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Abstract
Complementary features of randomized controlled trials (RCTs) and observa-
tional studies (OSs) can be used jointly to estimate the average treatment effect of
a target population. We propose a calibration weighting estimator that enforces
the covariate balance between the RCT and OS, therefore improving the trial-
based estimator’s generalizability. Exploiting semiparametric efficiency theory,
we propose a doubly robust augmented calibration weighting estimator that
achieves the efficiency bound derived under the identification assumptions. A
nonparametric sieve method is provided as an alternative to the parametric
approach, which enables the robust approximation of the nuisance functions
and data-adaptive selection of outcome predictors for calibration. We establish
asymptotic results and confirm the finite sample performances of the proposed
estimators by simulation experiments and an application on the estimation of the
treatment effect of adjuvant chemotherapy for early-stage non-small-cell lung
patients after surgery.
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1 INTRODUCTION

Randomized controlled trials (RCTs) are the gold standard
to evaluate treatment effects. However, due to restrictive
inclusion and exclusion criteria, the trial sample is nar-
rowly defined and can be systematically different from the
real-world patient population to which the new treatment
is supposed to be given. Therefore, the findings from RCTs
often lack external validity (Rothwell, 2005). On the other
hand, observational studies (OSs) often include large sam-
ples that are representative of real-world patient popula-
tions; however, there are concerns about whether or not
confounding has been addressed adequately in the analy-
ses of OSs. In cancer research, there is an in-depth discus-
sion on the strengths and limitations of utilizing data from

RCT and OSs for comparative effectiveness analyses (Korn
and Freidlin, 2012).
The problems of extending findings fromRCT to a target

population has been termed as generalizability (e.g., Cole
and Stuart, 2010; Tipton, 2013; Dahabreh et al., 2019) and
transportability (e.g., Pearl and Bareinboim, 2011; Rudolph
and van der Laan, 2017; Westreich et al., 2017). Most exist-
ingmethods rely on direct modeling of the sampling score,
the sampling analog of the propensity score. The subse-
quent sampling score adjustments include inverse proba-
bility of sampling weighting (IPSW; Cole and Stuart, 2010;
Buchanan et al., 2018), stratification (Tipton, 2013), and
augmented IPSW (AIPSW; Dahabreh et al., 2019). Most
sampling score adjustment approaches require the sam-
pling score model to be correctly specified. Moreover,
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weighting estimators are unstable if the sampling score is
too extreme.
We consider combining an RCT sample and an OS sam-

ple to estimate the average treatment effect (ATE) of a
target population, where the RCT sample is subject to
selection bias and the OS sample is representative of the
target population with a known sampling mechanism. In
contrast to the dominant approaches that focus on pre-
dicting sample selection probabilities, we estimate the
sampling score weights directly by calibrating covariates
balance between the RCT sample and the design-weighted
OS sample to address the selection bias of the RCT sam-
ple. Calibration weighting (CW) is widely used to inte-
grate auxiliary information in survey sampling (Wu and
Sitter, 2001) and causal inference (Qin and Zhang, 2007;
Hainmueller, 2012). Hartman et al. (2015) implemented
CW to estimate the population ATEs by combining RCTs
with OSs.
The efficiency of the CW estimator can be further

improved. We derive the semiparametric efficiency bound
for the ATE under the identification assumptions, which
provides the benchmark for estimation efficiency. We pro-
pose the augmented CW (ACW) estimator that is dou-
bly robust and also achieves the semiparametric efficiency
bound when both nuisance models are correctly speci-
fied. However, the parametric approach is prone to model
misspecification, especially when there is complex con-
founding. To cope withmodelmisspecification, we adopt a
method of sieves (Chen, 2007), which allows flexible data-
adaptive estimation of the nuisance functions while the
ACW estimator retains the usual root-𝑛 consistency under
regularity conditions. In comparison with other nonpara-
metric andmachine learningmethods, the proposed ACW
estimator with the sieve approximation is attractive: (1)
unlike black-box machine learning methods, calibration
weighting is straightforward and transparent; and (2) our
framework allows for selecting important sieve basis terms
that are related to the outcome to calibrate and enforcing
the balance on these covariates for efficient estimation.
In the presence of many covariates, variable or sieve

basis selection for calibration becomes necessary. We clas-
sify covariates into three types: the covariates that are
associated with both trial participation and outcome as
confounders, that affect outcome only through trial par-
ticipation as instrumental variables (IVs), and that are
predictive of the outcome as precision variables or out-
comepredictors. In other causal inference contexts, studies
have shown that in addition to the confounding variables,
including outcome predictors in the propensity score may
improve efficiency, whereas including IVs may decrease
efficiency (e.g., Tang et al., 2020). Despite the importance
of proper basis selection for the efficient causal estima-
tor, the current literature lacks a principled approach to

guide basis selection for covariate balancing. Capitalizing
on an explicit connection between calibration weighting
and estimating equations under parametric models, we
propose a penalized estimating equation approach for vari-
able selection with an emphasis on outcome predictors.

2 BASIC SETUP

2.1 Notation: Causal effect and two data
sources

Let 𝑋 be the 𝑝-dimensional vector of covariates, 𝐴 be the
binary treatment {0, 1}, and 𝑌 be the outcome of interest.
We use the potential outcomes framework to formulate the
causal problem. We assume that each subject has a poten-
tial outcome 𝑌(𝑎), 𝑎 ∈ {0, 1}, representing the outcome
had the subject been given the treatment 𝑎. The condi-
tional average treatment effect (CATE) is 𝜏(𝑋) = 𝐸{𝑌(1) −
𝑌(0) ∣ 𝑋}. We are interested in estimating the population
ATE 𝜏0 = 𝐸{𝜏(𝑋)}, where the expectation is taken with
respect to the distribution of the target population. Let 𝛿 =
1 denote RCT participation, and let 𝛿 = 1 denote the OS
participation. Also, define the sampling score as 𝜋𝛿(𝑋) =
𝑃(𝛿 = 1 ∣ 𝑋), the design weight for the OS sample as 𝑑 =
1∕𝑃(𝛿 = 1|𝑋), and the conditional outcomemean function
as 𝜇𝑎,𝛿(𝑋) = 𝐸(𝑌 ∣ 𝑋,𝐴 = 𝑎, 𝛿) for 𝑎, 𝛿 ∈ {0, 1}.
To generalize findings to the future patient population,

we consider a superpopulation framework that describes
the distribution of all patients with a certain disease to
whom the new treatment is intended to be given. The data
structure is demonstrated in Figure 1. The RCT is a sam-
ple from the target population with an unknown sampling
mechanism, and the OS sample is a random sample from
the target population with a known sampling mechanism.
Therefore, our problem is in line with that of generalizabil-
ity, extending theATE result from the trial to its larger pop-
ulation (Dahabreh et al., 2019). A closely related problem
is transportability which tries to extend the trial results to
an external population (Westreich et al., 2019); for exam-
ple, when one wants to transport an RCT conducted in one
country to a population in another country (Pearl, 2015).
Subtle differences exist in the twoproblems in terms of esti-
mands and identification assumptions; see Web Appendix
A for details. In general, there are nested and nonnested
study designs in the problem of generalization (Dahabreh
et al., 2019). For nested designs, the RCT sample is a sub-
sample from the OS sample. Examples include pragmatic
trial studies embedded in health care systems or com-
prehensive cohort studies, where all trial-eligible partic-
ipants constitute the OS sample, and participants who
agree to be randomized constitute the RCT sample. For
nonnested designs, the RCT sample and the OS sample are
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Improving trial generalizibility

F IGURE 1 Demonstration of the sampling and treatment assignment regimes for the RCT and OS samples within the target population.

separate. Our motivating application falls in the latter cat-
egory, where we link an existing RCT to a large cancer reg-
ister database. We also assume that the RCT and OSs are
independent. This assumption holds naturally if the two
separate studies are conducted independently by different
researchers; it is also plausible in our motivating example
where the patients for the two studies were accrued in two
separate time periods (see Section 6).

2.2 Identification assumptions

To identify the ATE, we make the following assumptions:

Assumption 1 (Consistency). 𝑌 = 𝐴𝑌(1) + (1 − 𝐴)𝑌(0).

Assumption 2 (Ignorability and positivity of treatment
assignment). (i) {𝑌(0), 𝑌(1)} ⟂⟂ 𝐴 ∣ (𝑋, 𝛿 = 1); and (ii) 0 <
𝑃(𝐴 = 1 ∣ 𝑋, 𝛿 = 1) < 1 with probability 1.

Assumption 3 (Generalizability of the CATE and posi-
tivity of trial participation). (i) 𝐸{𝑌(1) − 𝑌(0) ∣ 𝑋, 𝛿 = 1} =
𝜏(𝑋); and (ii) 𝜋𝛿(𝑋) > 0 with probability 1.

Assumption 1 implies that trial encouragement effects
are absent (Dahabreh and Hernán, 2019). Assumption 2
holds for the RCT by default. Assumption 3 (i) is similar to
the generalizability in effect measure condition (Dahabreh
et al., 2019, Supporting Information). Even though this
assumption is formally weaker than the mean exchange-
ability over trial participation (Dahabreh et al., 2019), that

is, 𝐸{𝑌(𝑎) ∣ 𝑋, 𝛿 = 1} = 𝐸{𝑌(𝑎) ∣ 𝑋} for 𝑎 = 0, 1, and the
ignorability assumption on trial participation (Stuart et al.,
2011), that is, {𝑌(0), 𝑌(1)} ⟂⟂ 𝛿 ∣ 𝑋, it suffices to identify
the ATE. Under Assumptions 1–3, the ATE is identified by
𝜏0 = 𝐸[𝛿𝑑{𝜇1,1(𝑋) − 𝜇0,1(𝑋)}].
Although being essential, Assumption 3 (i) is not verifi-

able based on the observed data but relies on subjectmatter
experts to assess its plausibility. It is plausible if𝑋 captures
all variables that are related to the trial participation and
outcome (Buchanan et al., 2018). Assumption 3 (ii) requires
the absence of patient characteristics that prohibit partici-
pation. When Assumption 3 (ii) is violated, generalization
can only bemade to a restricted populationwithout extrap-
olation (Yang and Ding, 2018).

2.3 Existing estimation methods

Because the RCT assigns treatments randomly to the par-
ticipants, 𝜏(𝑋) is identifiable and can be estimated by stan-
dard estimators solely from the RCT. However, 𝑓(𝑋 ∣ 𝛿 =
1) is different from 𝑓(𝑋) in general; therefore,𝐸{𝜏(𝑋) ∣ 𝛿 =
1} is different from 𝜏0, and the ATE estimator using trial
data only is biased of 𝜏0 generally. A widely used approach
is the IPSW estimator that predicts the sampling score
𝜋𝛿(𝑋) and uses the inverse of the estimated sampling score
to account for the shift of the covariate distribution from
the RCT sample to the target population. Specifically, most
of the empirical literature assumes that 𝜋𝛿(𝑋) follows a
logistic regression model 𝜋𝛿(𝑋; 𝜼) and can be estimated by
𝜋𝛿(𝑋; 𝜼). The AIPSW estimator has also been proposed to

 15410420, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13609 by N
orth C

arolina State U
niversit, W

iley O
nline L

ibrary on [20/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1216 LEE et al.

improve it by employing both the sampling score and out-
come regression. The forms of the (A)IPSW estimators are
provided in Web Appendix B, along with another identifi-
cation formula based on the IPSW estimator.

