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SUMMARY

Personalized decision-making, aiming to derive optimal treatment regimes based on individual
characteristics, has recently attracted increasing attention in many fields, such as medicine, social
services, and economics. Current literature mainly focuses on estimating treatment regimes from 10

a single source population. In real-world applications, the distribution of a target population can
be different from that of the source population. Therefore, treatment regimes learned by existing
methods may not generalize well to the target population. Due to privacy concerns and other
practical issues, individual-level data from the target population is often not available, which
makes treatment regime learning more challenging. We consider the problem of treatment regime 15

estimation when the source and target populations may be heterogeneous, individual-level data
is available from the source population, and only the summary information of covariates, such as
moments, is accessible from the target population. We develop a weighting framework that tailors
a treatment regime for a given target population by leveraging the available summary statistics.
Specifically, we propose a calibrated augmented inverse probability weighted estimator of the 20

value function for the target population and estimate an optimal treatment regime by maximizing
this estimator within a class of pre-specified regimes. We show that the proposed calibrated
estimator is consistent and asymptotically normal even with flexible semi/nonparametric models
for nuisance function approximation, and the variance of the value estimator can be consistently
estimated. We demonstrate the empirical performance of the proposed method using simulation 25

studies and a real application to an eICU dataset as the source sample and a MIMIC-III dataset
as the target sample.

Some key words: Covariate shift; Double robustness; Empirical likelihood; Entropy balancing; Multi-source policy
learning.

1. INTRODUCTION 30

Personalized decision-making, a pseudo intelligence paradigm tailored to an individual’s char-
acteristics, has recently attracted a great deal of attention in many fields, such as precision
medicine, social services, economics, and recommendation system. An individualized treatment
rule (ITR) formalizes treatment decisions as a function mapping from patient information to a
recommended treatment. An optimal ITR is the one that leads to the greatest expected outcome 35

in the population of interest, known as the value function.
A variety of approaches have been developed for estimating optimal ITRs. One class of ap-

proaches is model-based as they directly model the conditional mean outcome given covariates
and treatment, known as the Q-function, and then use the estimated Q-function to infer the opti-
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2 J. CHU ET AL.

mal ITR. Such methods include Q-learning (Qian & Murphy, 2011) and its semiparametric exten-40

sion, A-leaning (Murphy, 2003), where only the contrast function is modeled while the baseline
mean function is completely unspecified. Alternatively, direct value search methods have been
developed and extensively studied recently (e.g. Zhang et al., 2013; Luckett et al., 2020; Athey
& Wager, 2021). These methods learn the optimal treatment regime by regime evaluation. They
first establish a flexible estimator of the value function, such as the augmented inverse prob-45

ability weighted (AIPW) estimator, and the optimal ITR is then estimated by maximizing the
estimated value function within a class of pre-specified ITRs, such as linear decision rules and
tree-based decision rules. The AIPW value estimator possesses the double robustness property,
i.e., it is consistent for the value function if either the Q-function or the propensity score model
is correctly specified.50

Though the double robustness of the AIPW value estimator is appealing, it’s only maintained
when the source and target populations are identical. In other words, when there exists hetero-
geneity between the source and target populations, the AIPW value estimator obtained based on
the source sample may no longer be consistent for the value function of the target population.
Thus, the optimal ITR learned from the source data may not be optimal for the target population.55

In many real-world applications, the value function of an ITR over the distribution of the target
population is of significant interest, which can be different from that of the source population. For
example, in medical studies, it is known that the results of a randomized controlled trial cannot
be directly transported because the covariate distribution in a target population may be different
(Cole & Stuart, 2010). Due to study design and inclusion/exclusion criteria, the source sample60

can be unrepresentative of the target population we are interested in. When there is heterogene-
ity between the source and target populations, an estimated optimal ITR from the source sample
may not generalize well to the target population (Lee et al., 2021). Such problems gain increas-
ing attention in the ITR learning fields recently. Zhao et al. (2019) and Mo et al. (2021) proposed
different collections of possible target covariate distributions and estimated the optimal ITR by65

optimizing the worst-case quality assessment among the collection. Uehara et al. (2020) consid-
ered a nonparametric estimator for the density ratio of the covariate distributions of the source
and target populations and constructed a weighted estimator for the target value function based on
the estimated density ratio. However, all these methods require the availability of individual-level
data from both the source and target populations, which may be unrealistic in many applications.70

For example, while large-population based databases, such as the Surveillance, Epidemiology
and End Results database, can provide reliable summary statistics for covariates, such as means
and medians, and overall survival statistics for the disease population, critical information about
individual factors that influence the choice of treatment and clinical outcomes of interest may not
be available (Huang & Qin, 2020; Chen et al., 2021). Moreover, due to privacy and confidential-75

ity concerns, comprehensive individual-level data is often prohibited to share with researchers. In
contrast, summary statistics of patient characteristics of the target population are often available
and can be easily shared for research purposes.

In this paper, we consider the targeted optimal treatment regime learning where we have
individual-level data from the source sample but only a few summary statistics of covariate dis-80

tributions from the target population. As we alluded to previously, when there is heterogeneity
in covariate distributions between the source and target populations, the estimated optimal ITR
obtained by maximizing the value estimator constructed based on the source sample may not
be optimal for the target population. One way to address this issue is to assign different sub-
ject weights to the source sample and calibrate the source covariate distributions to the target85

covariate distributions. Calibration weighting is widely used to integrate auxiliary information
in survey sampling and causal inference, such as empirical likelihood based methods (Qin &
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Targeted optimal treatment regime 3

Zhang, 2007), entropy-based covariate balancing methods (Hainmueller, 2012), and quadratic
loss based covariate balancing methods (Zubizarreta, 2015). Such weighting methods allow ad-
justing covariate distributions of the source sample using various summary statistics of covariates 90

in the target population, such as means, variances, correlations, and quantiles. We propose a cali-
brated AIPW estimator of the value function using summary statistics from the target population
and then search for the optimal ITR for the target population by maximizing the calibrated AIPW
value estimator over a pre-specified class of ITRs. Here, the subject weights for the source sample
are estimated by solving a general convex optimization problem with constraints. The objective 95

function in the optimization problem can be chosen from the Cressie-Read family (Cressie &
Read, 1984), while the constraints force the weighted summary statistics of source covariates
to be the same as that from the target population. We show that the calibrated AIPW estimator
for the target value function is consistent, asymptotically normal, and has the double robustness
property if the estimated weight function converges to the density ratio of covariate distributions 100

between the two populations. The double robustness entails that the value estimator remains
root-n consistent if any one of the two parametric models for the propensity score and outcome
mean is correctly specified or if both models are estimated nonparametrically satisfying a cer-
tain rate condition for convergence. Interestingly, if the source and target populations have the
same covariate distribution, the calibrated optimal value estimator gains efficiency over the un- 105

calibrated one by utilizing additional summary information. However, in general, the weights
learned from the calibration methods may not consistently estimate the density ratio. Under such
general cases, the proposed calibrated AIPW estimator can still converge to the value function
of a pseudo population that may be closer to the target distribution compared with the source
population. As such, it can give a more accurate estimator for the value function of the target 110

population than the uncalibrated value estimator, and the optimal ITR obtained by maximizing
the calibrated AIPW value estimator can be more favorable for the target population.

