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Abstract 
We propose a test-based elastic integrative analysis of the randomised trial and real-world data to estimate 
treatment effect heterogeneity with a vector of known effect modifiers. When the real-world data are not 
subject to bias, our approach combines the trial and real-world data for efficient estimation. Utilising the trial 
design, we construct a test to decide whether or not to use real-world data. We characterise the 
asymptotic distribution of the test-based estimator under local alternatives. We provide a data-adaptive 
procedure to select the test threshold that promises the smallest mean square error and an elastic 
confidence interval with a good finite-sample coverage property. 
Keywords: counterfactual outcome, least favourable confidence interval, non-regularity, precision medicine, pre-test 
estimator, semiparametric efficiency 

1 Introduction 
Precision medicine (Hamburg & Collins, 2010), which aims at customising medical treatments to 
individual patient characteristics, has recently received lots of attention. A critical step toward pre-
cision medicine is to characterise the heterogeneity of treatment effect (HTE; Rothwell, 2005;  
Rothwell et al., 2005) entailing how patient characteristics are related to treatment effect. 
Randomised trials (RTs) are the gold-standard method for treatment effect evaluation because 
randomisation of treatment ensures that treatment groups are comparable and biases are mini-
mised to the extent possible. However, due to high costs and eligibility criteria for recruiting pa-
tients, the trial sample is often small and limited in the patient diversity, which renders the trial 
underpowered to estimate the HTE and unable to estimate the HTE for specific patient character-
istics. On the other hand, extensive real-world (RW) data are increasingly available for research 
purposes, such as electronic health records, claims databases, and disease registries, with much lar-
ger sample sizes and broader demographic and diversity than RT cohorts. Several national organ-
isations (Norris et al., 2010) and regulatory agencies (Sherman et al., 2016) have recently 
advocated using RW data to have a faster and less costly drug discovery process. Indeed, big 
data provide unprecedented opportunities for new scientific discovery; however, they also present 
challenges with possible incomparability with RT data due to selection bias, unmeasured con-
founding, lack of concurrency, data quality, outcome validity, etc. (US Food and Drug 
Administration, 2019). 

The motivating application is to evaluate adjuvant chemotherapy for resected non-small cell 
lung cancer (NSCLC) at early-stage disease. Adjuvant chemotherapy for resected NSCLC was 
shown to be effective in late-stage II and IIIA disease based on RTs (Le Chevalier, 2003). 
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However, the benefit of adjuvant chemotherapy in stage IB NSCLC disease is unclear. Cancer and 
Leukemia Group B (CALGB) 9633 is the only RT designed specifically for stage IB NSCLC 
(Strauss et al., 2008); however, it comprises about 300 patients, which was undersized to detect 
clinically meaningful improvements for adjuvant chemotherapy (Katz & Saad, 2009). ‘Who can 
benefit from adjuvant chemotherapy with stage IB NSCLC?’ remains an important clinical ques-
tion. An exploratory analysis of CALGB 9633 showed that patients with tumour size ≥ 4.0 cm 
might benefit from adjuvant chemotherapy (Strauss et al., 2008). On the other hand, the 
National Cancer Database (NCDB) is a clinical oncology registry database that captures the infor-
mation from approximately 75% of all newly diagnosed cancer patients in the USA. Our goal is to 
integrate the CALGB 9633 trial with a cohort selected under the same trial eligibility criteria from 
the NCDB. We expect that an integrated analysis of the CALGB 9633 and NCDB data can con-
siderably improve the efficiency of the HTE estimation on adjuvant chemotherapy regarding tu-
mour size over the RT-only analysis. Although such population-based disease registries provide 
rich information citing the real-world usage of adjuvant chemotherapy, the concern is the poten-
tial bias associated with RW data. 

Many authors have proposed methods for generalising treatment effects from RTs to the target 
population, whose covariate distribution can be characterised by the RW data (Buchanan et al., 
2018; Colnet et al., 2020; Lee, Yang, Dong, et al., 2022; Lee, Yang, & Wang, 2022; Zhao 
et al., 2019). When both RT and RW data provide covariate, treatment, and outcome information, 
there are two main approaches for integrative analysis: meta-analyses of summary statistics (e.g.,  
Verde & Ohmann, 2015) and pooled patient data (Sobel et al., 2017). The major drawback of 
meta-analyses of the first kind is that they use only aggregated information and do not distinguish 
the roles of the RT and RW data, both having unique strengths and weaknesses. Meta-analyses of 
the second kind include all patients, but pooling the data from two sources breaks the randomisa-
tion of treatments and relies on causal inference methods to adjust for confounding bias (e.g.,  
Prentice et al., 2005). More importantly, one cannot rule out possible unmeasured confounding 
in the RW data. In addition, most existing integrative methods focused on average treatment ef-
fects (ATEs) but not on HTEs, which lies at the heart of precision medicine. 

To acknowledge the advantages of the RT and RW data, we propose an elastic algorithm for 
combining the RT and RW data for accurate and robust estimation of the HTE function with a 
vector of known effect modifiers. The primary identification assumptions underpinning our meth-
od are (i) the transportability of the HTE from the RT data to the target population and (ii) the 
strong ignorability of treatment assignment in the RT data. Transportability is a common assump-
tion in the trial generalisability literature, which holds if the HTE function captures all the treat-
ment effect modifiers, or the study sample is a random sample from the target population. The 
well-controlled trial design can also ensure the strong ignorability of treatment assignment. If 
the RW sample satisfies the parallel assumptions (i) and (ii), it is comparable to the RT sample 
in estimating the HTE. In this case, integrating the RW sample would increase the efficiency of 
HTE estimation. Toward this end, we use the semiparametric efficiency theory (Bickel et al., 
1993; Robins, 1994) to derive the semiparametrically efficient integrative estimator of the HTE. 
However, due to many practical limitations, the RW sample may violate the desirable comparabil-
ity assumption (i) or (ii). In this case, integrating the RW sample would lead to bias in HTE esti-
mation. Utilising the design advantage of RTs, we derive a preliminary test statistic to gauge the 
comparability and reliability of the RW data and decide whether or not to use the RW data in 
an integrative analysis. Therefore, our test-based elastic integrative estimator uses the efficient 
combination strategy for estimation if the violation test is insignificant and retains only the RT 
data if the violation test is significant. 

The proposed estimator belongs to pre-test estimation by construction (Giles & Giles, 1993) 
and is non-regular. We consider null, local, and fixed alternative hypotheses for the pre-testing, 
representing three scenarios when the comparability assumption required for the RW data is 
zero, weakly, and strongly violated, respectively. Notably, the fixed alternative formulates the 
bias of the RW score of the HTE parameter to be fixed, under which the pre-test statistic goes 
to infinity as the sample size increases. Thus, the inference under the fixed alternative cannot cap-
ture the finite-sample behaviour of the test and estimator well and lacks uniform validity. A com-
mon strategy to obtain uniform inference validity for non-regular estimators is considering the 
local alternative, which formulates the bias of the RW score to be in the n−1/2 neighbourhood  
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of zero. The inference under the local alternative provides a better approximation of the finite- 
sample behaviour of the proposed estimator. Such strategies have been considered in designing tri-
als for sample size/power calculation and in the weak instrument, partial identification, and clas-
sification literature (Cheng, 2008; Laber & Murphy, 2011; Staiger & Stock, 1997). Under the 
local alternative, when the testing distribution is non-degenerate, exact inference for pre-test esti-
mation is complex because the estimator depends on the randomness of the test procedure. This 
issue cannot be solved by splitting the sample into two parts for testing and estimation separately 
(Toyoda & Wallace, 1979). The reason is that sample splitting cannot bypass the issue of the add-
itional randomness due to pre-testing, and therefore the impact of pre-testing remains. Also, our 
test statistic and estimator are constructed based on the whole sample data. To consider the effect 
of pre-testing, we decompose the test-based elastic integrative estimator into orthogonal compo-
nents; one is affected by the pre-testing, and the other is not. This step reveals the asymptotic dis-
tributions of the proposed estimator to be mixture distributions involving a truncated normal 
component with ellipsoid truncation and a normal component. Under this framework, we provide 
a data-adaptive procedure to select the threshold of the test statistic that promises the smallest 
mean square error (MSE) of the proposed estimator. Lastly, we propose an elastic procedure to 
construct confidence intervals (CIs), which are adaptive to the local and fixed alternative and 
have good finite-sample coverage properties. 

