptotic distribution of the MI estimator.

S4.1 Delta-adjusted Cox models

A key step is to separate the imputation step and the estimation step. We start with treatment

group a = 1. For the imputations, it is important to recognize that T
∗(j)
i follows a time-

dependent Cox model with the conditional survival function S1{t | Hi(t); θ̂} for t > Ui, where

S1{t | Hi(t); θ} =

exp
{
−
´ t
Ui
λ1(u)eβ

T
1 Xidu

}
, if Ai = 1, Ri = 1,

exp
{
−δ
´ t
Ui
λ0(u)eβ

T
0 Xidu

}
, if Ai = 1, Ri = 2.

We express the MI estimator of Sδ-adj1 (t) as

n1/2
{
Ŝ1,mi(t)− Sδ-adj1 (t)

}

3



=
n1/2

mn1

m∑
j=1

n∑
i=1

Ai{1(T
∗(j)
i ≥ t)− Sδ-adj1 (t)}

=
n1/2

mn1

m∑
j=1

n∑
i=1

Ai[1(T
∗(j)
i ≥ t)− S1{t | Hi(t); θ̂}] +

n1/2

n1

n∑
i=1

Ai[S1{t | Hi(t); θ̂} − Sδ-adj1 (t)]

=
n1/2

mn1

m∑
j=1

n∑
i=1

Ai{1− Yi(t)}[1(T
∗(j)
i ≥ t)− S1{t | Hi(t); θ̂}] (S6)

+
n1/2

n1

n∑
i=1

[
AiYi(t) +Ai{1− Yi(t)}(1− Ii)S1{t | Hi(t); θ̂} − Sδ-adj1 (t)

]
+ op(1), (S7)

where (S6) follows because 1(T
∗(j)
i ≥ t)− S1{t | Hi(t); θ̂} = 0 for subject i with {Ai = 1,Yi(t) =

1}, and (S7) follows because Ai{1− Yi(t)}IiS1{t | Hi(t); θ̂} = 0.

By the counting process theory, we can express the term n
−1/2
1

∑n
i=1Ai{1−Yi(t)}(1−Ii)S1{t |

Hi(t); θ̂} in (S7) further as

1

n
1/2
1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)S1{t | Hi(t); θ̂}

=
1

n
1/2
1

n∑
i=1

Ai{1− Yi(t)}(1− Ii) exp
{
−
ˆ t

Ui

λ̂1(u)δ
1(Ri=2)eβ̂

T
1 Xidu

}

=
1

n
1/2
1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)S1{t | Hi(t); θ}

+
1

n
1/2
1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)S1{t | Hi(t); θ}
[
−
ˆ t

Ui

δ1(Ri=2)eβ
T
1 Xi

{
λ̂1(u)− λ1(u)

}
du

]
(S8)

+

[
1

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)S1{t | Hi(t); θ}
{
−
ˆ t

Ui

λ1(u)δ
1(Ri=2)eβ

T
1 XiXidu

}]
(S9)

×n1/2
1

(
β̂1 − β1

)
. (S10)

For (S8), we further express the key term as

ˆ t

Ui

δ1(Ri=2)eβ
T
1 Xi

{
λ̂1(u)− λ1(u)

}
du

=

ˆ t

Ui

δ1(Ri=2)eβ
T
1 Xi

{
n−11

∑n
j=1AjdNj(u)

U
(0)
1 (β̂1, u)

−
n−11

∑n
j=1AjdNj(u)

U
(0)
1 (β1, u)

}

+

ˆ t

Ui

δ1(Ri=2)eβ
T
1 Xi

{
n−11

∑n
j=1AjdNj(u)

U
(0)
1 (β1, u)

− λ1(u)du

}

= −

ˆ t

Ci

δ1(Ri=2)eβ
T
1 Xi

U
(1)
1 (β1, u){

U
(0)
1 (β1, u)

}2

n−11

n∑
j=1

dNj(u)




T (
β̂1 − β1

)
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+

ˆ t

Ui

δ1(Ri=2)eβ
T
1 Xi

n−11

∑n
j=1AjdM1,j(u)

U
(0)
1 (β1, u)

+ op(1)

= −
{ˆ t

Ui

δ1(Ri=2)eβ
T
1 Xie1(β1, u)λ1(u)du

}T (
β̂1 − β1

)
+

ˆ t

Ui

δ1(Ri=2)eβ
T
1 Xi

n−11

∑n
j=1AjdM1,j(u)

U
(0)
1 (β1, u)

+ op(1), (S11)

where dM1,j(u) is defined in (S2). Denote

ga,0(t) = E
[
1(Ai = a){1− Yi(t)}(1− Ii)Sa{t | Hi(t); θ}δ1(Ri=2)eβ

T
aXi

]
,

ga,1(t) = E
[
1(Ai = a){1− Yi(t)}(1− Ii)Sa{t | Hi(t); θ}

{ˆ t

Ui

δ1(Ri=2)eβ
T
aXiXiλa(u)du

}]
,

ga,2(t) = E
[
1(Ai = a){1− Yi(t)}(1− Ii)Sa{t | Hi(t); θ}

{ˆ t

Ui

δ1(Ri=2)eβ
T
aXiea(βa, u)λa(u)du

}]
,

for a = 0, 1.