3 CALIBRATIONWEIGHTING
ESTIMATOR

We propose to use calibration originated in survey sam-
pling to eliminate the selection bias in the trial-based ATE
estimator. The calibration weighting approach is similar to
the idea of entropy balancing weights introduced by Hain-
mueller (2012). We calibrate subjects in the RCT sample
so that after calibration, the covariate distribution of the
RCT sample empirically matches the target population.
Our insight is that for any vector-valued function 𝒈(𝑋), the
following equations hold:

𝐸

[
{𝜋𝛿(𝑋)}

−1𝛿

𝐸[{𝜋𝛿(𝑋)}−1𝛿]
𝒈(𝑋)

]
= 𝐸

{
𝛿𝑑𝒈(𝑋)

}
= 𝐸{𝒈(𝑋)}. (1)

Here, 𝒈(𝑋) contains the covariate functions to be cali-
brated, which could be moment functions of the original
covariate 𝑋 or any sensible transformations of 𝑋. To this
end, we assign aweight 𝑞𝑖 to each subject 𝑖 in the RCT sam-
ple so that

𝑁∑
𝑖=1

𝛿𝑖𝑞𝑖𝒈(𝑋𝑖) = 𝒈, (2)

where 𝒈 =
∑𝑁

𝑖=1
𝛿𝑖𝑑𝑖𝒈(𝑋𝑖)∕

∑𝑁

𝑖=1
𝛿𝑖𝑑𝑖 is a design-weighted

estimate of 𝐸{𝒈(𝑋)} from the OS sample, and 𝑁 is the
target population size, not necessarily known. Constraint
(2) is referred to as the balancing constraint, and weights
 = {𝑞𝑖 ∶ 𝛿𝑖 = 1} are the calibration weights. The balanc-
ing constraint calibrates the RCT covariate distribution to
the target population in terms of 𝒈(𝑋). The choice of 𝒈(𝑋)
is critical for both bias and variance considerations, which
we discuss in Section 4.2.
We estimate  by solving the optimization problem:

min


𝑛∑
𝑖=1

𝑞𝑖 log 𝑞𝑖, (3)

subject to 𝑞𝑖 ≥ 0 ∀𝑖;
∑𝑛

𝑖=1
𝑞𝑖 = 1, and the constraint (2),

where 𝑛 is the RCT sample size. The objective func-
tion in (3) is the negative entropy of the calibration
weights; thus, minimizing these criteria ensures that the
empirical distribution of calibration weights is not too
far away from the uniform, such that it minimizes the
variability due to heterogeneous weights (Owen, 2001).

The optimization problem can be solved using convex
optimization with the Lagrange multiplier. By introduc-
ing the Lagrange multiplier 𝝀, the objective function
becomes

𝐿(𝝀,) =
𝑛∑
𝑖=1

𝑞𝑖 log 𝑞𝑖 − 𝝀
⊤

{
𝑛∑
𝑖=1

𝑞𝑖𝒈(𝑋𝑖) − 𝒈

}
. (4)

Minimizing (4) leads to 𝑞𝑖 = 𝑞(𝑋𝑖; 𝝀) =

exp{𝝀⊤𝒈(𝑋𝑖)}∕
∑𝑛

𝑖=1
exp{𝝀⊤𝒈(𝑋𝑖)} and 𝝀 solves

𝑈(𝝀) =

𝑛∑
𝑖=1

exp
{
𝝀⊤𝒈(𝑋𝑖)

}
{𝒈(𝑋𝑖) − 𝒈} = 0, (5)

which is the dual problem to the optimization problem (3).
Let 𝜋𝐴𝑖 = 𝑃(𝐴𝑖 = 1|𝑋𝑖, 𝛿𝑖 = 1) be the treatment propen-

sity score for subject 𝑖. For RCTs, it is common that the
propensity score𝜋𝐴𝑖 is known. The CWestimator becomes

�̂�CW =

𝑛∑
𝑖=1

𝑞𝑖

{
𝐴𝑖𝑌𝑖
𝜋𝐴𝑖

−
(1 − 𝐴𝑖)𝑌𝑖
1 − 𝜋𝐴𝑖

}
. (6)

To investigate the properties of the CW estimator, we
impose the regularity conditions on the sampling designs
for the RCT the OS samples.

Assumption 4. Let 𝝁𝒈0 = 𝐸{𝒈(𝑋)}. The design
weighted estimator 𝝁𝒈 = 𝑁

−1∑𝑁

𝑖=1
𝛿𝑖𝑑𝑖𝒈(𝑋𝑖) satisfies

𝑉(𝝁𝒈) = 𝑂(𝑚
−1), and {𝑉(𝝁𝒈)}

−1∕2(𝝁𝒈 − 𝝁𝒈0) → (0, 1)

in distribution, as𝑚 → ∞, where𝑚 is the OS sample size.

Assumption 5 (Linearity of the CATE). 𝜏(𝑋) = 𝜸⊤0 𝒈(𝑋).

Assumption 6 (Loglinear sampling score). The sampling
score of RCT participation follows a loglinear model, that
is, 𝜋𝛿(𝑋) = exp{𝜼⊤0 𝒈(𝑋)} for some 𝜼0.

Based on the above assumptions, we establish the dou-
ble robustness property of the CW estimator in the fol-
lowing theorem and relegate all proofs to Web Appendix
C. The proof is similar to the one in Zhao and Percival
(2017).

Theorem 1 (Double robustness of the CW estimators).
Under Assumptions 1–4, if either Assumption 5 or 6 holds,
�̂�CW in (6) is consistent for 𝜏0.

In the estimation of calibration weights, we only require
specifying𝒈(𝑋). Thus, calibrationweighting evades explic-
itly modeling either the sampling score model or the
outcome mean models. Under Assumption 6, we show
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LEE et al. 1217

that there is a direct correspondence between calibration
weight 𝑞(𝑋𝑖; 𝝀) and the estimated sampling score𝜋𝛿(𝑋𝑖; 𝜼),
that is, 𝑞(𝑋𝑖; 𝝀) = {𝑁𝜋𝛿(𝑋𝑖; 𝜼)}−1 + 𝑜𝑝(𝑁−1). That is, cal-
ibration weights from the objective function (3) have
the same functional form as inverse probability of sam-
pling score weights under Assumption 6 asymptotically.
Other objective functions, such as

∑𝑛

𝑖=1
(𝑞𝑖 − 1) log(𝑞𝑖 −

1),
∑𝑛

𝑖=1
{𝑞𝑖 log 𝑞𝑖 + (1 − 𝑞𝑖) log(1 − 𝑞𝑖)} (Zhao, 2019; Josey

et al., 2020) or
∑𝑛

𝑖=1
(𝑞𝑖 − 𝑛

−1)2 (Chattopadhyay et al.,
2020), can also be used. When the sampling score fol-
lows a logistic regression model, the objective function∑𝑛

𝑖=1
(𝑞𝑖 − 1) log(𝑞𝑖 − 1) results in weights that resemble

the inverse of logistic sampling scores (Zhao, 2019; Josey
et al., 2020). However, if the fraction 𝑛∕𝑁 of the RCT sam-
ple in the target population is small, the loglinear model in
Assumption 6 is close to the logistic regression model; our
simulation studies show that the proposed CW estimator
is not sensitive to the choice of the objective function for
the optimization.
The entropy balancing has been studied in the indirect

comparison literature (Signorovitch et al., 2010; Phillippo
et al., 2018; Petto et al., 2019). The goal is to adjust for the
imbalance between two separate randomized trials with
common comparative arms, similar to the transportability
problem. On the other hand, the proposed CW estimator is
motivated by generalizing findings fromRCT. Importantly,
building on the CW estimator, we propose an improved
estimator capitalizing semiparametric efficiency theory in
the next section and a data-adaptive selection of outcome
predictors for calibration, which is absent in the literature.
The proposed framework can incorporate nonparametric
sieve approximation of the outcome mean function and
sampling score while providing valid inferences.

4 SEMIPARAMETRIC EFFICIENT
ESTIMATOR

4.1 Augmented calibration weighting
estimator

The following theorem gives the semiparametric efficiency
bound for 𝜏0 in our data integration setting. Let Δ𝑎 = 𝑌 −
𝜇𝑎,1(𝑋; 𝜷𝑎).

Theorem 2 (Semiparametric efficiency bound). Under
Assumptions 1–4, the semiparametric efficiency score for 𝜏0
is

𝜙(𝑋,𝐴, 𝑌, 𝛿, 𝛿) =
𝛿

𝜋𝛿(𝑋)

[
𝐴Δ1
𝜋𝐴

−
(1 − 𝐴)Δ0
1 − 𝜋𝐴

]
+ 𝛿𝑑{𝜏(𝑋) − 𝜏0}. (7)

The semiparametric efficiency bound for 𝜏0 is

𝑉eff = 𝐸

[
𝛿

𝜋𝛿(𝑋)2

{
𝑉{𝑌(1)|𝑋, 𝛿}

𝜋𝐴
+
𝑉{𝑌(0)|𝑋, 𝛿}
1 − 𝜋𝐴

}
+ 𝛿𝑑2{𝜏(𝑋) − 𝜏0}

2
]
. (8)

The result in Theorem 2 serves as a foundation to
derive efficient estimators combining two data sources.
Under Assumption 2, 𝜏(𝑋) = 𝜇1,1(𝑋) − 𝜇0,1(𝑋). The score
𝜙(𝑋,𝐴, 𝑌, 𝛿, 𝛿) has unknown nuisance functions 𝜋𝛿(𝑋)
and 𝜇𝑎,1(𝑋), 𝑎 = 0, 1. Therefore, to estimate 𝜏0, we posit
models for the nuisance functions, denoted by𝜋𝛿(𝑋; 𝜼) and
𝜇𝑎,1(𝑋; 𝜷𝑎). For example, we assume 𝜋𝛿(𝑋) is a loglinear
model as in Assumption 6. By the correspondence between
the loglinear model and the calibration weighting algo-
rithm, we can estimate 𝜼0 following the optimization algo-
rithm in (3). We also posit models 𝜇𝑎,1(𝑋; 𝜷𝑎), 𝑎 = 0, 1. By
Assumption 2, we are able to obtain a consistent estimator
𝜷𝑎 based on the trial sample. Based on the semiparamet-
ric efficiency score, we propose a new estimator for the
ATE. As the outcome mean models in the semiparamet-
ric efficiency score can be viewed as an augmentation to
the CW estimator, we refer to the proposed estimator as
the augmented calibrationweighting (ACW) estimator. Let
Δ̂𝑎,𝑖 = 𝑌𝑖 − 𝜇𝑎,1(𝑋𝑖; 𝜷𝑎). The ACW estimator is

�̂�ACW =

𝑁∑
𝑖=1

𝛿𝑖𝑞𝑖

{
𝐴𝑖Δ̂1,𝑖
𝜋𝐴𝑖

−
(1 − 𝐴𝑖)Δ̂0,𝑖
1 − 𝜋𝐴𝑖

}
+

(
𝑁∑
𝑖=1

𝛿𝑖𝑑𝑖

)−1

×

𝑁∑
𝑖=1

𝛿𝑖𝑑𝑖

{
𝜇1,1

(
𝑋𝑖; 𝜷1

)
− 𝜇0,1

(
𝑋𝑖; 𝜷0

)}
. (9)

We now show that �̂�ACW achieves double robustness and
local efficiency. For a vector 𝑣, we use ‖𝑣‖2 = (𝑣⊤𝑣)1∕2 to
denote its Euclidean norm. For a function 𝑓(𝑉), where
𝑉 is a generic random variable, we define its 𝐿2-norm as‖𝑓(𝑉)‖ = {∫ 𝑓(𝑣)2𝑑𝑃(𝑣)}1∕2.
Theorem 3 (Double robustness and local efficiency).
Under Assumptions 1–4, if either Assumptions 5 or 6 holds,
�̂�ACW is consistent for 𝜏0. When both assumptions hold,
𝑁1∕2(�̂�ACW − 𝜏0) → (0, 𝑉ef f ) in distribution, as 𝑛 → ∞,
where 𝑉eff is defined in Theorem 2, that is, �̂�ACW is
locally efficient.

By the empirical processes theory, the effect of nui-
sance parameter estimation in �̂�ACW − 𝜏0 is bounded
by ‖𝜋𝛿(𝑋; 𝜼) − 𝜋𝛿(𝑋)‖∑1

𝑎=0
‖𝜇𝑎,1(𝑋; 𝜷𝑎) − 𝜇𝑎,1(𝑋)‖; see

Web Appendix C.4 for details. If this bound is of
rate 𝑜𝑝(𝑛

−1∕2), it is asymptotically negligible. Thus,
�̂�ACW is semiparametric efficient. In general, there exist
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1218 LEE et al.

different combinations of convergence rates of 𝜋𝛿(𝑋; 𝜼)
and 𝜇𝑎,1(𝑋; 𝜷𝑎) (𝑎 = 0, 1) that result in a negligible error
bound accommodating different smoothness conditions of
the underlying nuisance functions. The following theorem
formalizes the above statement.