This article is organised as follows. Section 2 introduces the basic setup, HTE, identification as-
sumptions, and semiparametric efficient estimation. Section 3 establishes a test statistic for gaug-
ing the comparability of the RW data with the RT data, a test-based elastic integrative estimator, 
the asymptotic properties, and an elastic inference procedure. Section 4 presents a simulation 
study to evaluate the performance of the proposed estimator in terms of robustness and efficiency. 
Section 5 applies the proposed method to combined CALGB 9633 (RT) and NCDB (RW) data to 
characterise the HTE of adjuvant chemotherapy in patients with stage IB non-small cell lung can-
cer. We relegate technical details and all proofs to the Online supplementary material. 

2 Basic set-up 
2.1 Notation, the HTE, and two data sources 
Let A ∈ {0, 1} be the binary treatment, Z a vector of pre-treatment covariates of interest with the 
first component being 1, X a vector of auxiliary variables including Z, and Y the outcome of inter-
est. We consider Y to be continuous or binary to fix ideas, although our framework can be ex-
tended to general-type outcomes, including the survival outcome. To define causal effects, we 
follow the potential outcomes framework (Neyman, 1923; Rubin, 1974). Under the Stable Unit 
of Treatment Value assumption, let Y(a) be the potential outcome had the subject been given treat-
ment a, for a = 0, 1. And, by the causal consistency assumption, the observed outcome is 
Y = Y(A) = AY(1) + (1 − A)Y(0). 

Based on the potential outcomes, the individual treatment effect is Y(1) − Y(0), and τ(Z) = 
E{Y(1) − Y(0) ∣ Z} characterises the HTE. For a binary outcome, τ(Z) is also called the causal 
risk difference. In clinical settings, the parametric family of HTEs is desirable and has wide appli-
cations in precision medicine to discover optimal treatment regimes tailored to individual charac-
teristics (Chakraborty & Moodie, 2013). We assume the HTE function to be 

τ(Z) = τψ0
(Z) = E{Y(1) − Y(0) ∣ Z; ψ0}, (1) 

where ψ0 ∈ Rp is a vector of unknown parameters and p is fixed. 
We illustrate the HTE function in the following examples. 

Example 1 (Shi et al., 2016; Tian et al., 2014). For a continuous outcome, a linear HTE 
function is τψ0

(Z) = ZTψ0, where each component of ψ0 quantifies how the 
treatment effect varies over each Z. 

Example 2 (Richardson et al., 2017; Tian et al., 2014). For a binary outcome, an HTE 
function for the causal risk difference is 
τψ0

(Z) = {exp (ZTψ0) − 1}/{exp (ZTψ0) + 1}, ranging from −1 to 1.  
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To evaluate the effect of adjuvant chemotherapy, let Y be the indication of cancer recurrence 
within one year of surgery. Consider the HTE function in Example 2 with Z = 
(1, age, tumour size)T and ψ0 = (ψ0,0, ψ0,1, ψ0,2)T. This model entails that, on average, the treat-
ment would increase or decrease the risk of cancer recurrence by |τψ0

(Z)| had the patient received 
adjuvant chemotherapy, and the magnitude of increase depends on age and tumour size. If 
ZTψ0 < 0, it indicates that the treatment is beneficial for this patient. Moreover, if ψ0,1 < 0 and 
ψ0,2 < 0, then older patients with larger tumour sizes would benefit more from adjuvant 
chemotherapy. 

We consider two independent data sources: one from the RT study and the other from the RW 
study. Let δ = 1 denote RT participation, and let δ = 0 denote RW study participation. Let V sum-
marise the entire record of observed variables (A, X, δ, Y). The RT data consist of {Vi : i ∈ A} with 
sample size m, and the RW data consist of {Vi : i ∈ B} with sample size n, where A and B are sample 
index sets for the two data sources. Our setup requires the RT and RW samples to contain Z’s in-
formation but may include different sets of auxiliary information in X. The total sample size is 
N = m + n. Generally, n is larger than m. In our asymptotic framework, we assume both m and 
n go to infinity, and m/n→ ρ, where 0 < ρ < 1. 

For simplicity of exposition, we use the following notations throughout the paper: PN denotes 
the empirical measure over the combined RT and RW data, M⊗2 denotes MMT for a vector or ma-
trix M, Ea(·) and Va(·) are the asymptotic expectation and variance of a random variable, AnBn 

denotes An is independent of Bn, An ∼ Bn denotes that An follows the same distribution as Bn, 
and An ∼· Bn denotes that An and Bn have the same asymptotic distribution as n→∞. Let eδ(X) = 
P(A = 1 ∣ X, δ) be the propensity score. 

2.2 Identification of the HTE from the RT and RW data 
The fundamental problem of causal inference is that Y(0) and Y(1) are not jointly observable. 
Therefore, the HTE is not identifiable without additional assumptions. 

We view the RT sample as the gold standard for HTE estimation, satisfying the following 
assumption. 

Assumption 1 (RT validity). (i) E{Y(1) − Y(0) ∣ X, δ = 1} = τ(Z), and (ii) Y(a)⫫ A ∣ 
(X, δ = 1) for a ∈ {0, 1} and 0 < e1(X) < 1 for all (X, δ = 1). 

Assumption 1(i) states that the HTE function is transportable from the RT sample to the target 
population. This assumption is a common assumption in the data integration literature. Stronger 
versions of Assumption 1(i) have also been considered in the literature, including the ignorability 
of study participation, i.e., {Y(0), Y(1)}⫫δ ∣ X (Buchanan et al., 2018; Stuart et al., 2011), or the 
mean exchangeability, i.e., E{Y(a) ∣ X, δ} = E{Y(a) ∣ X} for a = 0, 1 (Dahabreh et al., 2019). 
Assumption 1(i) holds if Z captures the heterogeneity of effect modifiers or if the study sample 
is a random sample from the target population. Under the structural equation model framework,  
Pearl and Bareinboim (2011) provided graphical conditions for transportability. The graphical re-
presentation can aid the investigator in assessing the plausibility of Assumption 1(i). Assumption  
1(ii) entails that treatment assignment in the RT study follows a randomisation mechanism based 
on the pre-treatment variables X, and all subjects have positive probabilities of receiving each 
treatment. Assumption 1(ii) holds by the design of complete randomisation of treatment, where 
the treatment is independent of the potential outcomes and covariates, i.e., {Y(a), X}⫫ A ∣ δ = 1. 
It also holds by the design of stratified block randomisation of treatment based on discrete X, 
where the treatment is independent of the potential outcomes within each stratum of X. The pro-
pensity score e1(X) is known by design. 

We consider a parallel assumption for the RW sample, termed RW comparability. 

Assumption 2 (RW comparability). (i) E{Y(1) − Y(0) ∣ X, δ = 0} = τ(Z), and (ii) Y(a)⫫ A ∣ 
(X, δ = 0) for a ∈ {0, 1} and 0 < e0(X) < 1 for all (X, δ = 0). 

Although Assumption 2 appears similar to Assumption 1, its implications differ substantively. 
Assumption 2(i) states that the HTE function is transportable from the RW sample to the target 
population. To make this assumption more plausible, one can use the same trial eligibility criteria  
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to select the RW sample to ensure a sufficient overlap of the RW covariate space with the RT sam-
ple. However, this assumption can be violated in various ways. For example, RT and RW studies 
may be conducted in different care settings (large academic medical centres versus smaller commu-
nity hospitals), contexts (geography, policy-related, or socio-structural factors), or time frames. 
Each of these concerns can violate Assumption 2(i). In addition, due to the lack of control of treat-
ment assignment in RW data, Assumption 2(ii) implies that the observed covariates X capture all 
the confounding variables related to the treatment and outcome. This assumption may also be re-
strictive in practice. For example, in the NCDB cohort, the physicians or patients decided, based 
on experiences or preferences, whether patients received adjuvant chemotherapy after tumour re-
section. While the database captures many site-level and patient-level information, there may be 
unmeasured confounding variables that associate with the treatment selection and clinical out-
come, e.g., financial status and accessibility to health care facilities. 