Plugging (S11) in (S8) becomes

1

n
1/2
1

n1∑
i=1

Ai{1− Yi(t)}(1− Ii)S1{t | Hi(t); θ̂}

=
1

n
1/2
1

n1∑
i=1

Ai{1− Yi(t)}(1− Ii)S1{t | Hi(t); θ}

+ {g1,2(t)− g1,1(t)}T n1/21

(
β̂1 − β1

)
− n−1/21

n∑
j=1

ˆ t

Uj

g1,0(u)

s0(β1, u)
AjdM1,j(u) + op(1)

=
1

n
1/2
1

n1∑
i=1

Ai{1− Yi(t)}(1− Ii)S1{t | Hi(t); θ}

+
1

n
1/2
1

n1∑
i=1

[
{g1,2(t)− g1,1(t)}T Γ−11 AiH1,i −

ˆ t

Ui

g1,0(u)

s0(β1, u)
AidM1,i(u)

]
+ op(1), (S12)

where the second equality follows by (S1).

Combining (S6) and (S12) leads to

n1/2
{
Ŝ1,mi(t)− Sδ-adj1 (t)

}
=

n1/2

mn1

m∑
j=1

n1∑
i=1

[
Ai{1− Yi(t)}{1(T

∗(j)
i ≥ t)− S1(t | Oi; θ̂1)}

]
+
n1/2

n1

n1∑
i=1

Ai

[
φ11,i(t) + Yi(t) + {1− Yi(t)}(1− Ii)S1{t | Hi(t); θ} − Sδ-adj1 (t)

]
(S13)
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+op(1).

where

φ11,i(t) = {g1,2(t)− g1,1(t)}T Γ−11 H1,i −
ˆ t

Ui

g1,0(u)

u0(β1, u)
dM1,i(u). (S14)

Similarly, for treatment group a = 0, define

φ0,i(t) = {g0,2(t)− g0,1(t)}T Γ−10 H0,i −
ˆ t

Ui

g0,0(u)

u0(β0, u)
dM0,i(u), (S15)

We have

n1/2
{
Ŝ0,mi(t)− Sδ-adj0 (t)

}
=

n1/2

mn0

m∑
j=1

n∑
i=1

(1−Ai){1− Yi(t)}[1(T
∗(j)
i ≥ t)− S0{t | Hi(t); θ̂}]

+
n1/2

n0

n∑
i=1

(1−Ai)
{
φ0,i(t) + Yi(t) + {1− Yi(t)}(1− Ii)S0{t | Hi(t); θ} − Sδ-adj0 (t)

}
(S16)

+op(1).

The martingale series approximation of ∆̂τ,mi follows by plugging (S13) and (S16) into

n1/2
(

∆̂τ,mi −∆δ-adj
τ

)
= n1/2

[
Ψτ{Ŝ1,mi(t), Ŝ0,mi(t)} −∆δ-adj

τ

]
=

1∑
a=0

ˆ τ

0
ψa(t)

{
Ŝa,mi(t)− Sa(t)

}
dt+ op(1) =

(1+m)n∑
k=1

ξn,k + op(1),

where the ξn,k terms are given in (13) with φ10,i(t) = 0 and φ11,i(t) and φ0,i(t) given in (S14)

and (S15), respectively.

S4.2 Control-based Cox models

We focus on the treatment group a = 1. Under the control-based imputation model, the MI

estimator Ŝ1,mi(t) depends on not only the parameter estimator in the treatment group but also

the parameter estimator in the control group. Following the same steps for (S7), we express the

MI estimator as

n1/2
{
Ŝ1,mi(t)− Sδ-cb1 (t)

}
6



=
n1/2

mn1

m∑
j=1

n∑
i=1

Ai{1− Yi(t)}[1(T
∗(j)
i ≥ t)− S1{t | Hi(t); θ̂}] (S17)

+
n1/2

n1

n∑
i=1

Ai

[
Yi(t) + {1− Yi(t)}(1− Ii)S1{t | Hi(t); θ̂} − Sδ-cb1 (t)

]
, (S18)

where under the imputation based on the control-based Cox model,

S1{t | Hi(t); θ} =

exp
{
−
´ t
Ui
λ1(u)eβ

T
1 Xidu

}
, if Ai = 1, Ri = 1,

exp
{
−δ
´ t
Ui
λ0(u)eβ

T
0 Xidu

}
, if Ai = 1, Ri = 2,

for t ≥ Ui.

By the counting process theory, we can further express n1/2n−11

∑n
i=1Ai{1 − Yi(t)}(1 −

Ii)S1{t | Hi(t); θ̂} in (S18) as

n1/2

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)S1{t | Hi(t); θ̂}

=
n1/2

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 1) exp

{
−
ˆ t

Ui

λ̂1(u)eβ̂
T
1 Xidu

}

+
n1/2

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 2) exp

{
−δ
ˆ t

Ui

λ̂0(u)eβ̂
T
0 Xidu

}

=
n1/2

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 1) exp

{
−
ˆ t

Ui

λ1(u)eβ
T
1 Xidu

}

+
n1/2

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 2) exp

{
−δ
ˆ t

Ui

λ0(u)eβ
T
0 Xidu

}

+
n1/2

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 1)S1{t | Hi(t); θ}
[
−
ˆ t

Ui

eβ
T
1 Xi

{
λ̂1(u)− λ1(u)

}
du

]

+

[
1

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 1)S1{t | Hi(t); θ}
{
−
ˆ t

Ui

λ1(u)eβ
T
1 XiXidu

}]
×n1/2

(
β̂1 − β1

)
+
n1/2

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 2)S1{t | Hi(t); θ}
[
−δ
ˆ t

Ui

eβ
T
0 Xi

{
λ̂0(u)− λ0(u)

}
du

]

+

[
1

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 2)S1{t | Hi(t); θ}
{
−δ
ˆ t