Theorem 4. Suppose Assumptions 1–4 hold. Let
𝜋𝛿(𝑋; 𝜼) and 𝜇𝑎,1(𝑋; 𝜷𝑎) (𝑎 = 0, 1) be general semi-
parametric models for 𝜋𝛿(𝑋) and 𝜇𝑎,1(𝑋) (𝑎 = 0, 1),
respectively. Assume the following regularity con-
ditions hold: (C1) ‖𝜋𝛿(𝑋; 𝜼) − 𝜋𝛿(𝑋)‖ = 𝑜𝑝(1) and‖𝜇𝑎,1(𝑋; 𝜷𝑎) − 𝜇𝑎,1(𝑋)‖ = 𝑜𝑝(1), for 𝑎 = 0, 1; (C2)‖𝜋𝛿(𝑋; 𝜼) − 𝜋𝛿(𝑋)‖∑1

𝑎=0
‖𝜇𝑎,1(𝑋; 𝜷𝑎) − 𝜇𝑎,1(𝑋)‖ =

𝑜𝑝(𝑛
−1∕2). Then �̂�ACW is consistent for 𝜏0 and achieves the

semiparametric efficiency bound.

The semiparametric efficiency bound is attained as long
as either 𝜼 or (𝜷0, 𝜷1) approximate the underlying sam-
pling score model or the outcome models well. (C1) states
that we require that the posited models be consistent. (C2)
states that the combined rate of convergence of the posited
models is of 𝑜𝑝(𝑛−1∕2). In Section 4.2, we construct such
estimators using the method of sieves, which satisfies (C1)
and (C2) in Theorem 4 under regularity conditions.
For the locally efficient estimator �̂�ACW, the variance

estimator can be calculated as

𝑉
(
�̂�ACW

)
=

𝑁∑
𝑖=1

𝛿𝑖𝑞𝑖

[
𝑉{𝑌(1)|𝑋𝑖, 𝛿𝑖}

𝜋𝐴𝑖
+
𝑉{𝑌(0)|𝑋𝑖, 𝛿𝑖}
1 − 𝜋𝐴𝑖

]

+

{
𝑁∑
𝑖=1

𝛿𝑖𝑑𝑖

}−2

𝑁∑
𝑖=1

�̃�𝑖𝑑𝑖
2
{
𝜇1,1(𝑋𝑖; 𝜷1) − 𝜇0,1(𝑋𝑖; 𝜷0) − �̂�

ACW
}2
,

(10)

where 𝑉{𝑌(𝑎)|𝑋𝑖, 𝛿𝑖} is a consistent estimator of
𝑉{𝑌(𝑎)|𝑋𝑖, 𝛿𝑖} for 𝑎 = 0, 1. However, the plug-in vari-
ance estimator requires an additional consistent estimator
of 𝑉{𝑌(𝑎)|𝑋𝑖, 𝛿𝑖}, which can be difficult to obtain. The
bootstrap variance estimator is more straightforward, and
it can accommodate situations where either one of the
nuisance models is misspecified.

4.2 Semiparametric models by the
method of sieves

To overcome the model misspecification issue inherent
to parametric models, we consider the method of sieves,
which allows flexible models for 𝜋𝛿(𝑋) and 𝜇𝑎,1(𝑋), (𝑎 =

0, 1). Although general sieves such as Fourier series,
splines, wavelets, and artificial neural networks (Chen,
2007) are applicable, the power series is most common.
For a 𝑝-vector of nonnegative integers 𝜅 = (𝜅1, … , 𝜅𝑝), let|𝜿| = ∑𝑝

𝑙=1
𝜅𝑙 and 𝑋𝜿 =

∏𝑝

𝑙=1
𝑋
𝜅𝑙
𝑙
. Define a series {𝜿(𝑘) ∶

𝑘 = 1, 2, …} for all distinct vectors of 𝜿 such that |𝜿(𝑘)| ≤|𝜿(𝑘 + 1)|. Based on this series, we consider a 𝐾-vector
𝒈(𝑋) = {𝑔1(𝑋), … , 𝑔𝐾(𝑋)}

⊤ = {𝑋𝜅(1), … , 𝑋𝜅(𝐾)}⊤.
In the presence ofmany sieve basis terms, variable selec-

tion is needed to include necessary terms and to exclude
terms that could result in efficiency loss. To guide selec-
tion, we attempt to compare the semiparametric efficiency
bound𝑉eff in Theorem 2with different types of covariates,
which, however, does not lead to a definitive conclusion.
Fortunately, given that the OS sample is much larger than
the trial sample, the first term of 𝑉eff often dominates the
second term. Thus, we focus on the comparison of the first
term.

Lemma 1. Let 𝑋𝐶 be confounders, 𝑋𝑂 be outcome predic-
tors, and 𝑋𝐼 be IVs, where 𝑋𝐶 , 𝑋𝑂, 𝑋𝐼 are subsets of 𝒈(𝑋).
Also, let 𝑋𝐶+𝐼 = 𝑋𝐶 ∪ 𝑋𝐼 . Define the first term of 𝑉eff that
depends on 𝑋∗ as

𝑉∗1 = 𝐸

[
𝛿

𝜋𝛿(𝑋∗)2

{
𝑉{𝑌(1)|𝑋∗, 𝛿}

𝜋𝐴
+
𝑉{𝑌(0)|𝑋∗, 𝛿}

1 − 𝜋𝐴

}]
,

(11)

where ∗ can be𝐶,𝑂, 𝐶 + 𝐼. Then, we have𝑉𝑂1 ≤ 𝑉𝐶1 ≤ 𝑉𝐶+𝐼1 .

The proof of Lemma 1 is in Web Appendix C.5.
Lemma 1 suggests that including outcome predictors
and excluding IVs reduces 𝑉1. Thus, we propose a
new basis selection procedure for sieves estimation and
calibration adjusting for outcome predictors. First, we
approximate 𝜇𝑎(𝑋) by the generalized sieve functions
𝜇𝑎(𝑋; 𝜷

∗
𝑎) = 𝑚𝑎{𝜷

∗⊤
𝑎 𝒈(𝑋)}with 𝜷∗⊤𝑎 = argmin𝜷 𝐸[𝜇𝑎(𝑋) −

𝑚𝑎{𝜷
⊤𝒈(𝑋)}]2 for 𝑎 = 0, 1. Since the number of basis func-

tions controls the smoothness of sieves estimators, we can
specify a sufficiently large𝐾 as an initial number and apply
the penalization to regularize the variability of the esti-
mators. Specifically, let 𝜷𝑎 = argmin𝜷∈ℝ𝐾

∑𝑁

𝑖=1
(𝛿𝑖𝐼(𝐴𝑖 =

𝑎)[𝑌𝑖 − 𝑚𝑎{𝜷
⊤
𝑎 𝒈(𝑋)}]

2 +
∑𝐾

𝑗=1
𝑝𝜉𝑎 (|𝛽𝑗|)), where 𝑝𝜉𝑎(⋅) is

the smoothly clipped absolute deviation (SCAD) penalty
function (Fan and Li, 2001), for 𝑎 = 0, 1. We choose the
tuning parameters 𝜉𝑎 via cross-validation. Under certain
regularity conditions, 𝜷𝑎 satisfies the selection consistency
and oracle properties (see Fan and Li, 2001).
Second, we calibrate the sieve basis terms that are pre-

dictive of the outcome. Instead of calibrating the selected
basis terms of the outcome predictors directly, we can
construct the sieve basis for log{𝜋𝛿(𝑋)} by power series

 15410420, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13609 by N
orth C

arolina State U
niversit, W

iley O
nline L

ibrary on [20/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LEE et al. 1219

of the selected variables to capture the possible nonlinear
relationship between log{𝜋𝛿(𝑋)} and 𝑋. Then, we conduct
penalized sieve estimation of 𝜋𝛿(𝑋) by solving the system
of estimating equations (5) with the SCAD penalty. By
emphasizing the outcome predictors, our strategy provides
guidance for variable selection for covariate balancing
and efficient estimation. Following Shortreed and Ertefaie
(2017), an alternative strategy of prioritizing outcome
predictors is to use the outcome-adaptive Lasso for the
sampling score model with the sieve basis of all covari-
ates. This approach incorporates the outcome-covariate
association to impose heavier penalties on the covariates
that are not or weekly associated with outcome.
Coupling sieve approximation and variable selection,

�̂�ACW with flexible approximations of the two nuisance
functions achieves the root-𝑛 consistency and the semi-
parametric efficiency bound under mild regularity condi-
tions; see Web Appendix D.

4.3 Related works

There are several recent articles that focus on regular-
ized balancing methods. Athey et al. (2018) proposed an
approximate residual balancing method that first fits a
regularized linear outcome model and then reweights the
residuals to minimize covariate imbalance. Unlike our
method, Athey et al. (2018) relied on the linear outcome
model. Ning et al. (2020) considered a doubly robust esti-
mator that uses penalized maximum likelihood estima-
tion of the nuisance functions and calibrates the estimated
propensity score by balancing the selected outcome pre-
dictors. Similarly, Tan (2020a, 2020b) proposed a doubly
robust estimator through regularized calibrated estimation
using the expected calibrated loss functionwhen fitting the
propensity score model. Unlike these approaches that esti-
mate the propensity score that satisfies covariate balanc-
ing conditions, our method directly achieves the balance
in the covariates through calibration weights, similar to
Chan et al. (2016). Moreover, our approach uses the non-
parametric sieve method which provides more robust esti-
mation of the nuisance functions. The difference between
our approach and Chan et al. (2016) is that their approach
enforces a three-way balance between the treated, the con-
trols, and the combined data, whereas our method only
requires a two-way balance between the RCT and the OS
sample. Even though the three-way balancing approach is
not necessary for generalizing trial results, it could be use-
ful when generalizing observational results to a larger pop-
ulation. For example, in order to achieve double robustness
in the observational setting, the CW estimator requires the
three-way balance. It is analogous to the Covariate Bal-
ancing Propensity Score (CBPS; Imai and Ratkovic, 2014)

method, which is doubly robust under the constant CATE
whereas it requires the three-way balance to achieve dou-
ble robustness under the heterogeneous CATE (Fan et al.,
2021). Moreover, Chan et al. (2016) did not solve the prob-
lem about which terms to calibrate, whereas we propose a
principled approach for selecting calibration terms.
Wang and Zubizarreta (2020) studied a class of weights

that have minimum dispersion and showed that achieving
approximate covariate balance corresponds to regularizing
inverse probability weights, without explicitly involving
the propensity score model. A special case is the stable
balancing weights method (SBW; Zubizarreta, 2015;
Chattopadhyay et al., 2020) which finds weights with
the minimum variance that achieves covariate balance
approximately. The approximately balancing methods
could be useful when the costs of balancing are too high,
since they have the flexibility to trade bias for variance.
Our strategy of handling large-dimensional calibration
terms is different. We first reduce the number of calibra-
tion terms by selecting the outcome predictors and further
use penalized estimating equations (Yang et al., 2020)
to obtain calibration weights. Both steps involve convex
optimization with regularization, whose numerical and
theoretical properties are well studied in the literature
(Fan and Li, 2001; Johnson et al., 2008). Our solution for
handling the large-dimension calibration terms is thus
attractive in terms of feasibility and efficiency.

4.4 ACW estimator when 𝒀 and 𝑨 are
available in OSs

We consider another setting where we have access to addi-
tional information on (𝐴, 𝑌) from the OS sample (e.g.,
Dahabreh et al., 2020). Most causal inference methods
invoke the “no unmeasured confounding” assumption
that 𝐴 is independent of the potential outcomes given 𝑋
in the OS sample (e.g., Lu et al., 2019). To leverage the pre-
dictive power of the OS sample, we assume generalizabil-
ity of the outcome mean functions from the RCT to the OS
sample.

Assumption 7. For 𝑎 = 0, 1, 𝐸(𝑌 ∣ 𝑋,𝐴 = 𝑎, �̃� = 1) =
𝜇𝑎,1(𝑋).

Collectively, combining Assumptions 1–4 and 7 leads to
generalizability of the CATE function: 𝐸(𝑌 ∣ 𝑋,𝐴 = 1, �̃� =
1) − 𝐸(𝑌 ∣ 𝑋,𝐴 = 0, �̃� = 1) = 𝜏(𝑋). The nuisance func-
tions 𝜇𝑎,1(𝑋) (𝑎 = 0, 1) in the ACW estimator �̂�ACW in
(9) can be estimated by the OS sample to further boost
efficiency. The indication is that the OS has no unmea-
sured confounding on themean differencemeasure condi-
tional on 𝑋 (VanderWeele, 2012). Assumption 7 is testable
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1220 LEE et al.