2. STATISTICAL FRAMEWORK

2.1. Value Function and Optimal ITR
In a randomized trial or observational study, suppose there are two treatment options, labeled 115

as control/treatment 0 and experimental treatment/treatment 1. Let A taking values 0 or 1 in
accordance with the two options, denote the treatment received. Let X ∈ Rp be a vector of
baseline covariates and Y be the observed outcome of interest. We assume larger values of Y are
preferred by convention. The observed data are then {Oi = (Yi, Ai, Xi), i = 1, . . . , n}, which
are independent and identically distributed. Define the potential outcomes Y ∗(0) and Y ∗(1) as 120

the outcomes that would be observed if a subject received treatment 0 or 1, respectively. As is
customary in causal inference (Rubin, 1978), we make the following assumptions.

Assumption 1. (A1) Y = Y ∗(1)A+ Y ∗(0)(1−A), (A2) {Y ∗(1), Y ∗(0)} ⊥⊥ A | X , and
(A3) 0 < pr(A = 1 | X = x) < 1 for all x such that pr(X = x) > 0.

An ITR is a function d(·) that maps values of X to {0, 1}, so that a subject with covariates value 125

X = x would receive treatment 1 if d(x) = 1 and treatment 0 if d(x) = 0. For any arbitrary
ITR d(·), we can define the potential outcome as Y ∗(d) = Y ∗(1)d(X) + Y ∗(0){1− d(X)},
which would be observed if a randomly chosen individual had been assigned a treatment
according to d(·), where we suppress the dependence of Y ∗(d) on X . We then define the
value function under d(·) as the expectation of the potential outcome as V (d) = E{Y ∗(d)} = 130

E [Y ∗(1)d(X) + Y ∗(0){1− d(X)}] .
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4 J. CHU ET AL.

Suppose D is a class of ITRs of interest. Then we define the optimal ITR as dopt(X) =
argmaxd∈D V (d). In clinical practice, it may be desirable to consider a class of ITRs indexed
by a vector of parameters β for feasibility and interpretability. We denote such a class of
rules as Dβ and its element as d(X;β). For example, we can consider a class of linear ITRs135

{d(X;β) = I(βTX̃ > 0) : β ∈ Rp+1, ‖β‖2 = 1}, where X̃ = (1, XT)T. Given a linear ITR
d(X;β), we use a shorthand to write its value function V (d) as V (β). Let β∗ = argmaxβ V (β).
Then, the optimal linear ITR is doptβ = d(X;β∗). The true optimal ITR dopt may not be in Dβ .
Thus, doptβ may not be the same as dopt. However, when attention focuses on the feasible class
Dβ , estimation of doptβ is still of considerable interest. In this paper, we focus on linear ITRs.140

2.2. Source and Target Populations
The difference between covariate distributions in the source and target populations is called a

covariate shift (Sugiyama & Kawanabe, 2012). In this paper, we assume that there is a pooled
population P consisting of both the source population Ps and the target population Pt. Let S be
a binary indicator for selection action: S = 1 if the individual comes from the source population145

and S = 0 if the individual comes from the target population. A covariate shift results from the
situation where pr(S = 1 | X) 6= pr(S = 0 | X).

For the source population Ps, we observe individual-level data {Oi = (Yi, Ai, Xi), i =
1, . . . , n}. For the target population Pt, only summary statistics of covariate distributions, such as
mean, variance or quantiles are available. For Ps, denote the density or probability mass function150

of covariates as f s(X) and its associated expectation as E; for Pt, we use the notation f t(X)
and Et correspondingly. The summary statistics from the target population Pt are denoted as
µg0 = Et{g(X)}, where g(X) = {g1(X), g2(X), . . . , gq(X)}T is a q × 1 specified function.
For example, a common choice is g(X) = (X1, X2, . . . , Xp), and µg0 gives the mean of all co-
variates in the target population. We assume that summary statistics from the target population155

are derived from large databases so that their uncertainty are negligible. With only the summary
statistics, targeted ITR learning is impossible without further assumptions in order to borrow
information from the source sample.

Assumption 2. (A4) E{Y (a) | X} = Et{Y (a) | X}, and (A5) pr(S = 1 | X) > 0.

Assumption (A4) implies that true Q-functions are identical in both the source and target160

populations (Dahabreh et al., 2019). A stronger version of this assumption is the ignorability as-
sumption that {Y (1), Y (0)} ⊥⊥ S | X (Buchanan et al., 2018). Assumption (A5) implies that the
support of the target X distribution must be covered by the support of the source X distribution.

3. PROPOSED METHOD

3.1. Calibrated AIPW Estimator165

For the source population, define the propensity score as π(X) = pr(A = 1 | X,S = 1) and
conditional mean outcome model as µ(X,A) = E(Y | X,A). In practice, π(·) and µ(·) can be
estimated from the observed source data based on some posited parametric models π(X; η) and
µ(X,A; θ), respectively. Alternatively, they can also be estimated nonparametrically, e.g. using
kernel regression or random forest. Given an ITR d(X;β), Zhang et al. (2012) proposed an
AIPW estimator of the value function V (β) as

V̂ o(β) =
1

n

n∑
i=1

[
I{Ai = d(Xi;β)}
%(Ai | Xi; η̂)

{Yi − µd(Xi;β, θ̂)}+ µd(Xi;β, θ̂)

]
,
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Targeted optimal treatment regime 5

where the superscript o is a shorthand for original, %(Ai | Xi; η̂) = π(Xi; η̂)Ai + {1−
π(Xi; η̂)}(1−Ai), µd(Xi;β, θ̂) = µ(Xi, 1; θ̂)I{d(Xi;β) = 1}+ µ(Xi, 0; θ̂)I{d(Xi;β) = 0},
and η̂ and θ̂ are the estimates of η and θ, respectively, based on some posited parametric models.