Ui

λ0(u)eβ
T
0 XiXidu

}]
×n1/2

(
β̂0 − β0

)
. (S19)
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Denote

g̃1,0(t) = E
[
Ai{1− Yi(t)}(1− Ii)1(Ri = 1)S1{t | Hi(t); θ}eβ

T
1 Xi
]
,

g̃1,1(t) = E
[
Ai{1− Yi(t)}(1− Ii)1(Ri = 1)S1{t | Hi(t); θ}

{ˆ t

Ui

λ1(u)eβ
T
1 XiXT

i du

}]
,

g̃1,2(t) = E
[
Ai{1− Yi(t)}(1− Ii)1(Ri = 1)S1{t | Hi(t); θ}

{ˆ t

Ui

λ1(u)eβ
T
1 Xie1(β1, u)Tdu

}]
,

g̃0,0(t) = E
[
Ai{1− Yi(t)}(1− Ii)1(Ri = 2)S1{t | Hi(t); θ}δeβ

T
0 Xi
]
,

g̃0,1(t) = E
[
Ai{1− Yi(t)}(1− Ii)1(Ri = 2)S1{t | Hi(t); θ}

{
δ

ˆ t

Ui

λ0(u)eδβ
T
0 XiXT

i du

}]
,

g̃0,2(t) = E
[
Ai{1− Yi(t)}(1− Ii)1(Ri = 2)S1{t | Hi(t); θ}

{
δ

ˆ t

Ui

λ0(u)eβ
T
0 Xie0(β0, u)Tdu

}]
.

Then, we can express (S19) further as

=
n1/2

n1

n1∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 1) exp

{
−
ˆ t

Ui

λ1(u)eβ
T
1 Xidu

}

+
n1/2

n1

n1∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 2) exp

{
−δ
ˆ t

Ui

λ0(u)eβ
T
0 Xidu

}

+ {g̃1,2(t)− g̃1,1(t)}T n1/2
(
β̂1 − β1

)
− n1/2

n1

n∑
j=1

ˆ t

Ui

g̃1,0(u)

s0(β1, u)
AjdM1,j(u)

+ {g̃0,2(t)− g̃0,1(t)}T n1/2
(
β̂0 − β0

)
− n1/2

n1

n∑
j=1

ˆ t

Ui

g̃0,0(u)

s0(β0, u)
(1−Aj)dM0,j(u) + op(1)

=
n1/2

n1

n1∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 1) exp

{
−
ˆ t

Ui

λ1(u)eβ
T
1 Xidu

}

+
n1/2

n1

n1∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 2) exp

{
−δ
ˆ t

Ui

λ0(u)eβ
T
0 Xidu

}

+
n1/2

n1

n∑
i=1

[
{g̃1,2(t)− g̃1,1(t)}T Γ−11 AiH1,i −

ˆ t

Ui

g̃1,0(u)

s0(β1, u)
AidM1,i(u)

]

+
n1/2

n0

n∑
i=1

[
{g̃0,2(t)− g̃0,1(t)}T Γ−10 (1−Ai)H0,i −

ˆ t

Ui

g̃0,0(u)

s0(β0, u)
(1−Ai)dM0,i(u)

]
+ op(1)

=
n1/2

n1

n1∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 1) exp

{
−
ˆ t

Ui

λ1(u)eβ
T
1 Xidu

}

+
n1/2

n1

n1∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 2) exp

{
−δ
ˆ t

Ui

λ0(u)eβ
T
0 Xidu

}
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+
n1/2

n1

n∑
i=1

Ai

[
{g̃1,2(t)− g̃1,1(t)}T Γ−11 H1,i −

ˆ t

Ui

g̃1,0(u)

s0(β1, u)
dM1,i(u)

]

+
n1/2

n0

n∑
i=1

(1−Ai)
[
{g̃0,2(t)− g̃0,1(t)}T Γ−10 H0,i −

ˆ t

Ui

g̃0,0(u)

s0(β0, u)
dM0,i(u)

]
+ op(1). (S20)

Combining (S17) and (S20) leads to

n1/2
{
Ŝ1,mi(t)− Sδ-cb1 (t)

}
=

n1/2

mn1

m∑
j=1

n∑
i=1

Ai{1− Yi(t)}
[
1(T

∗(j)
i ≥ t)− S1{t | Hi(t); θ̂}

]
+
n1/2

n1

n∑
i=1

(1−Ai)φ10,i(t)

+
n1/2

n1

n∑
i=1

Ai

[
φ11,i(t) + Yi(t) + {1− Yi(t)}(1− Ii)S1{t | Hi(t); θ} − Sδ-cb1 (t)

]
+ op(1),

where

φ11,i(t) =

[
{g̃1,2(t)− g̃1,1(t)}T Γ−11 H1,i −

ˆ t

Ui

g̃1,0(u)

s0(β1, u)
dM1,i(u)

]
(S21)

φ10,i(t) =

[
{g̃0,2(t)− g̃0,1(t)}T Γ−10 H0,i −

ˆ t

Ui

g̃0,0(u)

s0(β0, u)
dM0,i(u)

]
. (S22)

Because the imputation mechanism for the censored control subjects is the same, the martin-

gale representation for Ŝ0,mi(t) remains the same as in (S16). Finally, we can decompose ∆̂τ,mi

by the martingale representation

n1/2(∆̂τ,mi −∆δ-bc
τ ) =

(1+m)n∑
k=1

ξn,k + op(1),

where the ξn,k terms are given in (13) with φ11,i(t), φ10,i(t), and φ0,i(t) given in (S21), (S22)

and (S15), respectively.