TABLE 1 Simulation settings: description of four scenarios and estimators

Scenarios Details
1. O:C/S:C Both outcome and sampling score models are correctly specified
2. O:C/S:W The outcome model is correctly specified; the sampling score model is incorrectly specified by using 𝑋∗ in the

generative model
3. O:W/S:C The outcome model is incorrectly specified by using 𝑋∗ in the generative model; the sampling score model is correctly

specified
4. O:W/S:W Both outcome and sampling score models are incorrectly specified by using 𝑋∗ in the generative model

Estimators Details
Naive The difference in sample means of the two treatment groups in the RCT sample
IPSW The IPSW estimator with a logistic sampling score model
AIPSW The AIPSW estimator with a logistic sampling score model
AIPSW(S) The AIPSW estimator using methods of sieve with 𝒈(𝑋) = 𝒈2(𝑋) for sampling score and outcome models based on the

trial sample
SBW The IPSW estimator with SBW-1 weights (Chattopadhyay et al., 2020) of the ATT, with the OS being the treatment

group and the RCT sample being the control group
CW The CW estimator defined by (6) with 𝒈(𝑋) = 𝒈1(𝑋)
ACW-t The ACW estimator defined by (9) with 𝒈(𝑋) = 𝒈1(𝑋) and the nuisance functions 𝜇𝑎(𝑋, 1), and 𝜇0(𝑋, 1) are estimated

based on the trial sample
ACW-t(S) The penalized ACW-t estimator using the method of sieves with 𝒈(𝑋) = 𝒈2(𝑋) for sampling score and outcome

models, respectively
ACW-t(S𝑂) The penalized ACW estimator using the method of sieves with 𝒈(𝑋) = 𝒈2(𝑋) for outcome models and construct the

sieve basis for 𝜋𝛿(𝑋) by power series of the selected outcome predictors
ACW-b The ACW estimator defined by (9) with 𝒈(𝑋) = 𝒈1(𝑋) and the nuisance functions 𝜇1(𝑋) and 𝜇0(𝑋) are estimated

based on both RCT and OS samples
ACW-b(S) The penalized ACW-b estimator using the method of sieves with 𝒈(𝑋) = 𝒈2(𝑋) for sampling score and outcome

models, respectively
ACW-b(S𝑂) The penalized ACW-b estimator using the method of sieves with 𝒈(𝑋) = 𝒈2(𝑋) for outcome models and construct the

sieve basis for 𝜋𝛿(𝑋) by power series of the selected outcome predictors

because it is based only on the observed data. For exam-
ple, one can use a likelihood ratio test for testing a reduced
model with the same outcome mean model specification
versus a full model with different model specifications in
the RCT and OS samples. Note that failure to reject this
assumption does not ensure the whole set of Assumptions
1–4 and 7 holds; subject matter knowledge should be con-
sulted, for example, Dahabreh et al. (2020).

5 SIMULATION STUDY

We conduct simulation studies to evaluate the finite sam-
ple performances of the proposed estimators. Table 1
describes four simulation scenarios and 12 estimators to
be compared, and Figure 2 displays the results with box-
plots of the estimators. Details of the data-generating pro-
cess and numerical results are provided in Web Appendix
E.1. It can be seen that the naive and IPSW estimators
fail to adjust for the selection bias associated with the
RCT sample. The SBW and CW estimators can correct the

selection bias and are doubly robust, but they have larger
variances than other doubly robust estimators. In Scenario
3 when the outcome model is misspecified, the AIPSW
estimator has a larger bias than other doubly robust esti-
mators. This is because the AIPSW estimator is inflicted
by the inverse probability of sampling weights, which, as
shown in Scenario 1, results in the large finite-sample
bias of the IPSW estimator. The ACW estimators do not
involve weighting by the inverse probability of sampling
and aremore stable, thus we recommend the ACWestima-
tors in practice. TheACW-t(S𝑂) andACW-b(S𝑂) are shown
to be doubly robust and more efficient than other dou-
bly robust estimators. The ACW-t, ACW-t(S), ACW-b, and
ACW-b(S) are unbiased but show high variability, which
could be due to the inclusion of IVs. In Scenario 4 where
both outcome and sampling score models are misspeci-
fied, the ACW estimators focusing on outcome predictors,
that is, ACW-t(S𝑂) and ACW-b(S𝑂) are still unbiased and
efficient. Moreover, ACW-b(S𝑂) has smaller variance than
ACW-t(S𝑂) by exploiting the predictive power from the OS
sample.
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F IGURE 2 Boxplot of estimators under four model specification scenarios, where a few outliers are removed for visualization. This
figure appears in color in the electronic version of this article, and color refers to that version.

6 REAL DATA APPLICATION

We apply the proposed estimators to evaluate the effect
of adjuvant chemotherapy for early-stage resected non-
small-cell lung cancer (NSCLC). Adjuvant chemotherapy
for resectedNSCLC is shown to be effective in stages II and
IIIA disease based on RCTs (Massarelli et al., 2003); how-
ever, its utility in the early-stage disease remains unclear.
Cancer and Leukemia Group B (CALGB) 9633 is the only
trial designed specifically to evaluate the benefit of adju-
vant chemotherapy over observation for stage IB NSCLC
patients after surgery (Strauss et al., 2008). Additional OS
data for stage IB NSCLC patients were extracted from
National Cancer Database (NCDB) with the same eligibil-
ity criteria as CALGB 9633. NCDB is a large joint project
of the American Cancer Society and the American College
of Surgeons, and it captures 70% of all cancers diagnosed
in the United States. It is designed to be a registry, and
there is no design weights associated with this database
(Jairam and Park, 2019). As the extracted OS samples from
NCDB were diagnosed between the years 2004 and 2016,

and CALGB 9633 enrolled patients between the years 1996
and 2003, the patients of the two sources can be consid-
ered independent.
Table 2 discusses the plausibility of the identification

assumptions, and Table 3 (panel a) summarizes the base-
line characteristics of the CALGB 9633 trial sample and the
NCDB sample. The treatment indicator 𝐴 is coded as 1 for
adjuvant chemotherapy and 0 for on observation. The out-
come is the indicator of cancer recurrence within 3 years
after the surgery. The four covariates have been consid-
ered strong prognostic factors for disease recurrence after
surgical resection for early NSCLC. As seen in Table 3
(panel a), there are significant differences in the distri-
bution of these covariates between the two data sources.
Specifically, CALGB 9633 has a significantly higher per-
centage of male and younger (<70 years old) patients with
smaller tumor size. While adjuvant chemotherapy is now
recommended to stage IB NSCLC patients with a tumor
size > 4 cm (National Comprehensive Cancer Network,
2021), it remains an important question whether adju-
vant chemotherapy benefits the general NSCLC patient
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1222 LEE et al.

TABLE 2 Justification of the identification assumptions in the context of the CALGB 9633 trial and the NCDB sample

Assumptions Justifications
1 Consistency The extracted OS samples are stage IB NSCLC patients who had surgery and then received either adjuvant

chemotherapy or on observation (i.e., no chemotherapy) and with age greater than 20. Like CALGB 9633
patients, they did not receive any of the neoadjuvant chemotherapy, radiation therapy, induction
therapy, immunotherapy, hormone therapy, transplant/endocrine procedures, or systemic treatment
before their surgery. Thus, the same treatment or comparison conditions were given in the same setting
in both studies.

2 Treatment ignorability
and positivity

The CALGB 9633 trial implemented treatment randomization and had good patient compliance (Strauss
et al., 2008).

3 Sampling ignorability
and positivity

The four covariates, gender, age, histology, and tumor size, have been considered strong prognostic factors
or disease recurrence after surgical resection for early NSCLC. The positivity condition holds because
the OS data for NSCLC stage IB patients were extracted from NCDB with the same eligibility criteria as
CALGB 9633.

7 Generalizability of the
outcome mean
functions from the RCT
sample to the OS sample

The likelihood ratio test of a reduced model (i.e., a single logistic regression with the sieve basis for the
combined sample) against a full model (that is, two separate logistic regressions with the sieve basis for
the two samples) has a p-value of 0.09. If a conservative investigator uses 0.1 to determine the critical
value, the investigator can choose estimators using only trial data, for example, ACW-t(S) and
ACW-t(S𝑂). On the other hand, if the investigator uses 0.05 to determine the critical value, one can
choose estimators using both data sources, that is, ACW-b(S) and ACW-b(S𝑂).

population represented by NCDB, with a higher per-
centage of female and older age and larger tumor size.
As these covariates are strong prognostic factors of dis-
ease recurrence and they may even be modifiers for
the treatment effect of adjuvant chemotherapy, naive
estimators based only on CALGB 9633 data will lead
to biased quantification of the true treatment effect
defined on the entire population of early-stage NSCLC
patients.
We compare the proposed estimators with other ATE

estimators, same as in the simulation studies. For sieves
estimators, the basis functions are the first- and second-
order moments of the four covariates. We select a sub-
sample using 1:10 matching based on the observed covari-
ate and combine the RCT and matched OS samples for
fitting outcome regression in the ACW-b(S) and ACW-
b(S𝑂) methods. Bootstrap variance estimation is applied
to estimate the standard errors. Table 3 (panel b) reports
the results. The results indicate that in the RCT sample
there is an 8.3% decrease in the risk of recurrence for adju-
vant chemotherapy over observation. The IPSW, AIPSW,
AIPSW(S), SBW, ACW-t(S), and ACW-t(S𝑂) estimators,
which utilized OS covariate information, show a 9–14%
decrease in the risk of recurrence. However, the causal
effect is not significant according to the 95% confidence
interval. By leveraging the predictive power of the OS sam-
ple, the ACW-b(S) and ACW-b(S𝑂) estimators give an esti-
mate of 17% risk decrease, which is significant at 0.05 level.
Moreover, the ACW-t(S𝑂) and ACW-b(S𝑂) estimators gain
efficiency by focusing on outcome predictors, compared to
ACW-t(S) and ACW-b(S). All of the sampling score cor-
rected estimators have steeper declines in recurrence risk

compared to the naive estimator, which suggests that the
causal risk difference in the target population is larger
than the one of the RCT sample, that is, the effect of adju-
vant chemotherapy is more profound in the real patient
population.

7 DISCUSSION

In this paper, we have developed a new semiparametric
framework to evaluate the ATEs integrating the comple-
mentary features of the RCTs and OSs under assumptions
of RCT randomization of treatment, generalizability of
the CATE, or the outcome mean functions and positiv-
ity of trial participation. The proposed framework can
be extended to the indirect comparison problem (e.g.,
Phillippo et al., 2018) under the transportability of CATEs,
which we will pursue in the future.
In real data application, we assume that the RCT sam-

ple and the OS sample are independent based on the study
designs for the CALGB trial and the NCDB study. In gen-
eral, this assumption would be violated if there is a sig-
nificant overlapping of the two data sources, that is, they
involve the same subset of patients. We note that the vio-
lation of this assumption would not affect the unbiased-
ness of the estimators but variance estimation. Recently,
Saegusa (2019) developed a new weighted empirical pro-
cess theory for merged data from potential overlapping
sources. This inference framework does not require identi-
fying duplicated individuals and therefore is attractive. In
the future, we will extend this inference framework to our
general setting of combining RCTs and OSs.
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TABLE 3 (a) Summary of baseline characteristics of the
CALGB 9633 trial sample and the NCDB sample. (b) Point estimate,
standard error, and 95% percentile confidence interval of the causal
risk difference between adjuvant chemotherapy and observation
based on the CALGB 9633 trial sample and the NCDB sample

(a)
RCT: CALGB 9633 OS: NCDB
𝒏 = 𝟑𝟏𝟗 𝒏 = 𝟏𝟓, 𝟑𝟕𝟗

Recurrence (𝑌), 𝑛(%) 79 (25) 5060 (33)

Treatment (𝐴), 𝑛(%)
Adjuvant chemotherapy 156 (49) 4324 (28)

Observation 163 (51) 11055 (72)

Gender (𝑋1), 𝑛(%)
Male 204 (64) 8458 (55)

Female 115 (36) 6921 (45)

Age (𝑋2),𝑚𝑒𝑎𝑛 ± 𝑆𝐷 60.83 ± 9.62 67.87 ± 10.18

Histology (𝑋3), 𝑛(%)
Squamous 128 (40) 5998 (39)

Non-squamous 191 (60) 9381 (61)