Denote the value function of the target population under the ITR d(X;β) as V t(β). If the
source and target populations have the same covariate distributions, i.e. f s(X) = f t(X), then
V t(β) can be consistently estimated by V̂ o(β) based on the source sample. However, since co-
variate distributions between the source and target populations often differ in practice, V̂ o(β)
may be biased for V t(β). To reduce the bias, a natural approach is to consider calibration
weights, i.e., to assign different weights to individual data points in the source sample so that
the weighted data is more representative of the target distribution. Specifically, we consider the
following calibrated AIPW estimator

V̂ c(β) =
n∑
i=1

wi

[
I{Ai = d(Xi;β)}
%(Ai | Xi; η̂)

{Yi − µd(Xi;β, θ̂)}+ µd(Xi;β, θ̂)

]
,

where the superscript c is a shorthand for calibrated, wi’s are calibration weights satisfying∑n
i=1wi = 1 and other constraints. Using the summary statistics µg0 from the target popula- 170

tion, we can utilize methods, such as empirical likelihood (Qin & Zhang, 2007) and entropy
balancing (Hainmueller, 2012; Zhao & Percival, 2017), to learn the weights. In the next section,
we propose a general framework to estimate the weights.

3.2. Weights Estimation
Let h (w) denote a generic convex distance function between a scalar w and n−1. We 175

consider the following optimization problem minw1,...,wn

∑n
i=1 h (wi) under the constraints∑n

i=1wi{g(Xi)− µg0} = 0,
∑n

i=1wi = 1, and wi ≥ 0.
In the considered optimization problem, the function h(w) plays a role in quantifying the

discrepancy of calibration weights and the uniform distribution n−1. We choose the function
h(w) from the Cressie-Read family of discrepancies (Cressie & Read, 1984). The Cressie-Read 180

family is defined through a class of additive convex functions that encompasses a broad family
of distance functions. Specifically,

CR(γ) =

n∑
i=1

h (wi) =
n∑
i=1

{γ(γ + 1)}−1{(nwi)γ+1 − 1}.

Three special cases with γ ∈ {−1, 0, 1} are popular. In particular, CR(−1) =
∑n

i=1− log(nwi)
and CR(0) =

∑n
i=1(nwi) log(nwi). Minimizing CR(−1) is equivalent to maximizing∑n

i=1 log(wi), leading to the maximum empirical log-likelihood objective function. Minimizing 185

CR(0) is equivalent to maximizing −
∑n

i=1wi log(wi), leading to the maximum empirical ex-
ponential likelihood or entropy. Finally, minimizing CR(1) is equivalent to minimizing the sum
of squares

∑n
i=1(wi − n−1)2. To be consistent with the existing literature, we call the weight

estimation method as the empirical likelihood method for γ = −1 and the entropy balancing
method for γ = 0. We summarize the correspondence between γ and the form of h(w) in Table 190

1.
The first constraint is referred to as the balancing constraint, which calibrates the covari-

ate distribution of the source sample to the target population in terms of g(X). As a common
premise to solve the above optimization problem, µg0 should fall within the convex hull of
{g(Xi), i = 1, ..., n}. Then, the optimization problem can be solved using the method of La- 195
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6 J. CHU ET AL.

Table 1. The formulation of ρ(x) for the empirical likelihood,
entropy balancing, and Cressie-Read family

Method Empirical Likelihood Entropy Balancing Cressie-Read
γ -1 0 γ

h(w) − ln(nw) nw ln(nw) (nw)γ+1−1
γ(γ+1)

ρ(x) (1− x)−1 exp(x) (1 + γx)1/γ

grangian multipliers with the loss function

L = {γ(γ + 1)}−1
n∑
i=1

{(nwi)γ+1 − 1} − nλT

n∑
i=1

wi {g(Xi)− µg0}+ nϕ

(
1−

n∑
i=1

wi

)
.

(1)

As noted in Newey & Smith (2004), by minimizing (1), the estimator for wi is

w(Xi; λ̂) = ρ
[
λ̂T{g(Xi)− µg0}

]/ n∑
j=1

ρ
[
λ̂T{g(Xj)− µg0}

]
, (2)

where the function ρ(x) for different γ values are summarized in Table 1, and λ̂ solves the200

equation
∑n

i=1 ρ [λ
T{g(Xi)− µg0}] {g(Xi)− µg0} = 0.

Let W (X;λ) = nw(X;λ). The proposed calibrated AIPW estimator is then

V̂ c(β) =
1

n

n∑
i=1

W (Xi; λ̂)

[
I{Ai = d(Xi;β)}
%(Ai | Xi; η̂)

{Yi − µd(Xi;β, θ̂)}+ µd(Xi;β, θ̂)

]
.

Thus, the regime learning procedure can be summarized as a 3-step algorithm:

Step 1. Estimate calibration weights, e.g., using the empirical likelihood method or entropy
balancing method.

Step 2. Estimate the propensity score π(·) and the conditional outcome mean µ(·) using either205

parametric models or nonparametric models.

Step 3. Construct the calibrated AIPW estimator with the components estimated in Steps 1
and 2, and obtain the optimal ITR by maximizing the calibrated AIPW estimator within a class
of pre-specified ITRs, such as linear decision rules.

Before delving into theoretical analysis, it is important to define the underlying population for
which V̂ c(β) is targeting unambiguously. Toward this end, let λ∗ be the limit of λ̂ and

W ∗(X;λ) = ρ [λT{g(X)− µg0}]
/
E (ρ [λT{g(X)− µg0}]) .

In general, the calibration weights are not guaranteed to be non-negative. As pointed out in210

Schennach (2007), when γ ≤ 0, the estimated weights are non-negative by construction. It can be
shown that f+(X) ∝ f s(X)W ∗(X;λ∗) is a valid density or probability mass function when γ =
−1 or 0. Therefore, it defines a pseudo population P+. While for γ > 0, the calibration weights
can take on negative values, and thus the corresponding f+(X) is not always a valid density or
probability mass function. Therefore, we focus on γ = −1, 0 for illustration. It is expected that215

V̂ c(β) will converge to the value function under the ITR d(X;β) for the pseudo population P+,
when either the propensity score or the conditional mean outcome model is correctly specified.
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Targeted optimal treatment regime 7

Moreover, when W (X;λ∗) ∝ f t(X)/f s(X), we have f+(X) = f t(X). Then, V̂ c(β) is also
a consistent estimator of the value function for the target population. Denote the density or prob-
ability mass function of covariates in the pooled population P as q(X). Then f s(X) and f t(X) 220

can be described as q(X | S = 1) and q(X | S = 0), respectively. By Bayesian Theorem, we
have,

f t(X)

f s(X)
=
q(X | S = 0)

q(X | S = 1)
∝ pr(S = 0 | X)

pr(S = 1 | X)
.