By trial design, we assume Assumption 1 for the RT data holds throughout the paper; however, 
we regard Assumption 2 for the RW data as an idealistic assumption, which may be violated. If 
Assumption 2 holds, we will use a semiparametric efficient strategy to combine both data sources 
for optimal estimation. However, if Assumption 2 is violated, our proposed method will automat-
ically detect the violation and retain only the RT data for estimation. In practice, it is important to 
identify a ‘similar’ RW sample to be integrated with the RT sample. Hernán and Robins (2016) 
provided a framework for using big real-world data to emulate a target trial when a randomised 
trial is unavailable. When selecting an RW sample, we can check the rubrics for the eligibility cri-
teria that defines the target population, treatment definitions, assignment procedures, follow-up 
time, outcome, and effect contrast of interest, to increase the chance of successfully integrating 
the RW sample with the RT sample. 

Unlike our focus on testing the comparability of the RW in HTE estimation, testing 
transportability alone may be of more importance in some contexts. Under Assumptions 1(ii) 
and 2(ii), i.e., the treatment ignorability holds, possible tests can be adopted to test 
E{Y(1) − Y(0) ∣ X, δ = 1} = E{Y(1) − Y(0) ∣ X, δ = 0}, e.g., the U-statistics-based test (Luedtke 
et al., 2019). 

Under Assumptions 1 and 2, the following identification formula holds for the HTE: 

E
AY

eδ(X)
−

(1 − A)Y
1 − eδ(X)




Z, δ

 

= τ(Z). (2) 

The identification formula motivates regression analysis based on the modified outcome 
A{eδ(X)}−1Y − (1 − A){1 − eδ(X)}−1Y to estimate the HTE. This approach involves the inverse of 
the treatment probability, and thus the resulting estimator may be unstable if some estimated treat-
ment probabilities are close to zero or one. It calls for a principled way to construct improved es-
timators of the HTE. Rudolph and van der Laan (2017) derived the semiparametric efficiency 
score (SES) and bound for the average treatment effect. In the next subsection, we derive the 
SES of the HTE under Assumptions 1 and 2 that motivates improved estimators. 

2.3 Semiparametric efficiency score 
The semiparametric model consists of model (1) with the parameter of interest ψ0 and the unspeci-
fied distribution. Assumptions 1 and 2 impose restrictions on ψ0. To see this, define 

Hψ = Y − τψ(Z)A. (3) 

Intuitively, Hψ0 
subtracts from the subject’s observed outcome Y the treatment effect of the sub-

ject’s observed treatment τψ0
(Z)A, which mimics the potential outcome Y(0). Formally, following  

Robins (1994), we can show that E(Hψ0
∣ A, X, δ) = E{Y(0) ∣ A, X, δ}. Therefore, by Assumptions  

1 and 2, ψ0 must satisfy the restriction: 

E(Hψ0
∣ A, X, δ) = E(Hψ0

∣ X, δ). (4)  
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For simplicity of exposition, denote 

E(Hψ0
∣ X, δ) = μδ(X), V(Hψ0

∣ X, δ) = σ2
δ (X), 

where μδ(X) is the outcome mean function and σ2
δ (X) is the outcome variance function. By viewing 

(X, δ) jointly as the set of confounders, we invoke the SES of the structural nested mean model in  
Robins (1994). We further make a simplifying assumption that 

E(H2
ψ0

∣ A, X, δ) = E(H2
ψ0

∣ X, δ), (5) 

which is a natural extension of (4). This assumption allows us to derive the SES of ψ0 as 

Sψ0
(V) = q∗(X, δ){Hψ0

− μδ(X)}{A − eδ(X)}, q∗(X, δ) = ∂τψ0
(Z)/∂ψ

 
σ2

δ (X)
 −1

, (6) 

which separates the term with the outcome, i.e., Hψ0
− μδ(X), and the term with the treatment, i.e., 

A − eδ(X). This feature relaxes model assumptions of the nuisance functions while retaining root-n 
consistency in the estimation of ψ0; see Section 2.4. Even without the simplifying assumption in 
(5), by the mean independence property in (4), we can verify that 

E{Sψ0
(V)} = E[q∗(X, δ)E{Hψ0

− μδ(X) ∣ X, δ} × E{A − eδ(X) ∣ X, δ}] = 0.

Therefore, if (5) holds, Sψ0
(V) is the SES of ψ0; if (5) does not hold, Sψ0

(V) is unbiased and permits 
robust estimation. We provide examples to elucidate the SES below before delving into robust es-
timation in the following subsection. 

Example 3 For a continuous outcome and the HTE function given in Example 1, the SES 
of ψ0 is 

Sψ0
(V) = Z σ2

δ (X)
 −1

{Hψ0
− μδ(X)}{A − eδ(X)}.

For a binary outcome and the HTE function given in Example 2, the SES of 
ψ0 is 

Sψ0
(V) = Z

2 exp (ZTψ0)

{exp (ZTψ0) + 1}2 [μδ(X){1 − μδ(X)}]−1{Hψ0
− μδ(X)}{A − eδ(X)}.

Remark 1 (Comparison with other doubly robust approaches). The identification for-
mula (2) motivates the inverse probability weighted (IPW)-adjusted regression. 
However, IPW is known to be inefficient and sensitive to model misspecifica-
tion of the propensity score. Alternatively, Kennedy (2020) proposed a 
pseudo-outcome regression approach using augmented IPW (AIPW) 
pseudo-outcomes that leverages weighting and outcome mean functions and 
improves the performance of IPW-adjusted regression. The doubly robust 
loss function for the treatment contrast or blip function in Luedtke and van 
der Laan (2016) also exploits weighting and outcome mean functions. Both 
IPW and AIPW use weighting to remove confounding biases; differently, the 
SES in (6) uses the mean independence of Hψ0

− μδ(X) and A − eδ(X) to con-
struct unbiased estimating equations. The simulation study in Online 
Supplementary Material, Section S4.1 shows that the SES approach outper-
forms the AIPW-adjusted approach when the propensity score can be close 
to zero or one.  
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2.4 From SES to robust estimation 
In principle, an efficient estimator for ψ0 can be obtained by solving PNSeff,ψ(V) = 0. However, 
Seff,ψ depends on the unknown distribution through e0(X), μδ(X), and σ2

δ (X), and thus solving 
PNSeff,ψ(V) = 0 is infeasible. Nevertheless, the state-of-art causal inference literature suggests 
that estimators constructed based on SES are robust to approximation errors using machine learn-
ing methods, the so-called rate double robustness; see, e.g., Chernozhukov et al. (2018) and  
Rotnitzky et al. (2019). 

In order to obtain a robust estimator with good efficiency properties, we consider approximat-
ing the unknown functions using non-parametric or machine learning methods. In summary, our 
algorithm for the estimation of ψ0 proceeds as follows. 

Step 1. Obtain an estimator of e0(X) using non-parametric or machine learning methods, de-
noted by e0(X), based on {(Ai, Xi, δi = 0) : i ∈ B}. 

Step 2. Obtain a preliminary estimator ψp by solving 


i∈A [q∗(Xi, δi){Ai − e1(Xi)}Hψ,i] = 0, 
based on {(Ai, Xi, Yi, δi = 1) : i ∈ A}. 

Step 3. Obtain the estimators of μ1(X) and μ0(X) using non-parametric or machine learning 
methods, denoted by μ1(X) and μ0(X), based on {(Ai, Xi, Hψ̂p,i, δi = 1) : i ∈ A} and 
{(Ai, Xi, Hψ̂p,i, δi = 0) : i ∈ B}, respectively. 

Step 4. Let Seff,ψ(V) be Seff,ψ(V) with the unknown quantities replaced by the estimated paramet-
ric models in Steps 1 and 3. Obtain the efficient integrative estimator ψeff by solving 

PN
Sψ(V) = 0. (7)  

The estimator ψeff depends on the approximation of nuisance functions. To establish the asymp-
totic properties of ψeff, we provide the regularity conditions. 

Assumption 3 (i) ‖e0(X) − e0(X)‖ = oP(1) and ‖μδ(X) − μδ(X)‖ = oP(1); (ii) 
‖e0(X) − e0(X)‖ × ‖μδ(X) − μδ(X)‖ = oP(n−1/2); and (iii) additional re-
gularity conditions in Online Supplementary Material, Assumption S1. 

