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1 INTRODUCTION

Congratulations to the authors for this thoughtful and
timely contribution to the spatial confounding literature.
The intuitive nature of the method and simplicity of the
estimation procedure will surely make 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+ popular
with practitioners, and the theoretical developments are a
major advance for researchers in this area. There is much
to discuss! We have formatted our discussion in two sec-
tions: in Section 2 we consider the assumptions and statis-
tical properties of 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+, and in Section 3 we exam-
ine how 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+ fits in the wider literature on spatial
causal inference.

2 ASSUMPTIONS AND STATISTICAL
PROPERTIES OF 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+

Identification
𝚂𝚙𝚊𝚝𝚒𝚊𝚕+ uses partial linear regression (PLR) to adjust for
spatial confounding. It assumed in Equation (4) that 𝑥𝑖 ,
the covariate at spatial location 𝐭𝑖 , can be written as 𝑥𝑖 =
𝑓𝑥(𝐭𝑖) + 𝜖𝑥

𝑖
and 𝜖𝑥

𝑖

𝑖𝑖𝑑
∼ 𝑁(0, 𝜎2𝑥) for some smooth process 𝑓𝑥.

The estimation procedure utilizes a two-stage smoothing
spline regression, where the first stage obtains the resid-
ual of the covariate 𝑥𝑖 that is uncorrelated with spatial
confounding and the second stage replaces 𝑥𝑖 by its resid-
ual. This trick is well established in the econometrics lit-
erature; see, for example, Robinson (1988) and Speckman
(1988), where both the covariate 𝑥𝑖 and its support 𝐭𝑖 can
be vectors. Identification ofmodel parameters is important

in the PLR framework. Robinson (1988) shows that Φ =

𝐸[{𝑥 − 𝐸(𝑥 ∣ 𝐭)}{𝑥 − 𝐸(𝑥 ∣ 𝐭)}T] being positive definite is a
necessary and sufficient condition for𝛽 to be identified and
𝛽 to be root-𝑛 consistent. It will be critical to establish iden-
tification conditions in the 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+ framework.

Model assumptions
One of the strengths of the paper is to lay bare the assump-
tions needed for consistency in the spatial setting. One
assumption is that the covariate is Gaussian and can be
decomposed into smooth and independent components
as in Equation (4). It seems the methods would still per-
form well if the errors were slightly non-Gaussian, but we
would be curious to learnwhat the authors recommend for
more extreme cases such as binary 𝑥𝑖 . In a recent review
(Reich et al., 2021), we found that (a slight variation of)
the method of Davis et al. (2019) that fits a spatial logistic
regression model logit{Prob(𝑥𝑖 = 1)} = 𝑓𝑥(𝐭𝑖) and adjusts
for the estimate of 𝑓𝑥(𝐭𝑖) in the response model effectively
reduced confounding bias. As discussed further in Sec-
tion 3, this has connections with the propensity-score (PS)
adjustment that is common in causal inference. Perhaps a
similar approach can be taken for 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+?
A more challenging scenario is when 𝑥 is a continuous

spatial surface, that is, 𝜎𝑥 = 0. While this may appear
to be a pathological case, it is in fact quite common
in the epidemiological literature. For example, Schnell
and Papadogeorgou (2020) studied the health effect of
supermarket access, and one could envision a study
where the exposure of interest is the distance from a
subject’s residence to the nearest supermarket, which is a
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F IGURE 1 Bias and coverage of 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+ (the dashed lines
95% intervals) as a function of 𝜎𝑥 for the simulation study. This
figure appears in color in the electronic version of this article, and
any mention of color refers to that version

continuous spatial surface. Another common setting that
gives spatially smooth exposure is the study of neighbor-
hood effects, for example, Giffin et al. (2020) regressed
air pollution concentration onto kernel-smoothed mea-
sures of wildland fire indicators. There are many other
examples such as extreme temperature, some forms of
air pollution, distance to a point source, and so forth. To
extend 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+ to this case would be seem to require
fundamentally different assumptions to avoid the residu-
als being zero, that is, 𝑟𝑥