For both the δ-adjusted and control-based Cox models, it follows by the martingale CLT,

n1/2(∆̂τ,mi −∆sen
τ ) converges to a Normal distribution with mean zero and a finite variance

V sen
τ,mi =

(1+m)n∑
k=1

E(ξ2n,k | Fn,k−1) =
1∑

a=0

(
σ2a,1 + σ2a,2

)
, (S23)
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where sen denotes either δ-adj or δ-cb, and

σ20,1 =
1

p0
E
([ˆ τ

0
ψ0(t){(1−Ai)[φ10,i(t) + φ0,i(t) + Yi(t)

+ {1− Yi(t)}(1− Ii)Sa{t | Hi(t); θ}]− Ssen
a (t)}dt]2

)
σ21,1 =

1

p1
E
{(ˆ τ

0
ψ1(t)Ai[φ11,i(t) + Yi(t)

+ {1− Yi(t)}(1− Ii)Sa{t | Hi(t); θ} − Ssen
a (t)]dt

)}
,

σ2a,2 =
1

pam
V
[ˆ τ

0
ψa(t)1(Ai = a){1− Yi(t)}{1(T

∗(j)
i ≥ t)− Sa{t | Hi(t); θ}}dt

]
,

for a = 0, 1.

Web Appendix S5 Remarks

Remark 1 There are many choices for generating µk, such as the the standard normal distribu-

tion, Mammen’s two point distribution, a simpler distribution with probability 0.5 of being 1 and

probability 0.5 of being −1, or the nonparametric bootstrap weights. The wild bootstrap procedure

is not sensitive to the choice of the sampling distribution of µk. We adopt the standard normal

distribution in the simulation study.

Remark 2 It is worth discussing the connection between the martingale representation (10) and

existing results in the survival literature. Under CCAR, Zhao et al. (2016) derived an asymp-

totic linearization for the RMST estimator and proposed the perturbation-resampling variance

estimation by adding independent noises to the linearized terms. In this simpler case, by setting

the sensitivity parameter δ to be 1 and omitting the imputation step, our martingale represen-

tation with the first n1 terms reduces to their linearization. The slight difference lies in the

distribution for generating the resampling weights. In the wild bootstrap, the resampling weight

distribution has mean 1; while in the perturbation, the resampling weight distribution has mean

0. The difference would only affect the center of the bootstrap replicates of ∆̂τ,mi but not the

variability and thus variance estimation. Our framework allows for CAR and sensitivity analy-

sis using δ-adjustment/control-based models, taking into account variability from both parameter

estimation and imputation.
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Web Appendix S6 Proof of Theorem 2

We provide the proof of Theorem 2, which draws on the martingale central limit theory (Hall

and Heyde, 1980) and the asymptotic property of weighted sampling of martingale difference

arrays (Pauly, 2011).

First, by the law of large numbers, we have

n1∑
k=1

ξ2n,k

=
n

n21

n1∑
i=1

(ˆ τ

0

ψ1(t)Ai [φ11,i(t) + Yi(t) + {1− Yi(t)}(1− Ii)S1{t | Hi(t); θ} − Ssen
1 (t)] dt

)2

p→ 1

p1
E

{(ˆ τ

0

ψ1(t)Ai [φ11,i(t) + Yi(t) + {1− Yi(t)}(1− Ii)S1{t | Hi(t); θ} − Ssen
1 (t)] dt

)2
}

= σ2
1,1,

and

(1+m)n1∑
k=n1+1

ξ2n,k

=
n

n21

n1∑
i=1

1

m2

m∑
j=1

[ˆ τ

0

ψ1(t)Ai{1− Yi(t)}[1(T
∗(j)
i ≥ t)− S1{t | Hi(t); θ̂}]dt

]2
p→ 1

p1m
E
(

var

[ˆ τ

0

ψ1(t)Ai{1− Yi(t)}[1(T
∗(j)
i ≥ t)− S1{t | Hi(t); θ̂}]dt | O1:n

])
= σ2

1,2,

as n → ∞. Similarly, by the law of large numbers, we have
∑(1+m)n1+n0

k=(1+m)n1+1 ξ
2
n,k

p→ σ20,1, and∑(1+m)n
k=(1+m)n1+n0+1 ξ

2
n,k

p→ σ20,2. Therefore, we have

(1+m)n∑
k=1

ξ2n,k
p→ V sen

τ,mi, (S24)

as n→∞.

Second, we show

max
1≤k≤(1+m)n

|ξn,k|
p→ 0, (S25)

as n→∞. Toward this end, for any ε > 0,

P
(

max
1≤k≤n1

|ξn,k| > ε

)
≤ n1P (|ξn,k| > ε) = n1P

(
ξ4n,k > ε4

)
11



≤ n2

n31ε
4
E
(ˆ τ

0
ψ1(t)Ai

[
S1{t | Hi(t); θ̂} − Ssen

1 (t)
]

dt

)4

→ 0,

where the second inequality follows from the Markov inequality, and the convergence follows

because the expectation term is bounded due to the natural range of the survival functions.

Similarly, we have

P
(

max
n1+1≤k≤(1+m)n1

|ξn,k| > ε

)
≤ n2

n31m
3ε4

E
{ˆ τ

0
ψ1(t)Ai[1(T

∗(j)
i ≥ t)− S1{t | Hi(t); θ̂}]dt

}4

→ 0,

as n→∞. Therefore, P( max
1≤k≤(1+m)n1

|ξn,k| > ε)→ 0, as n→∞. Similarly, P( max
(1+m)n1+1≤k≤(1+m)n

|ξn,k| >

ε)→ 0, as n→∞. Then (S25) holds.