Assumption 3 is typical regularity conditions for Z-estimation or M-estimation (van der Vaart, 
2000). Assumption 3(i) states that we require the posited models to be consistent for the two nuis-
ance functions. Assumption 3(ii) states that the combined rate of convergence of the posited mod-
els is oP(n−1/2). Online Supplementary Material, Assumption S1 regularises the complexity of the 
functional space. Importantly, these conditions ensure ψeff retains the parametric-rate consistency, 
allowing flexible data-adaptive models and not restricting to stringent parametric models. 

Theorem 1 Suppose Assumptions 1–3 hold. Then, ψeff is root-n consistent for ψ0 and 
asymptotically normal. 

Theorem 1 implies that asymptotically, ψeff can be viewed as the solution to PNSψ(V) = 0 when 
the nuisance functions are known. Therefore, for consistent variance estimation of ψeff, we can use 
the standard sandwich formula (Stefanski & Boos, 2002) or the perturbation-based resampling 
(Hu & Kalbfleisch, 2000), treating the nuisance functions to be known. 

3 Test-based elastic integrative analysis 
A major concern for integrating the RT and RW data lies in the possibly poor quality of the RW 
data. Then, combining the RT and RW data into an integrative analysis would lead to a biased 
HTE estimator. This section addresses the critical challenge of preventing any biases present in 
the RW data from leaking into the proposed estimator.  
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3.1 Detection of the RW incompatibility 
We consider all assumptions in Theorem 1 hold except that Assumption 2 may be violated. We 
derive a test that detects the violation of this crucial assumption for using the RW data. For sim-
plicity, we denote the SES based solely on the RT or RW data as 

Srt,ψ(V) = δSψ(V), Srw,ψ(V) = (1 − δ)Sψ(V), 

respectively. Moreover, let Srt,ψ(V) and Srw,ψ(V) be Srt,ψ(V) and Srw,ψ(V) with the nuisance func-
tions replaced by their estimates, and let I rt = E{Srt,ψ0

(V)⊗2 ∣ δ = 1} and I rw = E{Srw,ψ0
(V)⊗2 ∣ 

δ = 0} be Fisher information matrices. 
We now formulate the null hypothesis H0 for the case when Assumption 2 holds and fixed and 

local alternatives Ha and Ha,n for the case when Assumption 2 is violated: 

H0 (Null) E{Srw,ψ0
(V)} = 0. 

Ha (Fixed alternative) E{Srw,ψ0
(V)} = ηfix , where ηfix is a p-vector of constants with at least one 

non-zero component. 
Ha,n (Local alternative) E{Srw,ψ0

(V)} = n−1/2η , where η is a p-vector of constants with at least one 
non-zero component. 

Considering the fixed alternative is common to establish asymptotic properties of standard estima-
tors and tests; however, the local alternative is useful to study finite-sample properties and regu-
larity of non-standard estimators and tests. In finite samples, the violation of Assumption 2 
may be weak; e.g., there exists a hidden confounder in the RW data, but the association between 
the hidden confounder and the outcome or the treatment is small. In such cases, the test statistic 
can be small or moderate. The fixed alternative formulates the bias of the RW score to be fixed, 
implying that the test statistic goes to infinity with the sample size. Consequently, the fixed alter-
native inference cannot capture the finite-sample behaviour well in the cases of weak violation and 
does not have uniform validity. That is, there exist scenarios where the finite-sample coverage 
probability from standard inference is far from the nominal level for any sample size. The local 
alternative asymptotics is a common approach to obtaining uniform inference validity for non- 
regular estimators. In the local alternative Ha,n, the bias of Srw,ψ0

(V) may be small as quantified 
by n−1/2η. The values of η represent different tracks that the bias of Srw,ψ0

(V) follows to converge 
to zero. We will show that the test statistic is OP(1), thus better capturing the finite-sample behav-
iour in the weak violation cases. The local alternative encompasses the null and fixed alternative as 
special cases by considering different values of η. In particular, H0 corresponds to Ha,n with η = 0. 
Also, Ha corresponds to Ha,n with η = ±∞; hence, considering Ha alone is not informative about 
the finite-sample behaviours of the proposed test and estimator. 

We detect biases in the RW data based on the following two key insights. First, we obtain an 
initial estimator ψrt by solving the estimating equation based solely on the RT data, 


i∈A
Srt,ψ(Vi) = 0. It is important to emphasise that the propensity score in the RT e1(X) is known 

by design and, therefore, ψrt is always consistent. Second, if Assumption 2 holds for the RW data, 
Srw,ψ0

(V) is unbiased, but Srw,ψ0
(V) is no longer unbiased if it is violated. Therefore, large values of 

n−1/2
i∈B
Srw,ψ̂rt

(Vi) provide evidence of the violation of Assumption 2. 

To detect the violation of Assumption 2 for using the RW data, we construct the test statistic 

T = n−1/2


i∈B

Srw,ψ̂rt
(Vi)

 T

Σ−1
SS n−1/2



i∈B

Srw,ψ̂rt
(Vi)

 

, (8) 

where ΣSS = ΓTI rtΓ + I rw is the asymptotic variance of n−1/2
i∈B
Srw,ψ̂rt

(Vi), Γ = I−1
rt I rwρ−1/2, and 

ΣSS is a consistent estimator for ΣSS. The test statistic T measures the distance between 
n−1/2

i∈B Srw,ψ̂rt
(Vi) and zero. If the idealistic assumption holds, we expect T to be small. By  
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the standard asymptotic theory, we show in the Online supplementary material that under H0, 
T ∼· χ2

p, a Chi-square distribution with degrees of freedom p, as n→∞. This result serves to detect 
the violation of the assumption required for the RW data. 

3.2 Elastic integration 
Let cγ = χ2

p,γ be the 100(1 − γ)th percentile of χ2
p. For a small γ, if T ≥ cγ, there is strong evidence to 

reject H0 for the RW data; i.e., there is a detectable bias for the RW data estimator. In this case, we 
would only use the RT data for estimation. On the other hand, if T < cγ, there is no strong evidence 
that the RW data estimator is biased; therefore, we would combine both the RT and RW data for 
optimal estimation. Our strategy leads to the elastic integrative estimator ψelas solving 



i∈A∪B
δi
Sψ(Vi) + 1(T < cγ)(1 − δi)Sψ(Vi)

 
= 0. (9) 

The choice of γ involves the bias-variance trade-off. On the one hand, under H0, the acceptance 
probability of integrating the RW data is P(T < cγ) = 1 − γ. Therefore, for a relatively large sample 
size, we will accept good-quality RW data with probability 1 − γ and reject good-quality RW data 
with type I error γ. Hence, a small γ is desirable; similarly, for Ha,n with small η. On the other hand, 
under Ha,n with large η, the reverse is true, and hence a large γ is desirable. 

To formally investigate the trade-off, we characterise the asymptotic distributions of the elastic 
integrative estimator ψelas under the null, fixed, and local alternatives. We do not discuss the trivial 
cases when γ = 0 and 1, corresponding to ψelas =ψrt or ψeff. With γ ∈ (0, 1), ψelas mixes two dis-
tributions, namely, ψrt ∣ (T ≥ cγ) and ψeff ∣ (T < cγ). Each distribution can be non-standard because 
the estimators and test are constructed based on the same data and, therefore, may be asymptot-
ically dependent. 

To characterise those non-standard distributions, we decompose this task into three steps. First, 
by the standard asymptotic theory, it follows that T ∼· ZT

1Z1, where Z1 is a standard p-variate nor-
mal random vector, n1/2(ψrt − ψ0) ∼· N rt, and n1/2(ψeff − ψ0) ∼· N eff, where N rt and N eff are some 
p-variate normal random vectors with variances Vrt = (ρI rt)

−1 and Veff = (ρI rt + I rw)−1, 
respectively. 

Second, we find another standard p-variate normal random vector Z2 that is independent of Z1, 
and decompose the normal distributions N rt and N eff into two orthogonal components: i) one cor-
responds to Z1 and ii) the other one corresponds to Z2. Importantly, component i) would be af-
fected by the test constraints induced by ZT

1Z1, but component ii) would not be affected. For N eff, 
we show that it is fully represented by Z2 as N eff = −V1/2

eff Z2. Therefore, its distribution is not af-
fected by ZT

1Z1 < cγ; that is, 

N eff ∣ (ZT
1Z1 < cγ) ∼ −V1/2

eff Z2.