If pr(S = 0 | X) follows a logistic regression with covariates g(X), we have pr(S =

0 | X)/pr(S = 1 | X) ∝ exp{αTg(X)}. Moreover, based on (2), we have W (X; λ̂) ∝
exp{λ̂Tg(X)} when γ = 0. Therefore, the weights obtained by the entropy balancing method
satisfy W (X;λ∗) ∝ f t(X)/f s(X) under the logistic regression model for pr(S = 0 | X). Sim-
ilarly, if pr(S = 0 | X) can be represented by the following model

pr(S = 0 | X) =
κ0

1− αT{g(X)− µg0}

/[
1 +

κ0
1− αT{g(X)− µg0}

]
,

where κ0 is a positive constant and α satisfies 1− αT{g(X)− µg0} > 0, we have pr(S = 0 |
X)/pr(S = 1 | X) ∝ [1− αT{g(X)− µg0}]−1. Therefore, under the above model, the weights 225

obtained by the empirical likelihood method satisfy W (X;λ∗) ∝ f t(X)/f s(X).
In general, the calibration weights can not lead to a pseudo population with exactly the

same covariate distribution as for the target population. However, it is expected that with
more constraints based on summary statistics from the target population, the covariate distri-
bution of the pseudo population will get closer to that of the target population. Therefore, the 230

optimal ITR obtained based on V̂ c(β) would be better than that obtained based on V̂ o(β).
Let V +(β) denote the value function under the ITR d(X;β) for the pseudo population P+

and define β∗ = argmaxβ V
+(β). Then, the true optimal linear ITR for P+ is d(X;β∗) and

the estimated optimal linear ITR is d(X; β̂c), where β̂c = argmaxβ V̂
c(β). Similarly, define

β̂o = argmaxβ V̂
o(β). The estimated optimal linear ITR without calibration is d(X; β̂o). 235

4. THEORETICAL PROPERTIES

In this section, we establish the asymptotic properties of the calibrated AIPW estimator
V̂ c(β̂c). The proofs of all theorems are given in the supplementary material.

We first consider the case when the propensity score model π(x) and conditional mean
outcome model µ(x, a) are estimated based on some posited parametric models π(X; η) and 240

µ(X,A; θ), respectively. Denote the estimating equations for λ, θ, η and V +(β∗) as

1

n

n∑
i=1


ρ [λT{g(Xi)− µg0}] {g(Xi)− µg0}

C(Xi, Ai, Yi; θ)
S(Xi, Ai; η)

W (Xi;λ)ψ(Xi, Ai, Yi;β, θ, η)− V +(β∗)

 = 0,

where

ψ(Xi, Ai, Yi;β, θ, η) =
I{Ai = d(Xi;β)}
%(Ai | Xi; η)

{Yi − µd(Xi;β, θ)}+ µd(Xi;β, θ).
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8 J. CHU ET AL.

Let λ̂, θ̂ and η̂ denote the estimators of λ, η and θ obtained from the above equations and let λ∗,
θ∗ and η∗ denote the limits of λ̂, θ̂ and η̂, respectively. To establish the asymptotic properties of
V̂ c(β̂c), we impose the following regularity conditions.245

Assumption 3. Assume the following regularity conditions hold: (A6) The supports of X and
Y are bounded. (A7) The function µ(x, a) is smooth and bounded for all (x, a). (A8) The weight
functionW (x;λ) is smooth and bounded away from∞, and it has bounded first derivatives with
respect to λ. (A9) The value function V +(β) is twice continuously differentiable in a neighbor-
hood of β∗. (A10) There exist some constants δ0 > 0 such that pr(|X̃Tβ∗| ≤ δ) = O(δ), where250

the big-O term is uniform in 0 < δ ≤ δ0. (A11) (i)
√
n(λ̂− λ∗) = Op(1), (ii)

√
n(θ̂ − θ∗) =

Op(1), and (iii)
√
n(η̂ − η∗) = Op(1).

Conditions (A6) - (A9) are standard regularity conditions used to establish the uniform conver-
gence results. Condition (A10) excludes the situation with pr(X̃Tβ∗ = 0) > 0 and ensures the
true targeted optimal ITR is uniquely defined, known as the margin condition, which is often as-255

sumed to derive a sharp convergence rate for the value function under the estimated optimal ITR
(e.g. Luedtke & Van Der Laan, 2016). Condition (A11) assumes the

√
n-convergence rates of

parameter estimates in the calibration weight function, propensity score model, and conditional
mean outcome model, which usually hold under mild conditions for posited parametric models,
for example, a logistic or probit regression model for the propensity score, a linear model for260

the conditional mean outcome, and weights obtained using the empirical likelihood method or
entropy balancing method.

Define

ξi1 =W (Xi;λ
∗)ψ(Yi, Ai, Xi;β

∗, θ∗, η∗)− V +(β∗), ξi3 = HT
θ G
−1
θ C(Xi, Ai, Yi; θ

∗),

ξi2 = HT
λG
−1
λ ρ [(λ∗)T{g(Xi)− µg0}] {g(Xi)− µg0}, ξi4 = HT

ηG
−1
η S(Xi, Ai; η

∗),265

where

Hλ = lim
n→∞

1

n

n∑
i=1

{
∂W (Xi;λ

∗)

∂λ

}
ψ(Yi, Ai, Xi;β

∗, θ∗, η∗),

Hs = lim
n→∞

1

n

n∑
i=1

W (Xi;λ
∗)
∂ψ(Yi, Ai, Xi;β

∗, θ∗, η∗)

∂s
(s = θ, η),

Gλ = −E
(
ρ′ [(λ∗)T{g(X)− µg0}] {g(X)− µg0}{g(X)− µg0}T

)
,

Gθ = −E {∂C(X,A, Y ; θ∗)/∂θT} , Gη = −E {∂S(X,A; η∗)/∂ηT} .270

Note that ξi2, ξi3 and ξi4 are the terms in the inference function of V̂ c(β̂c) due to estimators λ̂, θ̂
and η̂, respectively.

THEOREM 1. Assume either π(X; η) or µ(X,A; θ) is correctly specified. Under (A1)-
(A11), we have, as n→∞,

√
n{V̂ c(β̂c)− V +(β∗)} −→ N(0, σ21), in distribution, where σ21 =

E
{
(ξi1 + ξi2 + ξi3 ++ξi4)

2
}

. In addition, σ21 can be estimated by replacing expectation with275

empirical sum and true values V +(β∗), λ∗, θ∗, and η∗ with V̂ c(β̂c), λ̂, θ̂, and η̂, respectively.