𝑖
= 0, and thus the exposure effect

being unidentifiable. For example, Guan et al. (2020)
allow for a continuous exposure variable with assump-
tions about the local correlation between the exposure
and confounding variables. Can a similar approach be
applied to 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+?
We examine the performance of 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+ for spatially-

smooth covariates by extending the simulation study to
include smoother covariate processes. The data genera-
tion and implementation of 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+ are identical to the
simulation in Section 4 of the main paper except that we
consider a range of 𝜎𝑥. Coverage of 95% intervals for 𝛽 is
computed using the standard error provided by the mgcv
package (although the authors do not use these standard
errors). Figure 1 shows low bias and nominal coverage for
all but the smallest value of 𝜎𝑥. Modifying the approach to
accommodate smooth covariates and/or providing a rule
of thumb to caution against this source of bias would be
useful in practice.
Another assumption is that the unmeasured spatial con-

founder 𝑓𝑥(𝐭) in the covariate and the spatial dependence
𝑓(𝐭) can be fit with spline regression. To understand the
performance of 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+ under model misspecification,
we repeat the simulation study in Section 4 with a slightly
different data-generation scheme. We simulate 𝑓𝑥(𝐭) from
a Gaussian process with the same parameter setting, but
instead of taking the fitted value from a thin plate spline
(as is done in Section 4) we use the Gaussian process
realization as the covariate, and we simulate 𝑓(𝐭) simi-
larly. We considered this data-generation scheme as it is

the most problematic case for the standard spatial linear
model (Paciorek, 2010) and it is oftenmore realistic in data
applications. Figure 2 shows an example of the unmea-
sured confounder 𝑓𝑥(𝐭) used to form the covariate from
the different simulation schemes, and the bias and cov-
erage from 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+ when the model is misspecified.
While the difference in the unmeasured confounders is
small, the remaining residuals from fitting the smooth-
ing spline may cause collinearity-induced bias in estimat-
ing 𝛽. The magnitude of the bias is large and coverage
is low for small 𝜎𝑥. Therefore, while splines are gener-
ally a robust semiparametric method for function estima-
tion, in this case users should check for sensitivity to their
modeling assumptions.

Spline and kernel smoothing
Spline smoothing requires choosing a basis and knot loca-
tions. An alternative is kernel smoothing, that is, themean
functions are assumed to be locally well approximated
by polynomial functions. For PLR, Robinson (1988) pro-
posed a two-stage kernel smoothing estimator, a counter-
part of the proposed estimator in 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+. Speckman
(1988) conducted a theoretical comparison of the asymp-
totic behaviors of the two types of estimators. It would
be interesting to compare the two parallel frameworks in
𝚂𝚙𝚊𝚝𝚒𝚊𝚕+.

Smoothing selection
As with most semiparametric estimators, tuning param-
eter selection is a key step. Following Chen and Shiau
(1994), the authors suggest minimizing the mean squared
error of the estimated spatial effects to select the smooth-
ing parameters; however, in implementation, the authors
use generalized cross-validation which in fact targets min-
imizing the prediction error. Thus, there is a gap between
the authors’ target and implementation. We are curious
if there is an objective function for smoothing selection
that directly targets estimating 𝛽, and if not, whether the
authors could provide intuition for why minimizing these
indirect objective functions leads to a good performance of
𝛽+.

Inference
We are disappointed that the paper does not mention
how to conduct inference in 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+. Given the asymp-
totic results, 𝛽+ is root-𝑛 consistent. Will resampling
approaches such as the bootstrap work to estimate its vari-
ance and conduct inference on 𝛽? Also, the authors com-
ment on the equivalence between modeling spatial ran-
dom effects through the use of a smoothing penalty and
Bayesian modeling. When inference under the frequentist
framework is a daunting task, will Bayesianmodeling offer
a remedy?
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F IGURE 2 Unmeasured spatial confounder simulated from a Gaussian process (top left), from the fitted thin plate spline (top middle),
and their difference (top right). Bias and coverage of 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+ (the dashed lines 95% intervals) as a function of 𝜎𝑥 under misspecified model.
The covariates are generated as 𝑥𝑖 = 𝑧𝑖∕2 + 𝜖𝑖 , where 𝑧𝑖 is a spatial process and 𝜖𝑖

𝑖𝑖𝑑
∼ Normal(0, 𝜎2𝑥) and the plots in the top row are the spatial

component, 𝑧𝑖 . This figure appears in color in the electronic version of this article, and any mention of color refers to that version