Third, we show

sup
n
E
(

max
1≤k≤(1+m)n

ξ2n,k

)
<∞. (S26)

For any n, by Assumption S1,

E
(

max
1≤k≤n1

ξ2n,k

)
≤ E

(
n1ξ

2
n,k

)
=

n

n1
E
(ˆ τ

0

[
ψ1(t)AiS1{t | Hi(t); θ̂} − Ssen

1 (t)
]

dt

)2

<∞,

and

E
(

max
n1+1≤k≤(1+m)n1

ξ2n,k

)
≤ E

(
nmξ2n,k

)
=

n

mn1
E
(ˆ τ

0
ψ1(t)Ai[1(T

∗(j)
i ≥ t)− S1{t | Hi(t); θ̂}]dt

)2

<∞.

Therefore, E(max1≤k≤(1+m)n1
ξ2n,k) ≤ E(max1≤k≤n1 ξ

2
n,k) + E(maxn1+1≤k≤(1+m)n1

ξ2n,k) < ∞.

Similarly, E(maxn1(1+m)+1≤k≤n(1+m) ξ
2
n,k) <∞. Then (S26) follows.

Given the results in (S24) and (S25), the martingale CLT implies that

(1+m)n∑
k=1

ξn,k
d→ N (0, V sen

τ,mi),
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as n→∞. Given the results in (S24), (S25), and (S26), Theorem 2.1 in Pauly (2011) yields

sup
r

∣∣∣∣∣∣P
{(1 +m)n}1/2

(1+m)n∑
k=1

uk
{n(1 +m)}1/2

ξn,k ≤ r

∣∣∣∣∣∣O1:n

− Φ
( r
σ

)∣∣∣∣∣∣ p→ 0, (S27)

as n → ∞, where Φ(·) denotes the cumulative distribution function of the standard normal

distribution.

Let WL = n−1/2
∑(1+m)n

k=1 ξn,kuk. By Theorem 1 and (S27), we have

sup
r

∣∣∣P(n1/2WL ≤ r | O1:n

)
− P

{
n1/2

(
∆̂τ,mi −∆sen

τ

)
≤ r
}∣∣∣ p→ 0, (S28)

as n→∞.

Lastly, to prove Theorem 2, it remains to show that

P
{
n1/2(WL −W ∗L) | O1:n

}
p→ 0, (S29)

as n → ∞. To unify the notation for both treatment group, define Φ1,i(t) = φ11,i(t), Φ0,i(t) =

φ10,i(t) + φ0,i(t), Φ̂1,i(t) = φ̂11,i(t), and Φ̂0,i(t) = φ̂10,i(t) + φ̂0,i(t). The difference between WL

and W ∗L can be decomposed to six parts,

n1/2(WL −W ∗L) =

n(1+m)∑
k=1

n−1/2uk(n
1/2ξ̂n,k − n1/2ξn,k) =

1∑
a=0

3∑
l=1

Ral,n,

where

Ra1,n =
n∑
i=1

n1/2

na
ui1(Ai = a)

ˆ τ

0
ψa(t)

{
Ŝa,mi(t)− Ssen

a (t)
}

dt,

Ra2,n =
n∑
i=1

n1/2

na
ui1(Ai = a)

ˆ τ

0
ψa(t)

{
Φ̂a,i(t)− Φa,i(t)

}
dt,

Ra3,n =

n∑
i=1

n1/2

na
ui1(Ai = a)

×
ˆ τ

0
ψa(t){1− Yi(t)}(1− Ii)

[
Sa{t | Hi(t); θ̂} − Sa{t | Hi(t); θ}

]
dt,

for a = 0, 1.
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Given that the bootstrap weights satisfy E(u2k | O1:n) = 1, we have

E
(
R2
a1,n|O1:n

)
=

n

n2a
naE(u2i )

[ˆ τ

0
ψa(t)

{
Ŝa,mi(t)− Ssen

a (t)
}

dt

]2
=

n

na

[ˆ τ

0
ψa(t)

{
Ŝa,mi(t)− Ssen

a (t)
}

dt

]2
p→ 0,

as n→∞, for a = 0, 1. Also, we have

E
(
R2
a2,n|O1:n

)
=

n

n2a

n∑
i=1

1(Ai = a)

[ˆ τ

0
ψa(t)

{
Φ̂a,i(t)− Φa,i(t)

}
dt

]2
p→ 0,

as n → ∞, for a = 0, 1, where the convergence follows by Assumption S1 and the results in

Section Web Appendix S1. Similarly, we have

E
(
R2
a3,n|O1:n

)
=

n

n2a

na∑
i=1

1(Ai = a)

[ˆ τ

0
ψa(t){1− Yi(t)}(1− Ii)

{
Sa(t | Oi; θ̂a)− Sa{t | Hi(t); θ}

}
dt
]2 p→ 0,

as n→∞, for a = 0, 1. Therefore, for any ε > 0,

P{|Ra1,n| > ε | O1:n}
p→ 0, P{|Ra2,n| > ε | O1:n}

p→ 0, P{|Ra3,n| > ε | O1:n}
p→ 0,

as n→∞, for a = 0, 1. Then we obtain (S29). The conclusion of Theorem 2 follows.

Web Appendix S7 Simulation study

We conduct simulation studies to evaluate the finite sample performance of the proposed SMIM

framework. For illustration, we focus on the δ-adjusted and control-based models for sensitivity

analysis and the RMST as the treatment effect estimand. We start with a simple setup with

one covariate in Section S7.1 and then consider a setting motivated by the ACTG175 trial data

in Section S7.2.