For N rt, we show that N rt = V1/2
rt− effZ1 − V1/2

eff Z2 with Vrt− eff = Vrt − Veff. Due to the independence 
between Z1 and Z2, N rt ∣ (ZT

1Z1 ≥ cγ) is a mixture distribution 

N rt ∣ (ZT
1Z1 ≥ cγ) ∼ V1/2

rt− effZ
t
cγ

− V1/2
eff Z2, 

mixing a non-normal component, where Zt
c represents the truncated normal distribution 

Z1 ∣ (ZT
1Z1 ≥ c), and a normal component. For illustration, Figure 1 demonstrates the geometry 

of the decomposition of distributions with scalar variables. 
Third, we formally characterise the distribution of Zt

c, a multivariate normal distribution with 
ellipsoid truncation (Li et al., 2018; Tallis, 1963). This step enables us to quantify the asymptotic 
bias and variance of the proposed estimator; see Section 3.3. 

Let Fp(·) be the cumulative distribution function (CDF) of a χ2
p random variable, and F p(·; λ) be 

the CDF of a χ2
p(λ) random variable, where χ2

p and χ2
p(λ) are the central Chi-square distribution and  
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the non-central Chi-square distribution with the non-centrality parameter λ, respectively. 
Theorem 2 summarises the asymptotic distribution of ψelas. 

Theorem 2 Suppose assumptions in Theorem 1 hold except that Assumption 2 may be 
violated. Let Z1 and Z2 be independent normal random vectors with mean 
μ1 = Σ−1/2

SS η and μ2 = V1/2
eff η, respectively, and covariance I p×p. Let Zt

c be the 
truncated normal distribution Z1 ∣ (ZT

1Z1 ≥ c). Let the elastic integrative es-
timator ψelas be obtained by solving (9). Then, n1/2(ψelas − ψ0) has a limiting 
mixture distribution 

M(γ; η) =
M1(γ; η) = V1/2

rt− effZ
t
cγ

− V1/2
eff Z2, w.p. ξ,

M2(η) = −V1/2
eff Z2, w.p. 1 − ξ,



(10)    

(a) Under H0, μ1 = μ2 = 0 and ξ = 1 − Fp(cγ) = γ. 
(b) Under Ha, μ1 = μ2 = ±∞ and ξ = 1; i.e., (10) reduces to a normal distri-

bution with mean 0 and variance Vrt.  
(c) Under Ha,n, μ1 = Σ−1/2

SS η , μ2 = V1/2
eff η with η ∈ Rp, and ξ = 1 − F p(cγ; λ), 

where λ = ηTΣ−1
SS η. 

In Theorem 2, M(γ; η) in (10) is a general characterisation of the asymptotic distribution of 
n1/2(ψelas − ψ0). It implies different asymptotic behaviours of n1/2(ψelas − ψ0) depending on 
whether Assumption 2 is strongly, weakly, or not violated. First, Ha corresponds to the situation 
where Assumption 2 is strongly violated. Under Ha, T rejects the RW data (i.e., ZT

1Z1 ≥ cγ holds) 
with probability converging to one, Zt

cγ 
becomes Z1, and M(γ; η = ±∞) becomes 

V1/2
rt− effZ1 − V1/2

eff Z2, a normal distribution with mean 0 and variance Vrt. As expected, under 
Ha, n1/2(ψelas − ψ0) is asymptotically normal and regular. Second, H0 and Ha,n correspond to 
the situations when Assumption 2 is not and weakly violated, respectively. Under H0 and Ha,n, 
T has positive probabilities of accepting and rejecting the RW data, ψelas switches between ψeff 

and ψrt, and n1/2(ψelas − ψ0) follows a limiting mixing distribution M(γ; η), indexed by η. 

Figure 1. Representation of the normal distributions N rt and N eff based on Z1 and Z2 with p = 1.   
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Although the exact form of M(γ; η) is complicated, the entire distribution and summary statistics 
such as mean, variance, and quantiles can be simulated by rejective sampling. Importantly, under 
H0 and Ha,n, n1/2(ψelas − ψ0) is non-normal and non-regular. The non-regularity is determined by 
the local parameter η, which entails that the asymptotic distribution of n1/2(ψelas − ψ0) may change 
abruptly when H0 is slightly violated. It is worth emphasising that the local asymptotics provides a 
better approach to demonstrate the finite-sample properties of the test and estimators than the 
fixed asymptotics does. 

3.3 Asymptotic bias and MSE 
Based on Theorem 2, it is essential to understand the asymptotic behaviours of Zt

c and the trun-
cated multivariate normal distribution in general. Toward that end, we derive the moment gener-
ating functions (MGFs) of such distributions in the Online supplementary material, which shed 
light on the moments of n1/2(ψelas − ψ0). 

Corollary 1 provides the analytical formula of the asymptotic bias and MSE of n1/2(ψelas − ψ0). 

Corollary 1 Suppose assumptions in Theorem 1 hold except that Assumption 2 may be 
violated.  

(a) Under H0, the bias and MSE of n1/2(ψelas − ψ0) are bias = 0 and 
mse = Veff + Vrt− eff{1 − F p+2(cγ)}.

(b) Under Ha, the bias and MSE of n1/2(ψelas − ψ0) are bias = 0 and 
mse = Vrt.

(c) Under Ha,n, the bias and MSE of n1/2(ψelas − ψ0) are 

bias(γ, η) = −VeffηF p+2(cγ; λ), (11) 

and 

mse(γ, η) = Veff + Vrt− eff{1 − Fp+2(cγ; λ)}

+ (Veffη)⊗2{2Fp+2(cγ; λ) − Fp+4(cγ; λ)}
(12) 

with λ = ηTΣ−1
SS η. 

Corollary 1 enables us to demonstrate the potential advantages and disadvantages of ψelas com-
pared with ψrt and ψeff under different scenarios. To illustrate, we consider the case of a scalar ψ0, 
Veff = 1, Vrt = 2.5, and ΣSS = 0.5. Figure 2 shows mse(γ, η) as a function of η by varying γ ∈ 
{0.9, 0.5, 0.1} compared to ψrt. For a given γ ∈ (0, 1), when η is small, ψelas is more efficient 
than ψrt; and when η increases, the MSE of ψelas increases, exceeds, and gradually returns to the 
MSE of ψrt. This phenomenon reveals the super-efficiency (related to the problem of non- 
regularity) of ψelas at small values of η at the cost of the MSE inflation for some η values.  
LeCam (1953) obtained an earlier result of super-efficiency for the famous Hodges estimator. 
Also, ψelas with a smaller γ achieves a larger deduction of the MSE at small values of η but also 
more considerable inflation of the MSE at big values of η compared to ψrt, and vice versa. This 
observation motivates our adaptive selection of γ in Section 3.5 to produce an elastic integrative 
estimator with small bias and mean squared error for a possible value of η. Also, super-efficiency 
and non-regularity are the root causes for the standard asymptotic inference to fail, which moti-
vates the proposed elastic confidence intervals to provide uniformly valid confidence intervals 
(Section 3.4); however, they can be conservative at certain parameter values when the sample 
size is small (Section 4). 

Remark 2 (Sample splitting and cross fitting). Sample splitting and cross fitting are help-
ful tactics to simplify asymptotic analyses by removing the dependence be-
tween nuisance parameter estimation and primary parameter estimation 
(Chernozhukov et al., 2018; Kennedy, 2020). To apply sample splitting to 
our context, one can divide the sample into two parts for testing and estimation  
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separately. While sample splitting and cross fitting are beneficial in theoretical 
development, they may come with expenses of heavier computation and fewer 
data for estimating different components. Thus, we do not use sampling split-
ting or cross fitting as a device to establish the theoretical properties of the pro-
posed pre-test estimator. Without sample splitting, the test and estimators are 
intimately related, requiring careful decompositions of the estimators into 
components that are asymptotically dependent and independent of the test 
statistic, as shown in our three steps toward Theorem 2. Also, sample splitting 
cannot resolve the non-regularity issue of the pre-test estimator (Toyoda & 
Wallace, 1979). This is because sample splitting cannot bypass additional ran-
domness due to pre-testing. Thus, the impact of pre-testing and superefficiency 
remains an issue; see the simulation study in Online Supplementary Material, 
Section S4.6. 