Tumor size (𝑋4),
𝑚𝑒𝑎𝑛 ± 𝑆𝐷

4.6 ± 2.08 4.94 ± 3.04

(b)
�̂� 𝑺𝑬(�̂�) 95% CI

Naive −0.083 0.044 (−0.163, −0.018)

IPSW −0.088 0.060 (−0.211, 0.019)

AIPSW −0.088 0.060 (−0.187, 0.041)

AIPSW(S) −0.106 0.068 (−0.233, 0.020)

SBW −0.090 0.057 (−0.187, 0.017)

CW −0.105 0.058 (−0.221, 0.000)

ACW-t(S) −0.139 0.106 (−0.309, 0.041)

ACW-t(S𝑂) −0.122 0.080 (−0.237, 0.054)

ACW-b(S) −0.174 0.098 (−0.360, −0.044)

ACW-b(S𝑂) −0.172 0.088 (−0.357, −0.050)

We have focused on the setting when all relevant covari-
ates in 𝑋 are captured in both RCTs and OSs. However,
because OSs were not initially collected for research pur-
poses, some important covariates may not be available
from the OS. Yang and Ding (2019) developed integrative
causal analyses of the ATEs combining big main data with
unmeasured confounders and smaller validation data with
a full set of confounders; however, they assumed that the
validation sample (i.e., the RCT sample in our context) is
representative of the target population. In the presence of
unmeasured covariates in the OSs, there may be lingering
selection biases after calibration on the measured covari-
ates. The future work will investigate the sensitivity to the
unmeasured covariates (Nguyen et al., 2017; Yang and Lok,
2017).
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Supporting information is organized as the following. In Web Appendix A, we discuss the
subtle differences between generalizability and transportability. In Web Appendix B, we specify
the IPSW and AIPSW estimators and provide an identification formula based on inverse sampling
score weighting. In Web Appendix C, we provide the proofs of Theorems 1–4 and Lemma 1. Web
Appendix D provides regularity conditions for the sieves estimator. Web Appendix E provides
simulation study details and additional simulation results.

Web Appendix A: Generalizability and Transportability

The problems of generalizability (Cole and Stuart, 2010; Stuart et al., 2011; Hernan and Van-
derWeele, 2011; Tipton, 2013; O’Muircheartaigh and Hedges, 2014; Stuart et al., 2015; Keiding
and Louis, 2016; Dahabreh and Hernán, 2019; Dahabreh et al., 2019) and transportability (Pearl
and Bareinboim, 2011; Rudolph and van der Laan, 2017; Westreich et al., 2017; Josey et al.,
2021) aim at extending findings from a randomized controlled trial (RCT) to a target population
(Dahabreh et al., 2020). However, there are subtle differences between the problems of generaliz-
ability and transportability in terms of estimands and identification assumptions.The differences
in generalizability and transportability are summarized in Table S1 and also illustrated using
causal diagrams in Figure S1.

The goal of generalizability is to generalize results from a trial to its larger population,
whereas the goal of transportability is to extend results from a trial to a different external
population. In generalizability, one assumes that the triplet {X,Y (0), Y (1)} in the target pop-
ulation follows P{X,Y (0), Y (1)}, and the observational sample (δ̃ = 1) is representative of
the target population. The trial sample (δ = 1) is selected from the population according
to P (δ = 1 | X). The generalizability problem tries to use the trial sample to draw con-
clusions for the population, leveraging the observational sample. Thus, the estimand of in-
terest is the functional form of P{X,Y (0), Y (1)}, e.g., the average treatment effect (ATE),

1



E{Y (1) − Y (0)}. On the other hand, in transportability, we have two study samples following
P{X,Y (0), Y (1) | δ = 1} and P{X,Y (0), Y (1) | δ̃ = 1} respectively, where we try to transport
some features of P{X,Y (0), Y (1) | δ = 1} to P{X,Y (0), Y (1) | δ̃ = 1}. Thus, the estimand of
interest is the functional form of P{X,Y (0), Y (1) | δ̃ = 1}, e.g., the target population average
treatment effect (TATE; Josey et al., 2021), E{Y (1) − Y (0) | δ̃ = 1}. In transportability,
we do not necessarily have to define P{X,Y (0), Y (1)}, and we can use the conditional odds,
P{δ̃ = 1 | X, (δ = 1 or δ̃ = 1)}/P{δ = 1 | X, (δ = 1 or δ̃ = 1)}, without defining P (δ = 1 | X) to
estimate the TATE. Under generalizability, P{X,Y (0), Y (1) | δ̃ = 1} = P{X,Y (0), Y (1)}, i.e.,
both trial and observational samples are drawn from the broader trial population, whereas under
transportability, P{X,Y (0), Y (1) | δ̃ = 1} 6= P{X,Y (0), Y (1)}, i.e., the observational sample is
drawn from the external population. We call the population which we want to make inferences
about as the target population.

Identification assumptions (i) - (ii) are common for both generalizability and transportability
and hold for well-defined RCTs in general. The key differences between generalizability and
transportability are identification assumptions (iii) - (iv), which are often needed to extend
RCT findings to the target population. Unlike transportability where these assumptions are
often needed for the target population with δ̃ = 1, for generalizability, these assumptions are
needed for all x such that P (X = x) > 0, assuming that the trial sample is drawn from the
target population. Moreover, the positivity assumption of the trial participation (iv) requires
the probability of sampling to be bounded away from 0 for generalizability, whereas bounded away
from 0 and 1 for transportability (Degtiar and Rose, 2021). These suggest that in transportability
analysis, variables separating the trial sample from the target population should be excluded from
the measure exchangeability/mean exchangeability/ignorability assumption over δ (Tipton, 2013;
Dahabreh et al., 2020).

δ X

A Y

(a) Generalizability

δ, δ̃ X

A Y

(b) Transportablity

Figure S1: Illustrations of causal diagrams in the problems of generalizability and transportabil-
ity. In (a), the RCT sample is subject to selection bias (indicated by X pointing to δ). In (b),
the two populations differ by covariate distributions (indicated by δ and δ̃ pointing to X) and
the two populations differ in their treatment assignment mechanism (δ and δ̃ pointing to A). (b)
is modified from Pearl and Bareinboim (2011).
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Table S1: Differences of the problems of Generalizability (G) and Transportability (T)

G

Goal Generalize results from a trial to its larger population
Samples, populations A trial sample and an observational sample from a target population

Study design Nested design, non-nested design
Estimand ATE E {Y (1)− Y (0)}

Identification
assumptions

(i) Mean exchangeability over A E{Y (a) | X, δ = 1, A = a} = E{Y (a) | X, δ = 1} for a = 0, 1

(i∗) Ignorability on A Y (a) ⊥⊥ A | (X, δ = 1) for a = 0, 1

(ii) Positivity of A 0 < P (A = a | X = x, δ = 1) < 1 ∀x s.t. P (X = x|δ = 1) > 0

(iii) Measure exchangeability over δ E{Y (1)− Y (0) | X, δ = 1} = E{Y (1)− Y (0) | X}
(iii∗) Mean exchangeability over δ E{Y (a) | X, δ = 1} = E{Y (a) | X} for a = 0, 1

(iii∗∗) Ignorability on δ Y (a) ⊥⊥ δ | X for a = 0, 1

(iv) Positivity of δ P (δ = 1 | X = x) > 0 with probability 1

T

Goal Extend results from a trial to a different external population

Samples, populations A trial sample from a trial population and an observational sample from a target population
where the trial and the target population are not identical

Study design Non-nested design
Estimand TATE E

{
Y (1)− Y (0) | δ̃ = 1

}

Identification
assumptions

(i) Mean exchangeability over A same as in G(i)
(i∗) Ignorability on A same as in G(i∗)
(ii) Positivity of A same as in G(ii)

E {Y (1)− Y (0) | X = x, δ = 1} = E
{
Y (1)− Y (0) | X = x, δ̃ = 1

}
(iii) Measure exchangeability over δ ∀x s.t. P

(
X = x | δ̃ = 1

)
> 0

E {Y (a) | X = x, δ = 1} = E
{
Y (a) | X = x, δ̃ = 1

}
(iii∗) Mean exchangeability over δ ∀x s.t. P

(
X = x | δ̃ = 1

)
> 0 and a = 0, 1

(iii∗∗) Ignorability on δ Y (a) ⊥⊥ δ | X = x ∀x s.t. P
(
X = x | δ̃ = 1

)
> 0 and a = 0, 1

(iv) Positivity of δ 0 < P (δ = 1 | X = x) < 1 ∀x s.t. P
(
X = x | δ̃ = 1

)
> 0
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Web Appendix B: IPSW and AIPSW

The IPSW estimator of the ATE is

τ̂ IPSW =

∑n
i=1 πδ(Xi; η̂)−1AiYi∑n
i=1 πδ(Xi; η̂)−1Ai

−
∑n

i=1 πδ(Xi; η̂)−1(1−Ai)Yi∑n
i=1 πδ(Xi; η̂)−1(1−Ai)

. (A1)

The augmented inverse probability weighting estimator (AIPSW) has been proposed to im-
prove it by employing both the sampling score and outcome regression

τ̂ =

∑n
i=1 πδ(Xi; η̂)−1Ai{Yi − µ̂1,1(X)}∑n

i=1 πδ(Xi; η̂)−1Ai
−∑n

i=1 πδ(Xi; η̂)−1(1−Ai){Yi − µ̂0,1(Xi)}∑n
i=1 πδ(Xi; η̂)−1(1−Ai)

+

1

m

n+m∑
i=n+1

{µ̂1,1(Xi)− µ̂1,1(Xi)}. (A2)

B.1 Identification of IPSW estimator

We provide another identification formula based on IPSW.We first show that πδ(X) is identifiable
up to a constant P (δ = 1) based on

πδ(X) = P (δ̃ = 1 | X)
f(X | δ = 1)

f(X | δ̃ = 1)

P (δ = 1)

P (δ̃ = 1)
:= π̃cδ(X)

P (δ = 1)

P (δ̃ = 1)
,

where we assume that P (δ̃ = 1|X) is known by design, f(X | δ = 1) and f(X | δ̃ = 1) are
observed data distributions, but P (δ = 1)/P (δ̃ = 1) is identifiable without the knowledge of the
sizes of the underlying populations. Nonetheless, the ATE can be identified based on

τ0 = E

[
δπ̃cδ(X)−1AY/πA(X)

δπ̃cδ(X)−1A/πA(X)
−
δπ̃cδ(X)−1(1−A)Y/{1− πA(X)}
δπ̃cδ(X)−1(1−A)/{1− πA(X)}

]
.

Web Appendix C: Proofs

C.1 Proof of Theorem 1

Proof of the double robustness of the calibration weighting estimator

Let µg0 = E {g(X)}, ḡ0 = g(X) − µg0. To use the M-estimator theory (Boos and Stefanski,
2013), we write (4) as the following estimating equations

1

N

N∑
i=1

C(Xi, δ̃i;µg) =
1

N

N∑
i=1

δ̃idi{g(Xi)− µg} = 0, (A3)
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1

N

N∑
i=1

ζ(Xi, δi;λ,µg) =
1

N

N∑
i=1

δi exp
{
λ>g(Xi)

}
{g(Xi)− µg} = 0. (A4)

First consider the case where Assumption 6 holds, we have πδ(X) = exp{η>0 g(X)}. Notice that
µg0 is the solution to E{C(X;µg)} = 0. Taking expectation on the left hand side of (A4) with
µg = µg0 leads to

E{ζ(X, δ;λ,µg0)} = E{E(ζ(X, δ;λ,µg0)|X)} = E
(
πδ(X) exp{λ>g(X)} [g(X)− E{g(X)}]

)
.

For the above conditional expectation to be zero, one needs πδ(X) exp{λ>g(X)} to be a constant.
As πδ(X) = exp{ηT

0 g(X)}, we have πδ(X) exp{λ>g(X)} = exp{(η0+λ)>g(X)}. Thus λ = −η0
makes (A4) a system of unbiased estimating equations. We point out that denominator in q̂i is
an estimator of the population size N , i.e.,

1

N

n∑
i=1

exp{λ>g(Xi)} =
1

N

N∑
i=1

δi exp{λ>g(Xi)}

=
1

N

N∑
i=1

δi exp
{
−η>0 g(Xi)

}
+Op(n

−1/2N−1)

= 1 +Op(N
−1/2) +Op(n

−1/2N−1)

= 1 + op(1).