S7.1 Simulation one: a simple setup

For both the treatment and control groups, each with sample size n ∈ {500, 1000}, the con-

founder is generated by Xi ∼ N (0, 1). In the treatment group, T follows the Cox model with

14



the hazard rate λ1(t | Xi) = λ1(t) exp(β1Xi), where λ1(t) = 0.35 and β1 = 0.75. We consider

censoring due to the end of the study and premature dropout. We generate the censoring time

to dropout, Ci, according to a Cox model with the hazard rate λC(t | Xi) = λC(t) exp(βCXi),

where λC(t) = 0.15 and βC = 0.75. The maximum follow up time is L = 3.25. The observed

time is Ui = Ti ∧Ci ∧L. If Ui = Ti, the event indicator is Ii = 1; if Ui = L, then Ii = 0 and the

censoring type is Ri = 1; if Ui = Ci, then Ii = 0 and the censoring type is Ri = 2. Under the data

generating mechanism, the average percentages of Ii = 1, Ri = 1, and Ri = 2 are 53%, 25%, and

22%, respectively. In the control group, Ti follows the hazard rate λ0(t | X) = λ0(t) exp(β0Xi),

where λ0(t) = 0.40 and β0 = 0.75. The censoring time Ci follows the same model as in the

treatment group. For the dropout subjects with Ri = 2 in treatment group, the hazard rate

for events after censoring are δλ1(t) exp(β1Xi) for delta-adjusted model and λ0(t) exp(β0Xi)

for control-based models. For the dropout subjects with Ri = 2 in control group, the hazard

rate for event after censoring remains the same, which correspondsto the case when the control

treatment is a placebo or the standard of care. The true RMST estimand under the δ-adjusted

model is ∆δ-adj
τ = µδ-adj1,τ − µ0,τ with τ = 3. We assess the proposed method to implement the

sensitivity analysis for the treatment group when the true parameter δ is 1.5, while the analysis

parameter δ varies in a pre-specified set {0.5, 1, 1.5, 2, 2.5}. The true RMST estimand under the

control-based model are ∆control-adj
τ with τ = 3.

We use MI for imputing the censored event times following Steps MI-1-1, MI-1-2 and MI-1-3

in Section 3 with imputation size m ∈ {10, 20, 50}. We compare the standard MI inference and

the proposed wild bootstrap inference. For the standard MI inference, the 100(1−α)% confidence

intervals are calculated as (∆̂τ,mi − z1−α/2V̂
1/2
mi , ∆̂τ,mi + z1−α/2V̂

1/2
mi ), where z1−α/2 is the (1 −

α/2)th quantile of the standard normal distribution. For the proposed wild bootstrap procedure,

we sample the weights µk from the standard normal distribution, and calculate the variance

estimate V̂WB based on 100 replications. The corresponding 100(1 − α)% confidence intervals

are calculated as (∆̂τ,mi− z1−α/2V̂
1/2
WB , ∆̂τ,mi + z1−α/2V̂

1/2
WB). We assess the performance in terms

of the relative bias of the variance estimator and the coverage rate of confidence intervals. The

relative bias of the variance estimators are calculated as {E(V̂
1/2
mi )−V(∆̂

1/2
τ,mi)}/V(∆̂

1/2
τ,mi)×100%

and {E(V̂
1/2
WB)− V(∆̂

1/2
τ,mi)}/V(∆̂

1/2
τ,mi)× 100%. The coverage rate of the 100(1 − α)% confidence

15



intervals is estimated by the percentage of the Monte Carlo samples for which the confidence

intervals contain the true value.

Table S1 presents the simulation results for the sensitivity analysis of δ-adjusted estimand

∆δ-adj
τ based on 1000 Monte Carlo samples. When the imputation model is correctly specified

with δ = 1.5, the MI point estimator ∆̂τ,mi is unbiased of the true estimand ∆δ-adj
τ . When

the analysis sensitivity parameter is lower (higher) than the true parameter δ = 1.5, the MI

point estimator produces higher (lower) RMST for the treatment group, and therefore ∆̂τ,mi is

biased upward (downward). When the true sensitivity parameter is correctly specified, Rubin’s

combining rule overestimates the true standard deviation with the relative bias ranging from

7.0% to 12.2%; consequently, the coverage rates are larger than the nominal level 95%. In

contrast, our proposed wild bootstrap procedure is unbiased; as a result, the coverage rates

of the confidence intervals are close to the nominal level. Moreover, the proposed method is

not sensitive to the number of imputations m. We observed similar behavior for the sensitivity

analysis of control-based models for sensitivity analysis and summarized in Table S2.

S7.2 Simulation two: ACTG175

We consider a simulation setup that is similar to ACTG175 data. The confounder is generated

by X1i ∼ N (0, 1) and X2i ∼ Bernoulli(0.15). In the treatment group, T follows the Cox model

with the hazard rate λ1(t | X1iX2i) = λ1(t) exp(β1X1i + β2X2i), where λ1 = 0.03, β1 = 0.24

and β2 = 0.04. We consider censoring due to the end of the study and premature dropout.