3 CONNECTIONSWITH SPATIAL
CAUSAL INFERENCE

We would like to take this opportunity to place 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+
in the broader context of spatial casual inference. Causal
inference provides a rigorous mathematical foundation to
define the causal effect/estimand of interest and clarify
the assumptions required to achieve identifiability. Causal
effects are typically defined via potential outcomes under
different treatments, but defining a potential outcomes
framework for spatial problems is nontrivial due to cor-
relation between observations and possible interference
between the treatment at one location and the response
at another. Reich et al. (2021) reviewed several casual esti-
mands and procedures to estimate the casual effect in spa-
tial problems. 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+ is categorized as a “neighbor-
hood adjustment” method (a discussion of other methods
placed in this category is below), and this is contrastedwith
other approaches such as matching methods, PS adjust-
ments, and instrumental variables.
In practice of course, one should consider all of these

options when conducting a given analysis. For example, if
the tuning and inference issues with 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+ discussed
above are concerns, matching nearby observations with
different treatments and analyzing the difference in their
responses is a simple way to adjust for unmeasured spa-
tial confounders, perhaps at the expense of statistical effi-
ciency under a correctly specified model. Also, for binary
exposure variables, a PS adjustment might be more appro-
priate as discussed below. In the remainder of this section,

we discuss various connections with 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+ and casual
inference methods.

PS methods
To establish a causal effect, the authors require that 𝑓(𝐭𝑖)
captures all confounding effects of treatment (𝑥𝑖) and out-
come (𝑦𝑖). Under the PLR assumption that 𝑦𝑖 = 𝛽𝑥𝑖 +

𝑓(𝐭𝑖) + 𝜖𝑖 , 𝛽 can be interpreted causally. One strategy of
obtaining an unbiased estimator of 𝛽 with spatial con-
founding is using (generalized) PS adjustments, where the
propensity score is the conditional (density or) probabil-
ity of 𝑥𝑖 given the confounders, 𝑒(𝐭𝑖) = Prob(𝑥𝑖 ∣ 𝐭𝑖). Reich
et al. (2021) studied a PS-adjusted PLR (Zhou et al., 2019)
defined as 𝐸(𝑦𝑖 ∣ 𝑥𝑖, 𝐭𝑖) = 𝛽𝑥𝑖 + 𝑓1(𝐭𝑖) + 𝑓2{𝑒(𝐭𝑖)}, where
𝑓2(⋅) is a flexible nonparametric model such as splines.
Zhou et al. (2019) showed that their PS-adjusted PLR esti-
mator is doubly robust in that it is consistent if either 𝑓1(⋅)
or the PS model is correctly specified, but not necessarily
both.Wewould like to solicit opinions from the authors on
such PS adjustments in the context of spatial confounding
and causal inference.

Comparison with other confounder adjustment methods
Different assumptions on the structure of the missing
confounder have led to different adjustment methods. In
a very similar approach to 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+, Keller and Szpiro
(2019) partition the covariate into a smooth component
and its complement. The smooth component is then
removed from the covariate, and the association between

 15410420, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13651 by N
orth C

arolina State U
niversity, W

iley O
nline L

ibrary on [23/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1294 REICH et al.

the adjusted covariate and response is estimated as a
function of the degree of smoothness. Thaden and Kneib
(2018) assumes geographic confounding and removes
the spatial patterns from both covariate and response,
then the causal effect is estimated by regressing the
local variation in the covariate and response. 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+
assumes a spatially smooth unmeasured confounder,
which is equivalent to confounding only at large spatial
scales, while Guan et al. (2020) allows for different degrees
of confounding at different spatial resolutions with the
assumption that confounding dissipates for smaller scales.
Guan et al. (2020) proposed an estimation procedure in
the spectral domain, but intuitively it decomposes both
the covariate and response into new variables at different
spatial scales and estimates their association at each level.
The effect is estimated as a function of spatial scale and
causal interpretation is drawn at local levels. Schnell
and Papadogeorgou (2020) mitigates unmeasured spatial
confounding for county-level data by proposing a joint
model for the covariate and missing confounder, and put
forth assumptions required for identifiability.
In summary, there are now several approaches to reduc-

ing the effect of spatial confounding and 𝚂𝚙𝚊𝚝𝚒𝚊𝚕+ will
clearly play a central rolemoving forward.We reiterate our
congratulations to the authors for their important contri-
bution to this emerging field and look forward to further
developments in this area.
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Online Library.
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