Remark 3 (Soft thresholding to mitigate the non-regularity). The proposed elastic inte-
grative estimator involves an indicator function to make a binary decision to 
include or exclude the RW data from analysis. The indicator function serves 
as hard thresholding. To alleviate the non-regularity issue and refine the pro-
posed estimator, one may use soft thresholding by imposing the smoothness 
of the indicator function. For example, similar to Yang and Ding (2018), 
one can use a smooth weight function Φϵ(cγ − T) to replace I(T < cγ), where 
Φϵ(z) is the normal cumulative distribution with zero mean and variance ϵ2. 
As ϵ→ 0, Φϵ(cγ − T) becomes closer to I(T < cγ). Also, as suggested by a re-
viewer, one can weigh the RW data based on the p-value from the test, i.e., 
1 − Fp(T). A small p-value indicates a large bias in the RW data, and we should 
give the RW data less weight. Conversely, a large p-value suggests a small bias, 
and we should provide the RW data with more weight. The third idea is to cre-
ate bootstrap replications of the elastic integrative estimator and obtain the 
average of the bootstrap replications to impose smoothness. Chakraborty 
et al. (2010) showed in simulation that soft-thresholding reduces the non- 
regularity of Q-learner in the dynamic treatment regime literature; however, 
they also provided a caveat that soft-thresholding cannot eliminate the non- 
regularity. Heuristically, the standard inference under the fixed alternative still 
provides poor finite sample coverage properties. Therefore, one still requires 
the local alternative asymptotics to derive inference procedures with uniform 
validity as we did for the hard thresholding estimator. We will leave this topic 
for future research. 
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Figure 2. Illustration of the super-efficiency of ψelas in terms of mse(γ, η) as a function of η by varying  
γ ∈ {0.9(dashed), 0.5(dotted), 0.1(dotdash)} compared to ψrt.   
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3.4 Inference 
The non-parametric bootstrap method provides consistent inference in many cases of regular es-
timators. However, this feature prevents using the non-parametric bootstrap inference for ψelas be-
cause the indicator function of the preliminary test in (9) renders ψelas a non-smooth and 
non-regular estimator (Shao, 1994). We formally show in the Online supplementary material 
the inconsistency of the nonparametric bootstrap inference for ψelas. Alternatively, Laber and 
Murphy (2011) proposed an adaptive confidence interval for the test error in classification, a non- 
regular statistics, by bootstrapping the upper and lower bounds of the test error. In this article, we 
propose an adaptive procedure for robust inference of ψ0 accommodating the strength of violation 
of Assumption 2 in finite samples. 

Let ek be a p-vector of zeros except that the kth component is one, and let eT
k ψ0 be the kth com-

ponent of ψ0, for k = 1, . . . , p. Because the asymptotic distribution of n1/2eT
k (ψelas − ψ0) is different 

under the local and fixed alternatives, we propose different strategies for constructing CIs: under 
Ha,n, the asymptotics is non-standard, we construct a least favourable CI that guarantees good 
coverage properties uniformly over possible values of the local parameter; under Ha, the asymp-
totics is standard, we construct the usual Wald CI based on the normal limiting distribution. 

First, under Ha,n, we rewrite M(γ; η) in (10) as DNR(μ1) +DR, where DNR(μ1) = 
V1/2

rt− effZ11(ZT
1Z1 ≥ cγ) is the non-regular component with Z1 having mean μ1, DR = −V1/2

eff Z2 is 

the regular component, and DNR(μ1) and DR are independent. For a fixed μ1, let Qk,α(μ1) be 
the approximated 100αth quantile of DNR(μ1) +DR, which can be obtained by rejective sampling. 
We can construct a (1 − α)100% confidence interval of n1/2eT

k (ψelas − ψ0) as 

[Qk,α/2(μ1), Qk,1−α/2(μ1)]. Different CIs are required for different values of μ1. To accommodate 
different possible values of μ1, one solution is to construct the least favourable CI by taking the 

infimum of the lower bound of the CI Qk,α/2(μ1) and the supremum of the upper bound of the 

CI Qk,1−α/2(μ1) over all possible values of μ1. However, the range of μ1 can be vast, rendering 
the least favourable CI non-informative. We identify the plausible values of μ1 following a multi-

variate normal distribution with mean n−1/2Σ−1/2
SS


i∈B
Srw,ψ̂rt

(Vi) and variance Ip×p. Let 
α = 1 − (1 − α)1/2, such that (1 −α)2 = 1 − α and let BN

1−α̃ be a 1 −α bounded region of a standard 
p-variate normal distribution. Then, 

B1−α̃ = μ1 : n−1/2Σ−1/2
SS



i∈B

Srw,ψ̂rt
(Vi) − μ1

 

∈ BN
1−α̃

 

is a bounded region of μ1 with asymptotic probability 1 −α. We construct the (1 − α)100% least 

favourable CI for n1/2eT
k (ψelas − ψ0) as [ infμ1∈B1−α̃

Qk,α̃/2(μ1), supμ1∈B1−α̃
Qk,1−α̃/2(μ1)]. Here, using 

the wider (1 −α)100% quantile range of Qk(μ1) instead of the (1 − α) quantile range is necessary 
to guarantee the coverage of (1 − α) due to ignoring other possible values of μ1 outside B1−α̃. 

Second, under Ha, Assumption 2 is strongly violated. As shown in Theorem 2, n1/2eT
k (ψelas − 

ψ0) is regular and asymptotically normal, denoted by M(γ; ± ∞, ± ∞). Therefore, a (1 − 
α)100% confidence interval of n1/2eT

k (ψelas − ψ0) can be constructed based on the 100α/2- and 
100(1 − α/2)th quantiles of the normal distribution M(γ; ± ∞, ± ∞), denoted by 
[Qk,α/2( ± ∞), Qk,1−α/2( ± ∞)]. 

Finally, because the least favourable CI may be unnecessarily wide under Ha, we require a strat-
egy to distinguish between Ha,n corresponding to finite values of μ1 and Ha corresponding to 
μ1 = ±∞. To do this, we use the test statistic T. Under Ha,n, T = OP(1); while under Ha, 
T = ∞. Therefore, we specify a sequence of thresholds {κn : n ≥ 1} that diverges to infinity as n→
∞ and compare T to κn. Many choices of κn can be considered, e.g., κn = (log n)1/2, which is similar 
to the BIC criterion (Andrews & Soares, 2010; Cheng, 2008). If T ≤ κn, we choose the local alter-
native strategy to construct the least favourable CI, and if T > κn, we choose the fixed alternative  
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strategy to construct a normal CI, leading to an elastic CI 

ECIk,1−α =
[ infμ1∈B1−α̃

Qk,α̃/2(μ1), supμ1∈B1−α̃
Qk,1−α̃/2(μ1)], if T ≤ κn,

[Qk,α/2( ± ∞), Qk,1−α/2( ± ∞)], if T > κn.



(13)  

Theorem 3 Suppose assumptions in Theorem 1 hold except that Assumption 2 may be 
violated. The asymptotic coverage rate of the elastic CI of n1/2eT

k (ψelas − ψ0) 
in (13) satisfies 

lim
n→∞

P n1/2eT
k (ψelas − ψ0) ∈ ECIk,1−α

 
≥ 1 − α, 

and the equality holds under Ha. 

3.5 Adaptive selection of γ 
The selection of γ involves the bas-variance trade-off and therefore is important to determine the 
MSE of ψelas. Corollary 1 indicates that under Ha,n, the MSE of ψelas in (12) involves two terms: 
Term 1 is Veff + Vrt− eff{1 − Fp+2(cγ; λ)}, and Term 2 involves (Veffη)⊗2. If η is small, the MSE is do-
minated by Term 1, which can be made small if we select a small γ; while if η is large, the MSE is 
dominated by Term 2, which can be made small if we select a large γ.