Next, we consider the case when both propensity score model π(x) and conditional mean
outcome model µ(x, a) are estimated by flexible semi/nonparametric models with certain con-
vergence rates. For example, π(x) and/or µ(x, a) are estimated using kernel regression or random
forest. Let π̂(x) and µ̂(x, a) denote the corresponding estimators. The calibrated AIPW estima-280

tor V̂ c(β) can be similarly defined by replacing π(x; η̂) and µ(x, a; θ̂) with π̂(x) and µ̂(x, a),
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Targeted optimal treatment regime 9

respectively. To derive the asymptotic distribution of V̂ c(β), we need the following modified
condition.
(A11’) (i)

√
n(λ̂− λ∗) = Op(1); (ii)

[
P{π̂(X)− π(X)}2

] 1
2
∑1

a=0

[
P{µ̂(X, a)− µ(X, a)}2

] 1
2 =

op(n
−1/2), where P{f(X)} =

∫
f(x)2dFX(x). 285

Condition (A11’) (ii) is commonly imposed in the causal inference literature to derive the
asymptotic distribution of the AIPW estimators when the nuisance functions are estimated with
certain convergence rates (Kennedy, 2016; Farrell et al., 2021). For example, if π(x) is estimated
based on a correctly specified parametric model, π̂(x) is

√
n-consistent. Then it only requires

µ̂(x, a) to be consistent for (A11’) to hold. This can be easily achieved by most nonparametric 290

regression methods. However, when both µ(x, a) and π(x) are estimated nonparametrically, it
usually requires both terms to be estimated with the rate op(n−1/4). This can be achieved by some
nonparametric methods, such as kernel regression or random forest under certain conditions.
With Condition (A11’) (ii), we can establish the

√
n-consistency of V̂ c(β̂c). In addition, the

asymptotic variance of V̂ c(β̂c) will not depend on the variances of estimates π̂(x) and µ̂(x, a). 295

The results are summarized in the following theorem.

THEOREM 2. Under (A1)-(A10) and (A11’), we have, as n→∞,
√
n{V̂ c(β̂c)−

V +(β∗)} −→ N(0, σ22), in distribution, where σ22 = E
{
(ξi1 + ξi2)

2
}

. Here, ξi1 and ξi2 are de-
fined the same as in Theorem 1 but replacing π(x; η) and µ(x, a; θ) with π(x) and µ(x, a),
respectively. In addition, σ22 can be estimated by replacing expectation with empirical sum and 300

true values V +(β∗), λ∗, π(x) and µ(x, a) with V̂ c(β̂c), λ̂, π̂(x) and µ̂(x, a), respectively.

Remark 1. The theorems established above focus on the inference for the optimal value func-
tion. In the proof of Theorems 1 and 2, we show that β̂c has the cubic root convergence rate. In
addition, the asymptotic distribution of β̂c can be established and its associated inference can be
done by bootstrap-based methods (e.g. Cattaneo et al., 2020). 305

Finally, we compare the efficiency of V̂ o(β) and V̂ c(β) when the source and target populations
have the same covariate distributions, i.e. Ps = Pt. Under such case, V +(β) = V t(β), the value
function under the ITR d(X;β) for the target population.

THEOREM 3. Assume (A1)-(A10) and (A11’) hold. When Ps = Pt, we have that both√
n{V̂ o(β)− V t(β)} and

√
n{V̂ c(β)− V t(β)} are asymptotically normal with mean zero, 310

while the latter one has the same or smaller asymptotic variance.

Theorem 3 implies that even when the source and target populations have the same covariate
distributions, the calibrated AIPW value estimator can be more efficient than the original AIPW
value estimator without calibration. The efficiency gain of the calibrated estimator comes from
the constraints imposed based on available summary statistics of the covariate distribution for 315

the target population.

5. SIMULATION STUDIES

We have carried out extensive simulation studies to evaluate the performance of the proposed
methods. Here we focus on two methods for computing the weights: empirical likelihood (γ =
−1) and entropy balancing (γ = 0). The results for γ = 1 are provided in the supplementary 320

material. For illustration, we only considered means of all covariates as the summary statistics
from the target population. The corresponding pseudo populations are denoted as P+

EB for γ = 0
and P+

EL for γ = −1, respectively. Table 2 defines additional notation for the simulation. Since
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10 J. CHU ET AL.

Table 2. Additional notation used in the simulation studies
Population Value Optimal ITR Estimators

Pt V t(β) d(X;βt); βt = argmaxβ V
t(β)

P+
EB V +

EB(β) d(X;β∗
EB); β∗

EB = argmaxβ V
+
EB(β) V̂ c

EB(β); β̂c
EB = argmaxβ V̂

c
EB(β)

P+
EL V +

EL(β) d(X;β∗
EL); β∗

EL = argmaxβ V
+
EL(β) V̂ c

EL(β); β̂c
EL = argmaxβ V̂

c
EL(β)

estimated value functions are non-smooth and non-convex in β, following Zhang et al. (2012),
we used the genetic algorithm (Whitley, 1994) to find β̂o, β̂cEB , and β̂cEL. The optimization was325

implemented using the function genoud in the R package rgenoud (Mebane Jr & Sekhon, 2011).
For the source sample, outcomes are generated from the model Y = µ(X,A) + ε, whereX =

(X1, X2, X3)
T,

µ(X,A) = exp

{
2− 0.1X1 − 0.2X2 + 0.2X3 +A

2sign(X3 −X2
2 + 1)

2 + |X3 −X2
2 + 1|

}
,

and ε is generated from a normal distribution with mean 0 and variance 0.25. In addition, we con-330

sidered two different propensity score models for the treatment indicator A: π(X) = 0.5, which
represents a randomization study; logit{π(X)} = 0.5X1 − 0.5X2 + 0.5X3, which represents an
observational study.

We considered four different scenarios of the covariate distributions for Ps and Pt, which
are summarized in Table 3 and Table 4. In Scenario 1, the covariate distributions of the source335

and target populations are the same. We have Ps = P+
EB = P+

EL = Pt. In Scenario 2, the ra-
tio f t(X)/f s(X) can be written as exp{ln(0.4) + ln(4)X1} or 1/{1− 1.875(X1 − 0.8)}. It
can be shown that W (X;λ∗) ∝ f t(X)/f s(X) for both calibration methods. Therefore, we have
P+
EB = P+

EL = Pt even if we only use means of covariates as the summary statistics from the tar-
get population. This implies V +

EB(β) = V +
EL(β) = V t(β), and both V̂ c

EB(β̂
c
EB) and V̂ c

EL(β̂
c
EL)340

are consistent estimators of V t(βt) when either the propensity score or conditional mean out-
come model is correctly specified. However, in Scenarios 3 and 4, W (X;λ∗) is no longer pro-
portional to f t(X)/f s(X). Thus, V̂ c

EB(β̂
c
EB) and V̂ c

EL(β̂
c
EL) are doubly robust estimators only

for the value functions of their corresponding pseudo populations, but not for that of the target
population.345

Table 3. Covariate distributions for Ps and Pt used in the simulation studies
Scenario f s(X) f t(X)

1
X1 ∼ Bernoulli(0.5) X1 ∼ Bernoulli(0.5)

(X2, X3)T ∼ N((−1, 0)T,Σ1) (X2, X3)T ∼ N((−1, 0)T,Σ1)