Therefore,

q̂i = q(Xi; λ̂) =
exp

{
λ̂>g(Xi)

}
∑n

i=1 exp
{
λ̂>g(Xi)

} =
1

N

1

πδ(Xi;η0)
+Op(n

−1/2N−1); (A5)

i.e., q̂i {Nπδ(Xi;η0)} → 1 as n→∞. Based on (A5), we have

τ̂CW =
N∑
i=1

q̂iδi

{
AiYi
πAi

− (1−Ai)Yi
1− πAi

}
(A6)

=
1

N

N∑
i=1

δi
πδ(Xi;η0)

{
AiYi
πAi

− (1−Ai)Yi
1− πAi

}
= τ0 +Op(N

−1/2) +Op(n
−1/2)

= τ0 + op(1).

Therefore, τ̂CW is consistent for τ0.
Now consider the case where Assumption 5 holds. Then we have
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E

(
n∑
i=1

q̂i

{
AiYi
πAi

− (1−Ai)Yi
1− πAi

})
= E

[
n∑
i=1

q̂iE

{
AiYi
πAi

− (1−Ai)Yi
1− πAi

| Xi, δi = 1

}]

= E

[
n∑
i=1

q̂iE {Y (1)− Y (0) | Xi, δi = 1}

]

= γ>0 E

{
n∑
i=1

q̂ig(Xi)

}
= γ>0 E

{
1

N

N∑
i=1

δ̃idig(Xi)

}
= E

{
γ>0 g(X)

}
= τ0,

where the equation on the third line is obtained by the balancing constraint (1). Under regularity
conditions for unbiased M-estimators, τ̂CW is consistent for τ0.

We thus conclude the double robustness of τ̂CW.

Proof of the asymptotic variance for the calibration weighting estimator

We derive the asymptotic variance of τ̂CW under Assumption 5 and 6 to facilitate the efficiency
comparison of τ̂CW and τ̂ACW.

Let θ = (µ>g ,λ
>, πA, τ)> to denote the vector of all parameters. The estimating function for

θ is

ψ(X,A, Y, δ, δ̃;θ) =


C(X, δ̃;µg)

ζ(X, δ;λ,µg)

h(X,A, δ;λ, πA)

t(X,A, Y, δ;λ, πA, τ)

 ,

where C(X, δ̃;µg) and ζ(X, δ;λ,µg) are given in (A3), (A4), respectively, and

h(X,A, δ;λ, πA) = δ exp{λ>g(X)}(A− πA),

t(A,X, Y, δ;λ, πA, τ) = δ exp{λ>g(X)}
{
AY

πA
− (1−A)Y

1− πA
− τ
}
.

Then θ̂ = (µ̂>g , λ̂
>, π̂A, τ̂

CW1)> solves the joint estimating equation

1

N

N∑
i=1

ψ(Xi, Ai, Yi, δi;θ) = 0.
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Under standard regularity conditions in the M-estimator theory, we have

θ̂ − θ0 =
1

N

N∑
i=1

ψ(Xi, Ai, Yi, δi;θ0) + op(N
−1/2),

where A(θ0) = E {−∇θ0ψ(θ0)}, and θ0 = (µ>g0,−η>0 , πA, τ0)>. The asymptotic variance of
N−1/2(θ̂ − θ0) is A−1(θ0)B(θ0)A

−1(θ0)
>, where B(θ0) = E

{
ψ(θ0)ψ(θ0)

>}.
To further express the asymptotic variance, we denote q0 = q0(X) = exp{−η0>g(X)} and

τ̄(Y,A) = {AY/πA − (1−A)Y/(1− πA)− τ0}. Note that E{τ̄(Y,A)|X, δ = 1} = τ(X) − τ0

and E
(
δ̃d
)

= 1. Under Assumption 6 and 5, πδ(X)q0(X)= 1 and τ(X) − τ0 = γ>0 ḡ0. In the
following derivation we use ⇒ to indicate equality when both Assumption 5 and 6 hold.

Using iterated expectation, we have

A(θ0) = E {−∇θ0ψ(θ0)}

= E


δ̃dIK 0K×K 0K×1 0K×1

δq0IK −δq0ḡg> 0K×1 0K×1

01×K −δq0(A− πA)g> δq0 0

01×K −δq0τ̄(Y,A)g> δq0

{
AY
π2
A

+ (1−A)Y
(1−πA)2

}
δq0



=


IK 0K×K 0K×1 0K×1

E (δq0) IK −E{δq0(g − µg0)g>} 0K×1 0K×1

01×K 01×K E (δq0) 0

01×K −E
[
πδ(X)q0 {τ(X)− τ0} g>

]
E
[
δq0

{
AY
π2
A

+ (1−A)Y
(1−πA)2

}]
E (δq0)

 .

By block matrix inversion,

A(θ0)
−1 =


IK 0K×K 0K×1 0K×1

E
(
δq0ḡ0g

>)−1E(δq0) −E
(
δq0ḡ0g

>)−1 0K×1 0K×1

01×K 01×K E(δq0)
−1 0

A41 A42 A43 A44

 ,

where

A41 = E
[
δq0(X) {τ(X)− τ0} g>

]
E
{
δq0(X)ḡ0g

>
}
−1 ⇒ γ>0 IK ,

A42 = −E {δq0(X)}−1E
[
πδ(X)q0(X) {τ(X)− τ0} g>

]
E
{
δq0(X)ḡ0g

>
}−1
⇒ −γ>0 IK ,

A43 = −E {δq0(X)}−2E
[
δq0(X)

{
AY

π2A
+

(1−A)Y

(1− πA)2

}]
⇒ −E

[
δq0(X)

{
Y (1)

πA
+

Y (0)

1− πA

}]
,

A44 = E {δq0(X)}−1 ⇒ 1.
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Taking iterated expectation again, we have

B(θ0) = E
{
ψ(θ0)ψ(θ0)

>
}

= E


δ̃d2ḡ0ḡ

>
0 0K×K 0K×1 0K×1

0K×K δq0(X)2ḡ0ḡ
>
0 δq0(X)2(A− πA)ḡ0 δq0(X)2τ̄(Y,A)ḡ0

01×K δq0(X)2(A− πA)ḡ>0 δq0(X)2(A− πA)2 δq0(X)2τ̄(Y,A)(A− πA)

01×K δq0(X)2τ̄(Y,A)ḡ>0 δq0(X)2τ̄(Y,A)(A− πA) δq0(X)2τ̄(Y,A)2



=


B11 0K×K 0K×1 0K×1

0K×K B22 0K×1 B24

01×K 01×K B33 B34

01×K B>24 B34 B44

 ,

where

B11 = E
(
δ̃d2ḡ0ḡ

>
0

)
,

B22 = E{δq0(X)2ḡ0ḡ
>
0 } ⇒ E{q0(X)ḡ0ḡ

>
0 },

B24 = E
[
δq0(X)2 {τ(X)− τ0} ḡ0

]
⇒ E

{
q0(X)γ>0 ḡ0ḡ0

}
,

B33 = E{δq0(X)2V (A|X)} ⇒ πA(1− πA)E {q0(X)} ,

B34 = E{δq20(X)τ̄(Y,A)(A− πA)} = E
[
δq20(X) {(1− πA)Y (1) + πAY (0)}

]
,

B44 = E{δq20(X)τ̄(Y,A)2} = E

[
δq20(X)

{
Y (1)2

πA
+

Y (0)2

1− πA
− 2τ(X)τ0 + τ20

}]
.

We can express the asymptotic variance of N−1/2(τ̂CW − τ0) as V CW = A41B11A
>
41 +A2

44B44.
Under Assumption 5 and 6, we have A41B11A

>
41 = E

[
δ̃d2 {τ(X)− τ0}2

]
. Therefore, V CW

can be simplified as

V CW = E
[
δ̃d2 {τ(X)− τ0}2

]
+ E

[
δq20(X)

{
Y (1)2

πA
+

Y (0)2

1− πA
− 2τ(X)τ0 + τ20

}]
.

C.2 Proof of Theorem 2

Let Z = (X,A, Y, δ, δ̃) be a vector of random variables. Assumptions 1 - 3 constitute the
semiparametric model. The semiparametric likelihood based on a single Z is

f(Z) = {f(X)f(A, Y |X, δ = 1)πδ(X)}δ {f(X)}δ̃ ,

where f(·) is a density function for a continuous random variable and is a probability mass
function for a discrete random variable.

Assuming that δδ̃ = 0, the score function(Hahn, 1998) satisfies
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S(X,A, Y, δ, δ̃) = S(X,A, Y, δ) + δ̃S(X).

We first list four identities that are used in the following derivation of the efficiency bound:

I1. For any function h(X,A, δ), we have E{h(X,A, δ)S(Y |X,A, δ)} = 0;

I2. any function h(X,A, δ), we have E[h(X,A, δ){Y − E(Y |X,A, δ)}] = 0;

I3. any h(X,A, Y ), if E
{
δ̃h(X,A, Y )

}
= 0, we have E{δ̃h(X,A, Y )S(X,A, Y, δ)} = 0

I4. any h(X,A, Y ), if E {δh(X,A, Y )} = 0, we have E
{
δh(X,A, Y )δ̃S(X)

}
= 0.

To derive the semiparametric efficiency score, we use the method of parametric submodel (Bickel
et al., 1993). Let {ft(Z) : t ∈ R} be a regular parametric submodel which contains the truth at
t = 0, i.e., ft(Z)|t=0 = f(Z).

Note that τ(X) = E(Y |X,A = 1, δ = 1) − E(Y |X,A = 0, δ = 1) and τ0 = E
{
δ̃dτ(X)

}
.

Let τt = Et

{
δ̃dτt(X)

}
denote the parameter τ evaluated with respect to the regular parametric

submodel ft(Z). Following Bickel et al. (1993), the semiparametric efficiency score φ = φ(Z) is
the pathwise derivative of the target parameter in the sense that

∂

∂t
τt

∣∣∣∣
t=0

= E{φS(Z)},

where S(Z) = ∂logft(Z)/∂t|t=0. Toward this end, we express

∂

∂t
τt

∣∣∣∣
t=0

= E
{
δ̃dτ(X)S(X)

}
+ E

{
∂τt(X)

∂t

∣∣∣∣
t=0

}
. (A7)

For the first term in the right hand side of (A7), we have

E
{
δ̃dτ(X)S(X)

}
= E

[
δ̃d {τ(X)− τ0}S(X)

]
= E

[
δ̃d {τ(X)− τ0}

{
S(X,A, Y, δ) + δ̃S(X)

}]
(A8)

= E
[
δ̃d {τ(X)− τ0}S(X,A, Y, δ, δ̃)

]
,

where (A8) holds because of identity I3. To express further the second term in the right hand
side of (A7), we have

∂τt(X)

∂t

∣∣∣∣
t=0

=

{∫
y
∂

∂t
ft(y|X, δ = 1, A = 1)dy −

∫
y
∂

∂t
ft(y|X, δ = 1, A = 0)dy

}∣∣∣∣
t=0

=

{∫
yS(y|X,A = 1, δ = 1)ft(y|X,A = 1, δ = 1)dy

}∣∣∣∣
t=0
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−
{∫

yS(y|X,A = 0, δ = 1)ft(y|X,A = 0, δ = 1)dy

}∣∣∣∣
t=0

= E

{
δAY

πδ(X)πA
S(Y |A,X, δ)|X

}
− E

{
δ(1−A)Y

πδ(X)(1− πA)
S(Y |A,X, δ)|X

}
= E

[
δ

πδ(X)

{
AY

πA
− (1−A)Y

(1− πA)

}
S(Y |A,X, δ)|X

]
.

Therefore,

E

{
∂τt(X)

∂t

∣∣∣∣
t=0

}
= E

[
δ

πδ(X)

{
AY

πA
− (1−A)Y

(1− πA)

}
S(Y |A,X, δ)

]
= E

(
δ

πδ(X)

[
A{Y − µ1,δ(X)}

πA
−

(1−A){Y − µ0,δ(X)}
1− πA

]
S(Y |A,X, δ)

)
(A9)

= E

(
δ

πδ(X)

[
A{Y − µ1,δ(X)}

πA
−

(1−A){Y − µ0,δ(X)}
1− πA

]
S(X,A, Y, δ)

)
(A10)

= E

(
δ

πδ(X)

[
A{Y − µ1,δ(X)}

πA
−

(1−A){Y − µ0,δ(X)}
1− πA

]
S(X,A, Y, δ, δ̃)

)
.