The above observation motivates an adaptive selection of γ. We propose to estimate η by η = 
n−1/2

i∈B
Srw,ψ̂rt

(Vi) and select γ that minimises mse(γ;η), where mse(γ; η) is given by (12) or ap-
proximated by rejective sampling. In practice, we can specify a grid of values from 0 to 1 for γ, 
denoted by G, simulate the distribution of M(γ;η) for all γ ∈ G, and finally choose γ to be the 
one in G that minimises the MSE of M(γ;η). As corroborated by simulation, the selection strategy 
is effective in the sense that when the signal of violation is weak, the selected value of γ is small and 
when the signal of violation is strong, the selected value of γ is large. 

4 Simulation study 
We evaluate the finite sample performance of the proposed elastic estimator via simulation for ro-
bustness against unmeasured confounding and adaptive inference. Specifically, we compare the 
RT estimator, the efficient combining estimator, and the elastic estimator under settings that 
vary the strength of unmeasured confounding in the RW data. We also carry out simulation under 
a setting when the transportability assumption is violated in the RW data; see Online 
Supplementary Material, Section S4.3 in the supplementary material. 

We first generate populations of size 105. For each population, we generate the covariate 
X = (1, X1, X2, X3)T, where Xj ∼ Normal (1, 1) for j = 1, 2, 3, and the treatment effect modifier 
is Z = (1, X1, X2)T. We generate Y(a) by 

Y(a) ∣ X = μ(X) + a × τ(Z) + ϵ(a), ϵ(a) ∼ Normal (0, 1),

μ(X) = X1 + X2 + X3, τ(Z) = ψ0 + ψ1X1 + ψ2X2,
(14) 

for a = 0, 1. Throughout the simulation, we fix ψ0 to be zero and consider two cases for (ψ1, ψ2): a) 
zero effect modification (ψ1, ψ2) = (0, 0) and b) nonzero effect modification (ψ1, ψ2) = (1, 1). 

We then generate two samples from the target population. We generate the RT selection indi-
cator by δ ∣ X ∼ Bernoulli{πδ(X)}, where logit{πδ(X)} = −4.5 − 2X1 − 2X2. Under this selection 
mechanism, the selection rate is around 0.6%, which results in m ≈ 620 RT subjects. We also 
take a random sample of size n ∈ {2000, 5000} from the population to form an RW sample. In 
the RT sample, the treatment assignment is A ∣ X, δ = 1 ∼ Bernoulli{e1(X)}, where e1(X) = 0.5. 
In the RW sample, A ∣ X, δ = 0 ∼ Bernoulli{e0(X)}, where logit{e0(X)} = α − X1 − X2 − bX3 

with adaptively chosen α to ensure the mean of e0(X) to be around 0.5. In addition, we vary b  
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to indicate the different strengths of unmeasured confounding in the analysis (violation of 
Assumption 2). The observed outcome Y in both samples is Y = AY(1) + (1 − A)Y(0). 

To assess the robustness of the elastic integrative estimator against unmeasured confounding, 
we consider the omission of X3 in all estimators, resulting in unmeasured confounding in the 
RW data. The strength of unmeasured confounding is indexed by b in (14); high values of b indi-
cate strong levels of unmeasured confounding and vice versa. We specify the range of b by 10 val-
ues in an irregular grid from 0 to 2 {0, 0.11, 0.23, 0.34, 0.46, 0.57, 0.69, 0.80, 1, 2}, which places 
more emphasis on the scenarios where Assumption 2 is weakly violated. We compare the follow-
ing estimators for the HTE parameter ψ:  

(a) RT ψrt: the efficient estimator based only on the RT data solving (9) with 1(T < cγ) ≡ 0;  
(b) Eff ψeff: the efficient integrative estimator solving (9) with 1(T < cγ) ≡ 1;  
(c) Elastic ψelas: the proposed elastic integrative estimator solving (9) with adaptive selection 

of γ. 

For all estimators, we estimate the propensity score function by a logistic sieve model with the 
power series X, X2 and their two-way interactions (omitting X3) and the outcome mean functions 
by linear sieve models with the power series X, X2 and their two-way interactions (omitting X3). If 
higher-order series is specified, it is necessary to select the series to balance the bias and variance in 
estimating the nuisance functions, such as using the penalised estimating equation approach (Lee, 
Yang, Dong, et al., 2022). The CIs are constructed for ψaipw, ψrt and ψeff based on the perturbation- 
based resampling with the replication size 100 and for ψelas based on the elastic approach with 
κn = ( log n)1/2. Sensitivity analysis shows that the coverage rates and widths of the CIs stay close 
with κn = 0.5( log n)1/2 (Online Supplementary Material, Section S4.4). 

Figure 3 presents the plots of Monte Carlo biases, variances, and MSEs of estimators based on 
2000 simulated datasets with numerical results reported in Online Supplementary Material, 
Table S3. Table 1 reports the coverage rates and widths of 95% CIs. The RT estimator ψrt is un-
biased across different scenarios, and the coverage rates are close to the nominal level. However, 
ψrt has larger variances than other integrative estimators due to the small RT sample size. The ef-
ficient integrative estimator ψeff gains efficiency over ψrt by leveraging the large sample size of the 
RW data. However, the bias of ψeff increases as b increases. Thus, ψeff has smaller MSEs than ψrt 
for small values of b but larger MSEs for large values of b. The coverage rates of the CIs for ψeff 
deviate away from the nominal level as b increases. This can lead to an uncontrolled false discovery 
of important treatment effect modifiers (see the case of zero effect modification with ψ1 = ψ2 = 0). 
The elastic integrative estimator ψelas with the adaptive selection of γ reduces ψeff’s biases across all 
scenarios regardless of the strength of unmeasured confounding. The challenging scenarios are in-
dexed by b around 0.44 and 0.67, where the small biases of ψelas occur. In these scenarios, the pre- 
testing (built in the elastic estimator) has difficulty in detecting the RW sample’s biases. However, 
ψelas with an adaptive selection of γ achieves the smallest MSE among all estimators across all scen-
arios (Figure 3 and Online Supplementary Material, Table S3). 

To inspect the performance of the proposed data-adaptive selection strategy, Online 
Supplementary Material, Table S8 reports Monte Carlo averages and standard deviations of the 
selected values for the local parameter η, the threshold cγ, and the proportion of combining the 
RT and RW samples. As expected, η increases as b increases, indicating increased biases in the 
RW sample. The selected γ increases (as a result, the proportion of combining the RT and RW sam-
ples decreases) as b increases, which shows the proposed adaptive selection strategy is effective. To 
compare the adaptive selection strategy with the fixed threshold strategy, a simulation study in  
Online Supplementary Material, Section S4.5 shows that the elastic integrative estimator ψelas 
with a fixed threshold can have increased biases compared to a data-adaptive selected threshold. 

The coverage rates of the ECIs for ψelas are close to the nominal level for all settings with differ-
ent values of b. The ECIs are narrower than the CIs for ψrt when b is small (b ≤ 0.46 for ψ1 = ψ2 = 
0 and b ≤ 0.34 for ψ1 = ψ2 = 1), are wider than the CIs for ψrt when b increases, and become close 
to the CIs for ψrt when b reaches 1 or larger. However, the conservativity of the ECIs reduces as n 
increases, and the ECIs can perform at least as well as the CIs for ψrt for any b (see Online 
Supplementary Material, Table S6 for n = 5000).  
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5 An application 
We illustrate the potential benefit of the proposed elastic estimator to evaluate the effect of adju-
vant chemotherapy for early-stage resected non-small cell lung cancer (NSCLC) using the CALGB 
9633 data and a large clinical oncology database, the NCDB. In CALGB 9633, we include 319 
patients, with 163 randomly assigned to observation (A = 0) and 156 randomly assigned to 
chemotherapy (A = 1). The NCDB cohort is selected based on the same patient eligibility criteria 
as the CALGB 9633 trial; see Online Supplementary Material, Section S5. The comparable NCDB 
sample includes 15,166 patients diagnosed with NSCLC between 2004 and 2016 in stage IB dis-
ease, with 10,903 on observation and 4,316 receiving chemotherapy after surgery. The numbers of 
treated and controls are relatively balanced in the CALGB 9633 trial, while they are unbalanced in 
the NCDB sample. We include five covariates in the analysis: gender (1 = male, 0 = female), age, 
the indicator for histology (1 = squamous, 0 = non − squamous), race (1 = white, 0 = non-white), 
and tumour size in centimetre. The outcome is the overall survival within three years after the sur-
gery, i.e., Y = 1 if died due to all causes and Y = 0 otherwise. We are interested in estimating the 
HTE of adjuvant chemotherapy over observation after resection for the patient population with 
the same set of eligibility criteria as that of CALGB 9633. 