2
X1 ∼ Bernoulli(0.5) X1 ∼ Bernoulli(0.8)

(X2, X3)T | X1 = 1 ∼ N((1,−1)T,Σ1) (X2, X3)T | X1 = 1 ∼ N((1,−1)T,Σ1)
(X2, X3)T | X1 = 0 ∼ N((−1, 1)T,Σ2) (X2, X3)T | X1 = 0 ∼ N((−1, 1)T,Σ2)

3
X1 ∼ Bernoulli(0.7)

(X2, X3)T ∼ N((0.1,−0.2)T,Σ1)

X1 ∼ Bernoulli(0.8)
(X2, X3)T | X1 = 1 ∼ N((1,−1)T,Σ1)
(X2, X3)T | X1 = 0 ∼ N((−1, 1)T,Σ2)

4
X1 ∼ Bernoulli(0.6)

(X2, X3)T ∼ N((0, 0)T,Σ1)

X1 ∼ Bernoulli(0.8)
(X2, X3)T | X1 = 1 ∼ N((1,−1)T,Σ1)
(X2, X3)T | X1 = 0 ∼ N((−1, 1)T,Σ2)

Σ1 =

(
1 −0.25

−0.25 1

)
, Σ2 =

(
1 −0.3
−0.3 1

)
.
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Targeted optimal treatment regime 11

Table 4. Summary statistics of X1, X2, X3 in different scenarios

Population Statistics
Scenario

1 2 3 4

Ps Mean 0.5,−1, 0 0.5, 0, 0 0.7, 0.1,−0.2 0.6, 0, 0
Variance 0.25, 1, 1 0.25, 2, 2 0.21, 1, 1 0.24, 1, 1

Pt Mean 0.5,−1, 0 0.8, 0.6,−0.6
Variance 0.25, 1, 1 0.16, 1.64, 1.64

We considered a source sample with size n = 250, 1000. For each setting, we conducted 500
replications. In our implementation, the propensity score and conditional mean outcome models
are estimated using two methods:

(I) Both are estimated based on posited parametric models. In particular, the propensity score is
estimated using a correctly specified logistic regression model, while the conditional mean 350

outcome is estimated using a linear model with all the covariates and covariate-treatment
interactions, which is a misspecified model.

(II) The propensity score is estimated nonparametrically using a generalized additive model, and
the conditional mean outcome model µ(x, a) is estimated nonparametrically using the random
forest for a = 0 and 1, separately. 355

We also implemented Q-learning as a benchmark for comparison. Specifically, we fitted linear
models for Q-functions and inferred optimal linear ITRs from the estimated Q-functions. An ITR
estimated by Q-learning is denoted as d(x; β̂Q). To evaluate and compare the performance of es-
timated optimal ITRs obtained from the original AIPW estimator, proposed calibrated AIPW es-
timators, and Q-learning, we compute the corresponding value functions and percentages of cor- 360

rect decisions for the target population. Specifically, we generate covariatesXt for a large sample
with size N = 105 from the target population. The value function of an estimated ITR d(x; β̂),
where β̂ = β̂o, β̂cEB , β̂cEL, or β̂Q is computed by V t(β̂) = N−1

∑N
i=1 µ{Xt

i , d(X
t
i ; β̂)}, and its

associated percentage of correct decisions is 1−N−1
∑N

i=1 |d(Xt
i ; β̂)− d(Xt

i ;β
t)|. Here, the

true optimal ITR d(X;βt) for the target population is obtained by maximizing V t(β) over β 365

using the grid-search method. We report the values and percentages of correct decisions results
of d(x; β̂o), d(x; β̂cEB), d(x; β̂

c
EL), and d(x; β̂Q) for the observational study in Fig. 1(a) (method

I) and Fig. 1(b) (method II). Similar results for the randomization study are provided in the
supplementary material.

We have the following observations. In Scenario 1, the optimal ITR estimated by Q-learning 370

has poor performance in terms of value and percentage of correct decisions, due to the mis-
specification of Q-function. All other three estimated optimal ITRs have good and comparable
performance in terms of values and percentages of correct decisions, which is expected since
Ps = P+

EB = P+
EL = Pt. In addition, as the sample size increases, the means of value functions

become closer to the true optimal value for the target population, percentages of correct deci- 375

sions get closer to 1, and the standard deviations of value functions and percentages of correct
decisions become smaller. However, in Scenarios 2-4 where Ps 6= Pt, the estimated optimal ITR
obtained using the original method has poor performance: the means of value functions are much
smaller than the true optimal value for the target population and percentages of correct decisions
are also much smaller than 1. This implies that the estimated optimal ITR obtained using the 380

original method may not generalize well to the target population when Ps 6= Pt. The optimal ITR
estimated by Q-learning still yields poor performance. However, the estimated optimal ITRs ob-
tained using the proposed calibration methods still have competitive performance similar to those
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12 J. CHU ET AL.
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(b) Implementation method II

Fig. 1. The value and percentage of correct decisions re-
sults of estimated optimal ITRs for the observational study
with implementation methods I and II. The red lines are the
values of the true optimal ITRs for the target population.

observed in Scenario 1. This supports that the proposed calibration using summary statistics can
improve the treatment decision for the target population.385

Next, we study the estimation and inference results of V̂ c
EB(β̂

c
EB) and V̂ c

EL(β̂
c
EL). For imple-

mentation method I, the asymptotic variances of V̂ c
EB(β̂

c
EB) and V̂ c

EL(β̂
c
EL) were estimated us-

ing the results established in Theorem 1, while for implementation method II, the corresponding
asymptotic variances were estimated using the results established in Theorem 2 because Con-
dition (A11’) holds. In our simulations, we observed that the empirical likelihood method may390

produce a few extreme calibration weights in Scenarios 3 and 4. These extreme weights usually
do not inflate the biases of V̂ c

EL(β̂
c
EL), but they do lead to overestimated standard errors due to

the instability in variance estimation. To control the effects of these extreme weights, we stabilize
the weights by reducing the large weights ŵi (> a−1n ) to w̃i according to (w̃i)

−1 = (ŵi)
−1 + an

for an = op(n). Such a stabilization leads all weights to be no larger than a−1n . The rationale395

for considering an to be op(n) is that because wi ∝ n−1, the stabilization does not affect the
weights asymptotically. In the simulation study, we take an = 12 log n. Based on our numerical
studies, such a stabilization doesn’t affect the biases of V̂ c

EL(β̂
c
EL) much but can give a reasonable

standard error estimate. On the other hand, the calibration weights computed using the entropy
balancing method do not have any extreme values in all four scenarios. Such an observation is400

consistent with the findings in the literature since the entropy balancing loss tends to penalize
the deviation of the estimated weights ŵi’s from n−1 more than the empirical likelihood method.
We report the mean and standard deviation of V̂ c