We generate the censoring time to dropout, Ci, according to a Cox model with the hazard rate

λC(t | X1iX2i) = λC(t) exp(βC1X1i+βC2X2i), where λC(t) = 0.01, βC1 = 0.24, βC2 = 0.20. The

maximum follow up time is L = 40. The observed time is Ui = Ti ∧Ci ∧L. If Ui = Ti, the event

indicator is Ii = 1; if Ui = L, then Ii = 0 and the censoring type is Ri = 1; if Ui = Ci,then Ii = 0

and the censoring type is Ri = 2. Under the data generating mechanism, the average percentages

of Ii = 1, Ri = 1, and Ri = 2 are 60%, 20% and 20%, respectively.In the control group, Ti follows

the hazard rate λ0(t | X1i, X2i) = λ0(t) exp(β01X1i + β02X2i), where λ0(t) = 0.03, β01 = −0.55

and β02 = 0.65. The censoring time Ci follows the same model as in the treatment group. For the

dropout subjects with Ri = 2 in treatment group, the hazard rate for events after censoring are
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δλ1(t) exp(β1X1i + β2X2i) for delta-adjusted model and λ0(t) exp(β01X1i + β02X2i) for control-

based models. For the dropout subjects with Ri = 2 in control group, the hazard rate for event

after censoring remains the same, which correspondsto the case when the control treatment is

a placebo or the standard of care. The true RMST estimand under the δ-adjusted model is

∆δ-adj
τ = µδ-adj1,τ − µ0,τ with τ = 24. We assess the proposed method to implement the sensitivity

analysis for the treatment group when the true parameter δ is 2, while the analysis parameter

δ varies in a pre-specified set {1, 2, 3, 4, 5}. The true RMST estimand under the control-based

model are ∆control-adj
τ with τ = 24. The estimation procedure are the same as the first simulation

study. The simulation results is summarized in Table S3 and Table S4 with similar observation

in the first simulation study.
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Table S1: Simulation results for the true estimand ∆δ-adj
τ = 0.054 with the true sensitivity

parameter δ = 1.5: point estimate, true standard deviation, relative bias of the standard error
estimator, coverage of interval estimate using Rubin’s method and the proposed wild bootstrap
method

Standard error Relative Bias Coverage (%)
Point est True sd (×102) (%) for 95% CI

n m Model (×102) (×102) Rubina WB Rubina WB Rubina WB
500 10 δ =0.50 15.8 6.93 7.43 6.78 7.24 -2.18 71.0 66.2

δ =1.00 9.3 6.91 7.41 6.74 7.31 -2.43 94.3 90.8
δ =1.50 5.0 6.89 7.38 6.74 7.11 -2.15 97.0 95.1
δ =2.00 2.0 6.87 7.35 6.75 6.94 -1.74 94.5 92.0
δ =2.50 -0.3 6.85 7.32 6.77 6.84 -1.30 89.3 85.7

20 δ =0.50 15.8 6.92 7.41 6.76 7.12 -2.28 71.3 65.5
δ =1.00 9.3 6.90 7.39 6.73 7.14 -2.53 93.9 90.3
δ =1.50 5.1 6.88 7.36 6.73 6.99 -2.22 96.6 94.9
δ =2.00 2.0 6.86 7.33 6.74 6.89 -1.76 94.4 91.9
δ =2.50 -0.3 6.84 7.31 6.75 6.84 -1.28 89.4 86.0

50 δ =0.50 15.8 6.90 7.41 6.75 7.37 -2.07 71.3 65.6
δ =1.00 9.3 6.88 7.38 6.72 7.38 -2.32 94.1 91.0
δ =1.50 5.0 6.86 7.35 6.72 7.22 -2.01 96.6 95.0
δ =2.00 2.0 6.84 7.32 6.73 7.09 -1.56 94.7 91.7
δ =2.50 -0.3 6.82 7.30 6.75 7.01 -1.10 89.3 85.9

N/A Tian et.al. 2014 9.4 7.10 - 7.56 - 6.40 - 92.9

1000 10 δ =0.50 16.3 4.72 5.25 4.80 11.19 1.58 45.4 37.5
δ =1.00 9.8 4.68 5.24 4.77 11.87 1.98 87.9 84.2
δ =1.50 5.6 4.66 5.21 4.78 11.98 2.57 97.7 95.2
δ =2.00 2.5 4.64 5.19 4.79 12.04 3.22 94.4 91.3
δ =2.50 0.2 4.62 5.18 4.80 12.14 3.85 85.2 80.9

20 δ =0.50 16.3 4.71 5.25 4.79 11.39 1.76 45.0 37.8
δ =1.00 9.8 4.67 5.23 4.77 12.02 2.08 87.9 84.6
δ =1.50 5.6 4.64 5.21 4.77 12.14 2.68 97.7 95.0
δ =2.00 2.5 4.62 5.19 4.78 12.20 3.35 94.1 91.5
δ =2.50 0.2 4.61 5.17 4.79 12.28 3.97 85.7 81.8

50 δ =0.50 16.3 4.70 5.24 4.79 11.39 1.78 45.3 37.5
δ =1.00 9.8 4.66 5.22 4.76 12.06 2.13 88.0 84.6
δ =1.50 5.5 4.64 5.20 4.76 12.19 2.74 97.5 95.2
δ =2.00 2.5 4.61 5.18 4.77 12.27 3.41 94.1 91.4
δ =2.50 0.2 4.60 5.17 4.78 12.34 4.03 85.4 81.7

N/A Tian et.al. 2014 9.9 4.90 - 5.35 - 9.28 - 88.2
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Table S2: Simulation results for the true estimand ∆control-adj
τ = 1.783 based on control-based

method: point estimate, true standard deviation, relative bias of the standard error estimator,
coverage of interval estimate using Rubin’s method and the proposed wild bootstrap method