(A11)

In the above derivation, (A9) follows by identity I1, (A10) follows by identity I2, and (A11)
follows by identities I3 and I4.

Substituting back to (A7), we have

∂

∂t
τt

∣∣∣∣
t=0

= E

{(
δ̃d {τ(X)− τ0}+

δ

πδ(X)

[
A{Y − µ1,δ(X)}

πA
− (1−A){Y − µ0,δ(x)}

1− πA

])
S(X,A, Y, δ, δ̃)

}

Thus, the semiparametric efficiency score is

φ = δ̃d {τ(X)− τ0}+
δ

πδ(X)

[
A{Y − µ1,δ(X)}

πA
−

(1−A){Y − µ0,δ(X)}
(1− πA)

]
.

It follows that the semiparametric efficiency bound is

E(φ2) = E

[
δ̃d2 {τ(X)− τ0}2 +

δ

π2δ (X)

{
V {Y (1)|X, δ}

πA
+
V {Y (0)|X, δ}

1− πA

}]
.
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C.3 Proof of Theorem 3

Proof of the double robustness of the ACW estimator

Let θ = (η,β0,β1) denote the vector of nuisance parameters. Note that τ̂ACW is the solution to
the estimating equation N−1

∑N
i=1 φ(Xi, Ai, Yi, δi, δ̃i; τ, θ̂) = 0, where

φ(X,A, Y, δ, δ̃; τ,θ) =
δ

πδ(X;η)

[
A {Y − µ1,δ(X;β1)}

πA
−

(1−A) {Y − µ0,δ(X;β0)}
1− πA

]
+ δ̃d {µ1,1(X;β1)− µ0,1(X;β0)} − τ.

Let θ∗ be the probability limits of θ̂. It suffices to show that E
{
φ(X,A, Y, δ, δ̃; τ0,θ

∗)
}

=

0 if either π(X;η) or µa,1(X;βa) (a = 0, 1) is correctly specified. Under standard regularity
conditions for M-estimators, τ̂ACW is consistent for τ . Use iterated expectation, we can write

E
{
φ(X,A, Y, δ, δ̃; τ0,θ

∗)
}

= E

[
δ

πδ(X;η∗)

{
AY

πA
− (1−A)Y

1− πA

}
− τ0

]
+

E

[{
δ̃d− δ

πδ(X;η∗)

}
{µ1,1(X;β∗1)− µ0,1(X;β∗0)}

]
. (A12)

The first term on the left-hand side of (A12) is 0 either one of the π(X;η) or µa,1(X;βa) (a = 0, 1)
is correctly specified, as shown in the proof of consistency in the CW estimators. Now consider
the second term on the left-hand side of (A12).

Firstly, if πδ(X;η) is correctly specified, we have πδ(X;η∗) = πδ(X). Take iterated expecta-
tion conditional on X, we have the second term on the left-hand side of (A12)

E

[{
δ̃d− δ

πδ(X)

}
{µ1,1(X;β∗1)− µ0,1(X;β∗0)}

]
= E

[
{µ1,1(X;β∗1)− µ0,1(X;β∗0)}E

{
δ̃d− δ

πδ(X)
|X
}]

= 0,

as E
{
δ̃d− δ/πδ(X)|X

}
= 0. Thus, (A12) equals to zero.

Secondly, if outcome model µa,1(X;βa) (a = 0, 1) is correctly specified, we have µ1,1(X;β∗1)−
µ0,1(X;β∗0) = γ>0 g(X). Then the second term on the left-hand side of (A12) satisfies

E

[{
δ̃d− δ

πδ(X)

}
{µ1,1(X;β∗1)− µ0,1(X;β∗0)}

]
= E

[
γ>0

{
δ̃d− δ/πδ(X;η∗)

}
g(X)

]
= 0

by the balancing constraint (1). Thus, (A12) equals to zero under this scenario as well. This
completes the proof of the double robustness of τ̂ACW.
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C.4 Proof of Theorem 3 and Theorem 4

Proof of local efficiency

Following the empirical process literature, let PN denote the empirical measure. For a random
variable V , P{f(V )} =

∫
f(v)dP is the expectation of f(V ) under the true data-generating

process. Recall that Z = (X,A, Y, δ, δ̃) , θ = (η,β0,β1), θ∗ is the probability limits of θ̂ and θ0
is the corresponding true parameter value. Let

ψ(Z;θ) =
δ

πδ(X;η)

[
A {Y − µ1,1(X;β1)}

πA
− (1−A) {Y − µ0,1(X;β0)}

1− πA

]
+δ̃d {µ1,1(X;β1)− µ0,1(X;β0)}

=
δ

πδ(X;η)

A{Y − µ1,1(X;β1)}
πA

+ δ̃dµ1,1(X;β1)

− δ

πδ(X;η)

(1−A){Y − µ0,1(X;β0)}
1− πA

− δ̃dµ0,1(X;β0)

=: ψ1(Z;θ)− ψ0(Z;θ).

Under the conditions specified in Theorem 3 or the conditions specified in Theorem 4, and
assume that ψ(Z;θ) belongs to Donsker classes (van der Vaart and Wellner, 1996; Kennedy,
2016), Pψ1(Z;θ∗) = µ1, Pψ0(Z;θ∗) = µ0 and Pψ(Z;θ∗) = µ1 − µ0 = τ0. Thus,

τ̂ACW − τ0 = PNψ(Z; θ̂)− Pψ(Z;θ∗)

= (PN − P)ψ(Z; θ̂) + P{ψ(Z; θ̂)− ψ(Z;θ∗)}

= (PN − P)ψ(Z;θ∗) + P{ψ(Z; θ̂)− ψ(Z;θ∗)}+ op(N
−1/2). (A13)

We now show that

P{ψ(Z; θ̂)− ψ(Z;θ∗)} = P{ψ1(Z; θ̂)− ψ1(Z;θ∗)} − P{ψ0(Z; θ̂)− ψ0(Z;θ∗)}

is a small order term under conditions in Theorem 3 or Theorem 4. We write

P{ψ1(Z; θ̂)− ψ1(Z;θ∗)} =P

 δ

πδ(X; η̂)

A
{
Y − µ1,1(X; β̂1)

}
πA

+ δ̃dµ1,1(X; β̂1)− µ1


=P
[{

δ

πδ(X; η̂)
− 1

}{
µ1,1(X)− µ1,1(X; β̂1)

}
+
(
δ̃d− 1

)
µ1,1(X; β̂1)

]
=P
[{

πδ(X)− πδ(X; η̂)

πδ(X; η̂)

}{
µ1,1(X)− µ1,1(X; β̂1)

}]
.
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Similarly, we have

P{ψ0(Z; θ̂)− ψ0(Z;θ∗)} = P
[{

πδ(X)− πδ(X; η̂)

πδ(X; η̂)

}{
µ0,1(X)− µ0,1(X; β̂0)

}]
.

Therefore, by Cauchy-Schwarz inequality and the positivity of πδ(X; η̂), |P{ψ(Z; θ̂)−ψ(Z;θ∗)}|
is bounded above by

‖πδ(X)− πδ(X; η̂)‖
∑

a∈{0,1}

‖µa,1(X)− µa,1(X; β̂a)‖. (A14)

Under the conditions in Theorem 3, if πδ(X;η) is a correctly specified parametric model for
πδ(X), then ‖πδ(X) − πδ(X; η̂)‖ = Op(n

−1/2); and if µa,1(X;βa) is a correctly specified para-
metric model for µa,1(X), then ‖µa,1(X) − µa,1(X; β̂a)‖ = Op(n

−1/2). Therefore, the prod-
uct (A14) is Op(n−1), which makes P{ψ(Z; θ̂) − ψ(Z;θ∗)} in (A13) asymptotically negligible.
Under the conditions in Theorem 4, the product (A14) is op(n−1/2) and therefore the term
P{ψ(Z; θ̂)− ψ(Z;θ∗)} in (A13) is asymptotically negligible. The result follows.

C.5 Proof of Lemma 1

Since πδ(XO) = πδ(X
C) and V {Y (a) | XO} ≤ V {Y (a) | XC} for a = 0, 1,

V O
1 = E

[
1

πδ(XO)

{
V {Y (1) | XO}

πA
+
V {Y (0) | XO}

1− πA

}]
= E

[
1

πδ(XC)

{
V {Y (1) | XO}

πA
+
V {Y (0) | XO}

1− πA

}]
≤ E

[
1

πδ(XC)

{
V {Y (1) | XC}

πA
+
V {Y (0) | XC}

1− πA

}]
= V C

1 ,

which proves the first part of inequalities.
For the second part, since V {Y (a) | XC , XI} = V {Y (a) | XC} for a = 0, 1,

V C+I
1 = E

[
1

πδ(XC , XI)

{
V {Y (1) | XC , XI}

πA
+
V {Y (0) | XC , XI}

1− πA

}]
= E

[
E

{
1

πδ(XC , XI)
| XC

}{
V {Y (1) | XC}

πA
+
V {Y (0) | XC}

1− πA

}]
≥ E

[
1

E{πδ(XC , XI) | XC}

{
V {Y (1) | XC}

πA
+
V {Y (0) | XC}

1− πA

}]
= E

[
1

πδ(XC)

{
V {Y (1) | XC}

πA
+
V {Y (0) | XC}

1− πA

}]
= V C

1 ,

where the second and third lines are from the double expectation and Jensen’s inequality, re-
spectively.
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Web Appendix D: Conditions for the Sieves Estimator

Following Hirano et al. (2003), we assume the following regularity conditions on the data gener-
ating process and the nuisance functions.

Condition D1 (Distribution of X) Let X ⊆ Rp be the support of X. Assume that X is a
Cartesian product of compact intervals, i.e., X =

∏p
j=1 [lj , uj ], lj , uj ∈ R. The density of X,

f(X), is bounded above and below away from 0 on X .

Condition D2 (Basis functions) There exist constant l and u such that

l ≤ ρmin{g(X)>g(X)} ≤ ρmax{g(X)>g(X)} ≤ u,

almost surely where ρmin and ρmax denote the minimum and maximum eigenvalues of a matrix.

Condition D3 (Potential outcomes) The second moment of the potential outcomes are fi-
nite. i.e., E

{
Y (a)2

}
<∞, for a = 0, 1.

Condition D4 (Smoothness) The log sampling score function log πδ(x) is sδ-times continu-
ously differentiable and the outcome mean function µa(x) is sµa-times continuously differentiable,
∀x ∈ X , a = 0, 1; The sieves estimators of log πδ(x) and µa(x) use a power series; the smoothness
condition is s > 4p, for s = sδ and s = sµa (a = 0, 1), respectively.

The constraint s > 4p is required such that ν exists in the following condition for the number
of basis functions.

Condition D5 (Number of basis function) The number of basis functions K satisfies K =

O(nν), where p/(2s− 4p) < ν < 1/4.

Under the above conditions, the bias of the sieves approximations are Op(K
1−s/(2p)) =

op(n
−1/4). Moreover, because K4 = o(n), the variances of the sieves approximations are

Op(K/n) = op(n
−1/2).

To present regularity conditions for the penalization approach to choosing K, we introduce
more notation. Let the support of model parameters be

Mδ = {1 ≤ j ≤ K̃ : η∗j 6= 0}, Ma = {1 ≤ j ≤ K̃ : β∗a,j 6= 0}, (a = 0, 1).

Define Kη = ||η∗||0, Ka = ||β∗a||0 (a = 0, 1), K = max(Kη,K0,K1), and ξmin = min(ξ, ξ0, ξ1).
Let C, C1 and C2 be generic constants. For any J ⊆ {1, . . . , K̃} and any vector η ∈ RK̃ , let
ηJ be the sub-vector of η formed by elements of η whose indexes are in J . Let J c be the
complement of J .

Assumption D1 The following regularity conditions hold.
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(A1) The parameter (ηT,βT
0 ,β

T
1 )T belongs to a compact subset in R3K̃ , and (η∗T,β∗T0 ,β∗T1 )T lies

in the interior of the compact subset.

(A2) Let εδ,i(η) = δi−exp{η>g(Xi)}. There exists a constant C such that E{|εδ,i(η∗)|2+δ} ≤ C
for all i and some δ > 0. There exist constants C1 and C2 such that E[exp{C1|εδ,i(η∗)|} |
Xi] ≤ C2 for all i.