EB(β̂
c
EB) and V̂ c

EL(β̂
c
EL), the mean of estimated

standard errors and the empirical coverage probability (CP) of 95% Wald-type confidence in-
tervals. The true optimal values V +

EB(β
∗
EB) and V +

EL(β
∗
EL) are computed using the grid-search405

method based on a large dataset generated from the corresponding pseudo populations similar to
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Targeted optimal treatment regime 13

Table 5. Simulation results for the observational study with implementation
method I

Method
Scenario 1 2 3 4

n 250 1000 250 1000 250 1000 250 1000
V t(βt) 12.28 8.00 8.00 8.00

Entropy
Balancing

V +
EB(β∗

EB) 12.28 8.00 7.99 7.99
Mean 12.34 12.32 8.20 8.06 8.22 8.08 8.24 8.08
SD 0.42 0.21 0.36 0.17 0.31 0.16 0.45 0.17
SE 0.47 0.24 0.41 0.19 0.35 0.17 0.43 0.19

CP+ 96.8 95.6 95.4 95.6 95.0 95.2 94.6 94.8
CPt 96.8 95.6 95.4 95.6 95.2 96.0 94.8 96.0

Empirical
Likelihood

V +
EL(β∗

EL) 12.28 8.00 8.14 8.16
Mean 12.36 12.31 8.17 8.06 8.09 8.19 7.90 8.22
SD 0.41 0.22 0.37 0.16 0.35 0.20 0.43 0.26
SE 0.38 0.20 0.41 0.19 0.32 0.20 0.37 0.27

CP+ 93.6 96.0 96.4 97.0 92.0 96.8 81.2 94.0
CPt 93.6 96.0 96.4 97.0 93.2 88.4 87.0 93.4

Table note: Mean, the average of estimates; SD, the empirical standard deviation of estimates;
SE, the mean of estimated standard errors; CP+(%), the empirical coverage probability of a 95%
confidence interval for V +

EB(β∗
EB) or V +

EL(β∗
EL); CPt(%), the empirical coverage probability

of a 95% confidence interval for V t(βt).

Table 6. Simulation results for the observational study with implementation
method II

Method
Scenario 1 2 3 4

n 250 1000 250 1000 250 1000 250 1000
V t(βt) 12.28 8.00 8.00 8.00

Entropy
Balancing

V +
EB(β∗

EB) 12.28 8.00 7.99 7.99
Mean 12.42 12.32 8.12 8.03 8.15 8.06 8.19 8.06
SD 0.50 0.22 0.33 0.15 0.29 0.13 0.34 0.15
SE 0.54 0.25 0.38 0.18 0.30 0.14 0.37 0.17

CP+ 97.4 97.0 96.8 96.2 93.8 95.4 94.6 95.4
CPt 97.4 97.0 96.8 96.2 94.6 95.6 95.0 96.0

Empirical
Likelihood

V +
EL(β∗

EL) 12.28 8.00 8.14 8.16
Mean 12.42 12.32 8.11 8.03 8.06 8.18 7.86 8.16
SD 0.50 0.23 0.33 0.15 0.31 0.17 0.43 0.23
SE 0.46 0.21 0.37 0.17 0.29 0.17 0.35 0.24

CP+ 95.4 95.4 96.6 96.0 91.6 95.4 74.4 93.2
CPt 95.4 95.4 96.6 96.0 94.0 84.0 83.4 96.2

Notation is defined in Table 5.

the computation of V t(βt). In addition, we consider two types of CP: (1) CP+ for the optimal
values V +

EB(β
∗
EB) or V +

EL(β
∗
EL) of the corresponding pseudo population; (2) CPt for the optimal

values V t(βt) of the target population. Simulation results for the observational study are sum-
marized in Table 5 with implementation method I and Table 6 with implementation method II. 410

Similar results for the randomization study are provided in the supplementary material.
We have the following observations. In Scenarios 1 and 2, since P+

EB = P+
EL = Pt, we have

V +
EB(β

∗
EB) = V +

EL(β
∗
EL) = V t(βt). Both calibrated value estimators are nearly unbiased. The

mean of estimated standard errors is close to the standard deviation of the estimators, and the
empirical coverage probability of 95% confidence intervals is close to the nominal level for all 415

settings. In Scenarios 3 and 4, V +
EB(β

∗
EB) or V +

EL(β
∗
EL) is no longer equal to V t(βt). However,
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14 J. CHU ET AL.

we can see that both V +
EB(β

∗
EB) and V +

EL(β
∗
EL) are close to V t(βt). In particular, the difference

between V +
EB(β

∗
EB) and V t(βt) is nearly negligible. This implies that both calibration methods

give good approximation of the target population, while the entropy balancing method is better
than the empirical likelihood method for the considered Scenarios 3 and 4. A possible expla-420

nation is that the probability pr(S = 0 | X) can be well approximated by a logistic regression
under Scenarios 3 and 4 so that the entropy balancing calibration method can approximate the
target population very well. Moreover, the entropy balancing estimators are nearly unbiased, the
mean of estimated standard errors is close to the standard deviation of the estimators, and the em-
pirical coverage probabilities of 95% confidence intervals for both V +

EB(β
∗
EB) and V t(βt) are425

close to the nominal level for all settings. For the empirical likelihood method, as n increases,
the mean of estimators get closer to its true value V +

EL(β
∗
EL), the mean of estimated standard

errors get closer to the standard deviation of estimators, and the empirical coverage probability
of 95% confidence intervals for V +

EL(β
∗
EL) get closer to the nominal level as expected. However,

because of the difference between V +
EL(β

∗
EL) and V t(βt), the empirical coverage probability of430

95% confidence intervals for V t(βt) is lower than the nominal level for some settings even when
n increases to 1000. Finally, standard deviations of the estimators reported in Table 6 for imple-
mentation method II are generally smaller than the corresponding values reported in Table 5 for
implementation method I. Such efficiency gains are mainly due to the nonparametric fit of the
conditional mean outcome model in implementation method II compared with the misspecified435

parametric conditional mean outcome model used in implementation method I.
We also compared the original AIPW estimator without calibration with the calibrated AIPW

estimators under Scenario 1, where the source and target populations are identical. As expected,
all three estimators are consistent for the optimal value of the target population. The standard
deviations of the original AIPW estimator for observational study with implementation method440

II are 0.55, 0.27 for n = 250, 1000. These values are larger than the corresponding values of
calibrated estimators in Table 6, which supports the results established in Theorem 3.