Standard error Relative Bias Coverage (%)
Point est True sd (×102) (%) for 95% CI

n Model m (×102) (×102) Rubina WB Rubina WB Rubina WB

500 Control-based 10 179.0 4.58 5.24 4.76 14.34 3.87 97.2 95.1
20 179.0 4.58 5.22 4.75 13.95 3.62 97.4 95.2
50 179.0 4.57 5.22 4.74 14.16 3.76 97.3 95.3

Tian et.al. 2014 N/A 184.6 4.81 - 5.34 - 10.93 - 80.2

1000 Control-based 10 179.1 3.30 3.70 3.37 11.94 1.97 96.6 94.4
20 179.1 3.30 3.69 3.36 12.10 2.03 96.5 94.2
50 179.1 3.29 3.69 3.36 12.21 2.14 96.4 94.5

Tian et.al. 2014 N/A 184.8 3.53 - 3.78 - 7.08 - 61.1
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Table S3: Simulation results for the true estimand ∆control-adj
τ = 0.513 based on control-based

method: point estimate, true standard deviation, relative bias of the standard error estimator,
coverage of interval estimate using Rubin’s method and the proposed wild bootstrap method

Standard error Relative Bias Coverage (%)
Point est True sd (×102) (%) for 95% CI

n m Model (×102) (×102) Rubina WB Rubina WB Rubina WB
500 10 δ =1 84.9 55.9 60.8 58.3 8.74 4.25 93.8 92.1

δ =2 50.3 56.5 60.4 58.0 6.91 2.69 96.2 95.1
δ =3 26.1 56.8 59.6 57.9 4.93 2.03 94.2 93.2
δ =4 8.2 56.8 59.0 58.3 3.79 2.53 90.0 88.8
δ =5 -5.0 57.0 58.6 58.5 2.82 2.65 84.6 84.4

20 δ =1 86.7 54.2 60.6 55.3 11.83 2.09 93.4 90.7
δ =2 52.2 54.5 60.0 55.2 10.15 1.37 97.5 95.4
δ =3 27.9 54.8 59.3 55.4 8.17 1.07 95.1 93.2
δ =4 10.1 54.9 58.9 55.5 7.15 1.03 89.6 86.5
δ =5 -2.9 55.0 58.5 55.6 6.28 1.16 85.0 82.3

50 δ =1 85.4 54.4 60.4 53.3 11.02 -1.96 94.3 89.4
δ =2 51.0 55.0 60.0 53.4 9.08 -2.79 97.2 94.9
δ =3 26.8 55.2 59.3 53.5 7.40 -3.11 94.3 91.7
δ =4 9.2 55.3 58.7 53.6 6.16 -3.04 90.9 86.6
δ =5 -4.2 55.3 58.3 53.8 5.55 -2.59 86.2 80.5

N/A Tian et.al. 2014 92.8 55.4 - 55.5 - 0.29 - 88.5

1000 10 δ =1 87.0 38.6 43.0 41.1 11.25 6.46 90.7 88.1
δ =2 52.4 38.8 42.7 41.0 10.10 5.73 97.2 96.6
δ =3 28.1 38.7 42.0 41.2 8.47 6.48 93.3 92.5
δ =4 10.6 38.7 41.7 41.3 7.59 6.56 84.9 84.2
δ =5 -3.0 38.8 41.4 41.3 6.80 6.58 76.4 76.0

20 δ =1 85.4 39.5 42.8 39.1 8.46 -0.93 90.2 86.5
δ =2 50.8 39.8 42.6 38.9 7.09 -2.20 96.5 95.2
δ =3 26.2 40.1 42.0 39.1 4.82 -2.34 91.4 88.7
δ =4 8.5 40.1 41.6 39.3 3.71 -2.03 82.4 78.5
δ =5 -4.9 40.1 41.3 39.3 2.96 -2.05 72.4 69.4

50 δ =1 86.8 39.1 42.7 37.8 9.19 -3.22 88.1 83.2
δ =2 52.3 39.5 42.4 37.6 7.30 -4.67 96.3 93.9
δ =3 28.0 39.7 41.8 37.9 5.38 -4.60 92.7 89.3
δ =4 10.4 39.8 41.4 37.9 4.22 -4.71 83.6 78.3
δ =5 -2.9 39.8 41.2 38.1 3.37 -4.44 74.8 69.8

N/A Tian et.al. 2014 93.0 39.6 - 39.3 - -0.87 - 81.3
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Table S4: Simulation results for the true estimand ∆control-adj
τ = 0.843 based on control-based

method: point estimate, true standard deviation, relative bias of the standard error estimator,
coverage of interval estimate using Rubin’s method and the proposed wild bootstrap method

Standard error Relative Bias Coverage (%)
Point est True sd (×102) (%) for 95% CI

n Model m (×102) (×102) Rubina WB Rubina WB Rubina WB

500 Control-based 10 85.2 55.1 60.6 58.1 9.90 5.36 96.8 95.7
20 84.4 53.8 60.3 55.2 12.03 2.53 97.3 95.3
50 87.1 53.2 60.2 53.5 13.08 0.55 97.0 94.7

Tian et.al. 2014 N/A 93.9 54.4 - 55.5 - 1.95 - 95.2

1000 Control-based 10 86.1 38.9 42.8 41.1 10.16 5.81 96.8 96.3
20 83.5 38.7 42.7 39.1 10.53 1.13 96.3 95.3
50 86.6 38.1 42.5 37.9 11.56 -0.70 96.2 94.6

Tian et.al. 2014 N/A 93.1 39.3 - 39.3 - -0.10 - 94.2
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