(A3) exp(1){η>g(Xi)}, exp(2){η>g(Xi)}, and exp(3){η>g(Xi)} (which denote the first, second
and third derivative of exp{η>g(Xi)}, respectively) are uniformly bounded away from ∞
on Nδ,τ = {η ∈ RK̃ : ||ηMδ

− η∗Mδ
|| ≤ τ

√
K/n,ηMc

δ
= 0} for some τ > 0.

(A4) For a = 0, 1, let εa,i(βa) = Yi(a) − ma{β>a g(Xi)}. There exists a constant C such that
E{|εa,i(β∗a)|2+δ} ≤ C for all i and some δ > 0. There exist constants C1 and C2 such that
E[exp{C1|εa,i(β∗a)|} | Xi] ≤ C2 for all i.

(A5) For a = 0, 1, m
(1)
a {β>a g(X)}, m(2)

a {β>a g(X)}, and m(3)
a {β>a g(X)} (which denote the first,

second and third derivative of ma{β>a g(X)}, respectively) are uniformly bounded away from
∞ on Na,τ = {βa ∈ RK̃ : ||βa,Ma − β∗a,Ma

|| ≤ τ
√
K/n,βa,Mc

a
= 0} for some τ > 0.

(A6) minj∈Mδ
|η∗j |/ξ →∞ and minj∈Ma |β∗a,j |/ξa →∞, (a = 0, 1) as n→∞.

(A7) K = o(n1/3), ξmin → 0, (log n)2 = o(nξ2min), log(K̃) = o
{
nξ2min/ (log n) 2

}
, K̃K4(log n)6 =

o(n3ξ2min), K̃K4(log n)8 = o(n4ξ4min), as n→∞.

These assumptions are typical in the penalization literature. Assumptions (A2) and (A4)
hold for Gaussian distribution, sub-Gaussian distribution, and so on. Assumptions (A3) and
(A5) hold for common models. Assumption (A7) specifies the restrictions on the initial number
of sieves functions K̃ and the maximum dimension of the true nonzero coefficients K. To gain
insight, when the true model size K = O(nν), where ν satisfies Condition D5, then K̃ = O(nν̃)

with ν̃ < 2− 4ν meets the (A7) requirement.

Web Appendix E: Simulation Study

E.1 Simulation Details

In this section, we evaluate the finite sample performances of the proposed estimators via a set of
simulation experiments. Covariate X ∈ R5 is generated from Xj ∼ N (1, 1) for each j = 1, . . . , 5.
We generate potential outcome according to

Y (a)|X = −100 + 27.4aX3 + 13.7X4 + 10aX4 + 13.7X5 − 10aX5 + ε,

where log ε ∼ N (0, 0.25) for a = 0, 1. Under this setting, the true ATE is τ0 = 27.4.
From the hypothetical RCT eligible population, we generate the indicator of trial participation
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according to δ | X ∼ Bernoulli{πδ(X)}, where log{πδ(X)} = −7.7 + 2X1 + 0.3X2 − 0.4X3.

Note that X3, X4, X5 are outcome predictors, and X1 is an IV that is highly predictive of trial
participation.

By this design, there are approximately n = 440 subjects in the RCT sample. The treatment
assignment in the RCT sample is A ∼ Bernoulli(0.5). From the observational study population,
we select a random sample of size m = 2000 to form an observational sample. For subjects in
the observational sample, the treatment assignment is generated by A | X ∼ Bernoulli{eA(X)},
where logit{eA(X)} = −X1 + 0.4X2− 0.25X3− 0.1X4 + 0.1X5. The actual observed outcome Y
is Y = AY (1) + (1−A)Y (0).

To study the impact of model misspecification, adapting from Kang and Schafer (2007), we
define a nonlinear transformation of X to be

X∗ =
[
exp (X1/10) , (X3 +X5 + 20)2, X2/{2 + 0.5 exp(X4)}, (X1 +X4 + 20)2, 0.5X2X3 +X5

]>
,

and further scale and center X∗ such that E(X∗j ) = 1 and V (X∗j ) = 1, for j = 1, . . . , 5. Through-
out, we use X for fitting models. We assume X∗ to be unobserved, but it can be used in the
true generative models, in which cases the fitted models are misspecified.

To demonstrate the double robustness of the ACW estimator against parametric model mis-
specification, we consider g1(X) = (X1, X2, X3, X4, X5)

> as the calibration variables in all
four scenarios. Moreover, we consider the ACW estimator using sieves estimation, extending
g1(X) to include further all two-way interaction terms and quadratic terms, i.e. g2(X) =

(X1, . . . , X5, X1X2, . . . , X4X5, X
2
1 , . . . , X

2
5 )>. We compare the proposed outcome-prioritized sieve

method, denoted (SO), with the less efficient method that constructs the sieve basis for πδ(X)

by power series of X and solves penalized estimating equation, denoted (S).
Note that for ACW estimators, the outcome mean functions can be estimated by using either

trial sample (A, Y ) only or both RCT and observational sample. We denote the former by ACW-
t to indicate that only trial data is used and the latter by ACW-b to emphasize the use of both
data sources.

We compare the proposed CW and ACW estimators with other ATE estimators in Table 1
in the main paper. We use bootstrap variance estimation for all estimators with B = 50. All
simulations are based on 1000 Monte Carlo replications; Table S2 summarizes the results.
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Table S2: Simulation results under four scenarios. Bias is the empirical bias of point estimates;
ESE is the empirical standard error of estimates; MSE is the mean squared error of estimates;
RSE is the relative bias (%) of bootstrap standard error estimates; CP is the empirical coverage
probability of the 95% confidence intervals.

Scenario 1: O:C/S:C Scenario 2: O:C/S:W

BIAS ESE MSE RSE(%) CP(%) BIAS ESE MSE RSE(%) CP(%)

Naive -9.62 2.77 100.23 -0.3 6.7 3.77 2.54 20.69 -0.3 65.1
IPSW -2.05 9.66 97.44 -24.5 85.9 1.91 11.50 135.81 -30.3 85.2

AIPSW 0.03 0.67 0.45 3.0 95.5 0.03 0.70 0.49 -1.1 94.8
AIPSW(S) 0.03 0.67 0.45 2.9 95.6 0.03 0.70 0.49 -1.2 94.8

SBW 0.51 9.54 91.26 4.9 94.9 0.21 10.56 111.49 -1.8 93.9
CW 0.56 11.25 126.70 -10.1 90.3 0.21 12.48 155.69 -15.3 88.4

ACW-t 0.03 0.68 0.46 2.1 95.2 0.03 0.70 0.49 -1.0 94.6
ACW-t(S) 0.02 0.71 0.50 2.6 95.8 0.03 0.72 0.52 0.4 95.0

ACW-t
(
SO
)

0.03 0.67 0.45 3.2 95.7 0.03 0.70 0.48 -1.0 94.3
ACW-b 0.03 0.68 0.46 2.4 95.8 0.03 0.70 0.49 -0.6 94.5

ACW-b(S) 0.03 0.70 0.49 3.8 96.0 0.03 0.72 0.52 0.1 95.9
ACW-b

(
SO
)

0.03 0.66 0.44 3.0 95.2 0.03 0.69 0.48 -1.5 95.2

Scenario 3: O:W/S:C Scenario 4: O:W/S:W

BIAS ESE MSE RSE(%) CP(%) BIAS ESE MSE RSE(%) CP(%)

Naive 20.53 2.52 427.79 -0.8 0.0 5.88 2.51 40.92 -1.7 35.8
IPSW 6.08 11.44 167.69 -30.6 70.6 -0.07 12.96 167.77 -33.3 86.0

AIPSW -1.84 3.23 13.82 -27.2 75.0 -2.45 3.98 21.87 -35.1 69.1
AIPSW(S) -0.10 0.84 0.71 -12.1 90.5 -0.07 0.82 0.68 -15.0 90.8

SBW 0.45 8.74 76.48 0.7 93.8 -1.21 9.97 100.69 -1.8 92.5
CW 0.87 11.22 126.58 -16.4 87.4 -1.05 12.48 156.75 -17.9 85.4

ACW-t -0.15 3.59 12.86 -14.9 90.2 -1.40 3.98 17.77 -17.2 86.6
ACW-t(S) 0.05 1.44 2.07 21.1 96.5 0.05 1.35 1.84 2.7 95.1

ACW-t
(
SO
)

-0.04 0.88 0.77 -0.8 94.1 -0.02 0.85 0.72 -5.0 93.4
ACW-b 0.14 3.41 11.62 -15.6 91.4 -1.18 3.65 14.68 -19.5 87.5

ACW-b(S) 0.15 2.37 5.64 3.6 96.6 0.18 2.17 4.74 -1.8 97.0
ACW-b

(
SO
)

0.01 0.74 0.54 1.9 95.9 0.01 0.73 0.53 0.6 94.5

E.2 Additional Simulation: Three-way Calibration

In this subsection, we present simulation results of the CW and ACW estimators that achieve the
three-way balance between the treated RCT, the control RCT, and the observational sample,
similar to Chan et al. (2016). We use the same simulation setting that is described in Web
Appendix E.1. Table S3 and Figure S2 summarise the simulation results based on 1000 Monte
Carlo replications. It can be seen that three-way calibration is comparable under Scenario 1 and
Scenario 2 but more unstable under Scenario 3 and Scenario 4 than the two-way calibration in
general.
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Table S3: Simulation results of the three-way calibration. Bias is the empirical bias of point
estimates; ESE is the empirical standard error of estimates; MSE is the mean squared error of
estimates; RSE is the relative bias (%) of bootstrap standard error estimates; CP is the empirical
coverage probability of the 95% confidence intervals.

Scenario 1: O:C/S:C Scenario 2: O:C/S:W

BIAS ESE MSE RSE(%) CP(%) BIAS ESE MSE RSE(%) CP(%)

CW 0.018 0.703 0.493 -3.6 92.4 0.020 0.693 0.480 -1.3 93.7
ACW-t 0.017 0.743 0.552 -6.7 91.9 0.020 0.723 0.522 -3.2 92.7

ACW-t(S) 0.024 0.796 0.634 -2.3 94.1 0.021 0.760 0.578 2.7 95.9
ACW-t

(
SO
)

0.015 0.695 0.483 -1.2 94.1 0.020 0.689 0.474 0.6 95.1
ACW-b 0.016 0.743 0.552 -6.0 91.8 0.020 0.722 0.522 -3.9 91.8

ACW-b(S) 0.018 0.785 0.615 -0.1 94.4 0.023 0.770 0.593 2.2 96.0
ACW-b

(
SO
)

0.019 0.687 0.472 -0.1 94.7 0.019 0.683 0.466 1.0 95.4

Scenario 3: O:W/S:C Scenario 4: O:W/S:W

BIAS ESE MSE RSE(%) CP(%) BIAS ESE MSE RSE(%) CP(%)

CW 0.042 3.293 10.837 -31.4 81.1 -1.333 3.664 15.188 -37.5 75.8
ACW-t 7.105 6.466 92.252 -31.5 54.5 3.282 7.284 63.771 -38.2 69.4

ACW-t(S) 0.221 2.658 7.108 -6.5 96.6 0.292 2.273 5.247 -8.4 95.8
ACW-t

(
SO
)

0.225 1.277 1.679 -11.3 93.6 0.193 1.109 1.267 -9.4 93.3
ACW-b 2.886 6.631 52.251 -32.5 73.7 0.165 7.314 53.469 -37.3 77.5

ACW-b(S) 0.128 2.883 8.320 33.8 97.4 0.232 2.819 7.994 22.0 96.9
ACW-b

(
SO
)

0.010 1.154 1.331 -3.4 94.5 0.010 1.223 1.494 -6.5 94.2

E.3 Additional Simulation: Increased Observational Sample Size

We consider increasing the observational sample size to m = 15, 000 while keeping the RCT
sample size and other simulation settings the same as those in Web Appendix E.1. This resembles
the data structure of CALGB 9633 and NCDB described in Section 6. Table S4 and Figure S3
summarize the results based on 500 Monte Carlo replications. It can be seen that when the sample
sizes are larger, the advantages of our proposed estimators become more obvious. Especially in
Scenario 3 and Scenario 4 where outcome models are not correct, the proposed ACW-t

(
SO
)
and

ACW-b
(
SO
)
estimators outperform other doubly robust estimators in terms of robustness and

efficiency.
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Figure S2: Boxplot of the CW and ACW estimators with three-way calibration between the
treated RCT, the control RCT, and the observational sample. We removed a few outliers for
visualization.
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