6. REAL DATA ANALYSIS

We illustrate the proposed method using an application to data from the eICU collaborative
research database (eICU-CRD) (Goldberger et al., 2000; Pollard et al., 2018, 2019) and the445

MIMIC-III clinical database (Goldberger et al., 2000; Johnson et al., 2016, 2019). Specifically,
we use the eICU dataset as the source population, while treating the MIMIC-III dataset as the
target population. Both MIMIC-III and eICU data consist of patients who suffered from sepsis.
The eICU-CRD is a multi-center ICU database comprising de-identified health-related data asso-
ciated with over 200,000 admissions to ICUs across the US between 2014-2015. The MIMIC-III450

database is a single-center ICU database comprising de-identified health-related data associated
with over 40,000 patients who stayed in critical care units of the Beth Israel Deaconess Medical
Center between 2001 and 2012. It is likely that the populations in the two databases have some
heterogeneity.

Both eICU and MIMIC-III data collected information from ICU patients with sepsis disease,455

and thus contain common baseline covariates and treatment. In our study, we consider p = 7
baseline covariates in both samples: age (years), admission weights (kg), admission tempera-
ture (Celsius), glucose level (mg/dL), blood urea nitrogen (BUN) amount (mg/dL), creatinine
amount (mg/dL), white blood cell (WBC) count (K/uL). Here, treatment is coded as 1 if receiv-
ing the vasopressor, and 0 if receiving other medical supervisions such as IV fluid resuscitation.460

We consider the cumulative balance (mL) as the outcome of interest. A positive cumulative bal-
ance indicates that a patient’s fluid input is higher than their output. The condition describing
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Table 7. Mean and standard deviations (in parenthesis) of
baseline characteristics in the source and target datasets

Source Target

−|Cumulative Balance| (Y ) -1746.6 (1561.3) -1785.0 (1246.6)
Age (X1) 65.7 (15.1) 66.5 (16.5)
Admission Weights (X2) 80.0 (22.9) 79.7 (20.7)
Admission Temperature (X3) 36.5 (1.1) 36.8 (0.8)
Glucose (X4) 158.6 (102.7) 145.6 (72.4)
BUN (X5) 31.7 (20.3) 27.9 (18.4)
Creatinine (X6) 1.8 (1.5) 1.5 (1.4)
WBC (X7) 14.4 (8.4) 12.0 (6.5)

excess fluid is known as hypervolaemia or fluid overload. In critically ill patients, fluid overload
is related to increased mortality and also leads to several complications like pulmonary edema,
cardiac failure, tissue breakdown, and impaired bowel function (Claure-Del Granado & Mehta, 465

2016). A negative cumulative balance indicates that a patient’s fluid output is higher than their
input. The condition describing inadequate fluid is known as hypovolaemia. Patients with severe
hypovolemia can develop ischemic injury of vital organs, leading to multi-system organ fail-
ure (Taghavi & Askari, 2021). We use Y = −|cumulative balance| as the outcome, so a larger
value of the outcome is better. After removing abnormal values, the MIMIC-III dataset consists 470

of 10746 subjects, among which 2242 patients were treated with the vasopressor, while the rest
were treated with other medical supervisions. The MIMIC-III data is treated as the target popu-
lation. We sample n = 1000 subjects from the eICU dataset as the source sample, among which
271 patients were treated with the vasopressor, while the rest were treated with other medical su-
pervisions. Table 7 summarizes the mean and standard deviation of the outcome and covariates 475

in the source and target samples. We can see some differences in the means of some covariates,
such as glucose level, blood urea nitrogen amount, and WBC count.

We used the means of all seven covariates of the target population as the summary statistics
to estimate the calibration weights by the entropy balancing and empirical likelihood methods.
We computed three optimal linear ITRs, d(x; β̂o), d(x; β̂cEB), and d(x; β̂cEL) by maximizing
the original and calibrated AIPW value function estimators based on the source sample. In our
implementation, the propensity score model was estimated using a logistic regression with all
covariates and the conditional mean outcome model was estimated using the random forest for
treatments 0 and 1 separately. To assess the performance of these three estimated optimal ITRs
for treatment decisions in the target population, we apply them to random samples drawn from
the target population. Specifically, we randomly sample N = 1000 subjects from the MIMIC-III
data as the target sample and repeat this sampling procedure 100 times. We have individual-level
data from the target population, which can be used as the benchmark for evaluation. For a given
ITR d(x;β), we computed the AIPW estimator of its value function based on the target sample
by

V̂ t(β) =
1

N

N∑
i=1

[
I{At

i = d(Xt
i ;β)}

%t(At
i | Xt

i ; η̂)
{Y t

i − µ̂td(Xt
i ;β)}+ µ̂td(X

t
i ;β)

]
,

where %t(At
i | Xt

i ; η̂) = πt(Xt
i ; η̂)A

t
i + {1− πt(Xt

i ; η̂)}(1−At
i), µ̂td(X

t
i ;β) =

µ̂t(Xt
i , 1)I{d(Xt

i ;β) = 1}+ µ̂t(Xt
i , 0)I{d(Xt

i ;β) = 0}, the propensity score πt(Xt
i ; η̂)

was estimated using a logistic regression model, and the conditional mean outcome models 480

µ̂t(Xt
i , a), a = 0, 1, were estimated using random forest.
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Table 8. Mean and standard deviations (in parenthesis) of the value estimators and percentages
of correct decisions

Oracle Entropy Balancing Empirical Likelihood Original

Value -1674.1 (47.2) -1752.0 (49.5) -1773.8 (49.3) -1945.3 (75.6)
Percentage of Correct Decisions / 0.80 (0.1) 0.76 (0.1) 0.31 (0.1)

Let β̂oracle = argmaxβ V̂
t(β). Then, d(x; β̂oracle) is the optimal linear ITR for the target sam-

ple and V̂ t(β̂oracle) is the associated optimal value, which can serve as the benchmark. We also
computed the estimated values of three estimated ITRs d(x; β̂o), d(x; β̂cEB), and d(x; β̂cEL) by
V̂ t(β̂o), V̂ t(β̂cEB), and V̂ t(β̂cEL), respectively, and their associated percentages of correct deci-485

sions, defined as 1−N−1
∑N

i=1 |d(Xt
i ; β̂)− d(Xt

i ; β̂
oracle)| for an estimated ITR d(x; β̂). Ta-

ble 8 summarize the means and standard deviations of the value estimators and percentages of
correct decisions over 100 replications. We can see that the ITRs obtained using the proposed
calibration methods have much better performance than the original AIPW estimator without
calibration. Their estimated values are much closer to the optimal value computed using the tar-490

get samples and the associated percentages of correct decisions are much closer to 1. Moreover,
the ITR obtained using the entropy balancing method has slightly better performance than the
one obtained using the empirical likelihood method in terms of both value and percentage of
correct decisions.

SUPPLEMENTARY MATERIAL495

Supplementary material available at Biometrika online includes the proofs of theorems and
additional simulation results.
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