Table 2 reports the covariate means by sample and treatment group. Due to treatment random-
isation, covariates are balanced between the treated and the control in the CALGB 9633 trial sam-
ple. While due to a lack of treatment randomisation, covariates are relatively unbalanced in the 
NCDB sample. Older patients with histology and smaller tumours are likely to choose a conser-
vative treatment on observation. Moreover, we cannot rule out the possibility of unmeasured con-
founders in the NCDB sample. 

We assume a linear HTE function with tumour size as the treatment effect modifier. We com-
pare the same set of estimators and variance estimators considered in the simulation study and 
the efficient estimator applied to the real-world NCDB cohort, denoted by ψrw. Table 3 reports 

Figure 3. Summary statistics plots of estimators of (ψ1, ψ2) with respect to the strength of unmeasured 
confounding labelled by ‘b’. In each plot, the three estimators ψrt, ψeff, and ψelas are labelled by ‘RT’, ‘Eff’, and 
‘Elastic’. Each row of the plots corresponds to a different metrics: ‘bias’ for bias, ‘var’ for variance, ‘MSE’ for mean 
square error; each column of the plots corresponds to one component of (ψ1, ψ2) in the two cases: ψ1 = 0, ψ2 = 0, 
ψ1 = 1, and ψ2 = 1 with n = 2000.   
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Table 2. Covariate means with standard errors in parentheses by sample and treatment group in the CALGB 9633 trial 
and NCDB samples  

A N Age tumour size Male Squamous White    

(years) (cm) (%) (%) (%)  

RT: 0, 1 319  60.8 (9.62)  4.60 (2.08)  63.9  39.8  89.3 

CALGB 9633 1 156  60.6 (10)  4.62 (2.09)  64.1  40.4  90.4   

0 163  61.1 (9.25)  4.57 (2.07)  63.8  39.3  88.3 

RW: 0, 1 15,166  67.9 (10.2)  4.82 (1.71)  54.6  39.1  89.6 

NCDB 1 4,263  63.9 (9.23)  5.19 (1.79)  54.3  35.6  88.6   

0 10,903  69.4 (10.1)  4.67 (1.65)  54.8  40.5  90.0  

Table 3. Point estimate, standard error, and 95% Wald confidence interval of the causal risk difference between 
adjuvant chemotherapy and observation based on the CALGB 9633 trial sample and the NCDB sample: 
tumour size∗ = (tumour size − 4.82)/1.72  

Intercept (ψ0,1) tumour size* (ψ0,2)  

Est. S.E. C.I. Est. S.E. C.I.  

RT  −0.094  0.054 (−0.202, 0.015)  0.002  0.055 (−0.107, 0.111) 

RW  −0.076  0.0085 (−0.093, −0.059)  −0.029  0.009 (−0.046, −0.011) 

Eff  −0.076  0.0083 (−0.093, −0.059)  −0.026  0.009 (−0.043, −0.009) 

Elastic  −0.076  0.0196 (−0.115, −0.037)  −0.026  0.029 (−0.084, 0.032)  

Figure 4. Estimated treatment effect as a function of the (standardised) tumour size along with the 95% Wald 
confidence intervals: tumour size∗ = (tumour size − 4.82)/1.72, RT, RW, and Eff are the efficient estimator applied 
to the RT, RW, and combined sample, respectively, and Elastic is the proposed elastic combining estimator.   
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the results. Figure 4 shows the estimated treatment effect as a function of the standardised tumour 
size. Due to the limited sample size of the trial sample, all components in ψrt are not significant. 
Due to the large sample size of the NCDB sample, ψrw and ψeff are close and reveal that adjuvant 
chemotherapy significantly reduced cancer recurrence within three years after the surgery. Patients 
with larger tumour sizes benefit more from adjuvant chemotherapy. However, this finding may be 
subject to possible biases of the NCDB sample. In the proposed elastic integrative analysis, the test 
statistic is T = 1.9; there is no strong evidence that the NCDB presents hidden confounding in our 
analysis. As a result, the elastic integrative estimator ψelas remains the same as ψeff. In reflection of 
the pre-testing procedure, the estimated standard error of ψelas is larger than ψeff’s. From Figure 4, 
patients with tumour sizes in [4.82 + 1.72 × ( − 0.67), 4.82 + 1.72 × (2.18)] = [3.67, 8.57] signifi-
cantly benefit from adjuvant chemotherapy in improving overall survival within three years after 
the surgery. 

6 Concluding remarks 
The proposed elastic estimator integrates ‘high-quality small data’ with ‘big data’ to simultaneous-
ly leverage small but carefully controlled unbiased experiments and massive but possibly biased 
RW datasets for HTEs. Most causal inference methods require the no unmeasured confounding 
assumption. However, this assumption may not hold for the RW data due to the uncontrolled, 
real-world data collection mechanism and is unverifiable based only on the RW data. Utilising 
the design advantage of RTs, we can gauge the reliability of the RW data and decide whether 
or not to use RW data in an integrative analysis. 

The key assumptions underpinning our framework are the structural HTE model, i.e., Model 
(1), HTE transportability, and no unmeasured confounding. In practice, RTs usually consider 
much narrower populations than seen in the real world. Improving the generalisability or external 
validity of RT findings has been an important research topic in the data integration literature (e.g.,  
Cole & Stuart, 2010; Lee, Yang, Dong, et al., 2022; Rudolph & van der Laan, 2017). Besides 
Assumption 1(i), the positivity of trial participation or the overlap of the covariate distribution be-
tween the RT and RW samples is required in the problem of generalisability. We emphasise that 
although, formally, we do not require the overlap assumption between the RT and RW samples, its 
violation renders Model (1) and transportability vulnerable. When transporting from the narrow 
RT sample to the broader RW sample, the reliable information of treatment effects for the non- 
overlapping region essentially hinges on the extrapolation from the RT sample. If there is no strong 
prior knowledge, Model (1) and transportability may not hold. In this case, the RT estimate and 
the RW estimate of the HTE can be inconsistent due to model misspecification even when there are 
no unmeasured confounders. See a simulation study in Online Supplementary Material, Section 
S4.3. The inconsistency of the RW estimator with the RT estimator may reflect violation of either 
transportability (e.g., due to model misspecification) or unmeasured confounding. Some practical 
strategies (e.g., matching) can be implemented to select an RW sample with sufficient overlap with 
the RT sample to improve their comparability and the chance of successfully integrating the infor-
mation from two separate sources; see Online Supplementary Material, Section S5.2. 

The elastic integrative estimator gains efficiency over the RT-only estimator by integrating the re-
liable RW data and also automatically detecting bias in the RW data and gears to the RT data. 
However, the proposed estimator is non-regular and belongs to pre-test estimation by construction 
(Giles & Giles, 1993). To demonstrate the non-regularity issue, we characterise the distribution of 
the elastic integrative estimator under local alternatives, which better approximates the finite-sample 
behaviours. Moreover, we provide a data-adaptive selection of the threshold in the testing proced-
ure, which guarantees small MSEs of the estimator. Nonetheless, fixing the threshold may not con-
trol bias well under Ha,n; see a simulation study in Online Supplementary Material, Section S4.5. If 
the investigator prefers small biases in the elastic combining estimator, we recommend setting the 
lower bounds of a grid for selecting γ. Although the elastic confidence intervals demonstrate good 
coverage properties in our simulation under all hypotheses H0, Ha,n, and Ha, an open problem re-
mains for the post-selection inference after a data-adaptive selection of the threshold in the testing 
procedure, which will be rigorously analysed theoretically and empirically in the future study. 

The proposed framework can also be extended to individualised treatment regime learning (Chu 
et al., 2022; Wu & Yang, 2021, 2022) and the data integration problem of combining probability  
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and non-probability samples (Yang & Kim, 2020; Yang et al., 2019, 2021). However, an add-
itional complication arises due to the mixed design-based and super-population inference frame-
work, which will be overcome in future research. 
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