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Abstract: Multiple imputation is widely used to handle missing data. Although

Rubin’s combining rule is simple, it is not clear whether the standard multiple

imputation inference is consistent when coupled with the commonly used full-sample

estimators. Here, we establish a unified martingale representation of multiple

imputation for a wide class of asymptotically linear full-sample estimators. This

representation invokes the wild bootstrap inference to provide a consistent variance

estimation under a correct specification of the imputation models. As a motivating

application, we use the proposed method to estimate the average causal effect (ACE)

with partially observed confounders in a causal inference. Our framework applies

to asymptotically linear ACE estimators, including the regression imputation,

weighting, and matching estimators. Lastly, we extend the proposed method to

include scenarios in which both the outcome and the confounders are subject to

missingness, and when the data are missing not at random.
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1. Introduction

Missing data are ubiquitous in practice. A widely used approach to handle

incomplete/missing data is multiple imputation (MI). The National Research

Council recommends MI as one of its preferred approaches to addressing missing

data (National Research Council (2010)). The idea of MI is to fill the missing

values multiple times by sampling from the posterior predictive distribution of

the missing values, given the observed values. Then, we can apply full-sample

analyses straightforwardly to the imputed data sets. These multiple results are

summarized by an easy-to-implement combining rule for inference (Rubin (1987)).

MI can provide valid frequentist inferences in various applications (e.g., Clogg

et al. (1991)). However, some authors have found that Rubin’s variance estimator

is not always consistent (e.g., Fay (1992), Kott (1995), Fay (1996), Binder and Sun

(1996), Wang and Robins (1998), Robins and Wang (2000), Nielsen (2003) and

Kim et al. (2006)). To ensure the validity of Rubin’s variance estimation,

imputations must be proper (Rubin (1987)). A sufficient condition for proper

imputation is the congeniality condition of Meng (1994), imposed on both the
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imputation model and the subsequent full-sample analysis. However, even with a

correctly specified imputation model, Yang and Kim (2016) show that MI is not

necessarily congenial for the method of moments estimation, and so common

statistical procedures may be incompatible with MI. Nevertheless, given the

popularity of MI in practice, it is important to develop a valid inference procedure

for using MI in statistical inference.

As a motivating application, we focus on causal inference with partially

observed confounders. Causal inference is a central goal in many disciplines,

such as medicine, econometrics, and the political and social sciences. When all

confounders that influence both the treatment and the outcome are observed, the

average causal effect (ACE) of the treatment is identifiable (Imbens and Rubin

(2015)). Many ACE estimators have been proposed to adjust for confounders,

including regression imputation (Hahn (1998); Heckman, Ichimura and Todd

(1997)), (augmented) propensity score weighting (Horvitz and Thompson (1952);

Rosenbaum and Rubin (1983); Robins, Rotnitzky and Zhao (1994); Bang and

Robins (2005); Cao, Tsiatis and Davidian (2009)), and matching (Rosenbaum

(1989); Stuart (2010); Abadie and Imbens (2016)). Others use MI for causal

inference with partially observed confounders, for example, Qu and Lipkovich

(2009), Crowe, Lipkovich and Wang (2010), Mitra and Reiter (2011), and Seaman

and White (2014). Although many full-sample estimators are available for

estimating the ACE, few works have examined the validity of Rubin’s variance

estimator when using these estimators for causal inference.

We establish a novel martingale representation of MI for a general class of

asymptotically linear full-sample estimators under a correct specification of the

imputation models. Our key insight is that the MI estimator is intrinsically

created in a sequential manner. First, the posterior samples of the parameters are

drawn from the posterior distribution, which is asymptotically equivalent to the

sampling distribution of the maximum likelihood estimator (MLE) based on the

Bernstein–von Mises theorem (van der Vaart (2000, Chap. 10)). Second, we draw

the posterior predictive samples of the missing data, conditioned on the observed

data. This conceptualization leads to an asymptotically linear expression of the

MI estimator in terms of a sequence of random variables that have conditional

mean zero, given the sigma algebra generated from the preceding variables

(i.e., a martingale representation). The martingale representation invokes the

wild/weighted bootstrap procedure (Wu (1986); Liu (1988)) to provide a valid

variance estimation and inference, regardless of which full-sample estimator is

adopted in the MI.

We show the asymptotic validity of our proposed bootstrap inference method

for the MI estimator using the martingale central limit theory (Hall and Heyde

(1980)) and the asymptotic property of the weighted sampling of martingale

difference arrays (Pauly (2011)). Although the validity of the proposed method is

based on the asymptotic results as the sample size goes to infinity, the simulation
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results demonstrate that it performs well for finite samples. We also compare

the proposed method with the improper MI approaches proposed by Wang and

Robins (1998) and Robins and Wang (2000). An improper MI uses a Monte Carlo

imputation to compute the MLE and, therefore, requires that the imputation size

m be large in order to reduce the Monte Carlo error. In contrast, our proposed

method allows the imputation size m to be fixed at a small value. This property

is appealing for releasing multiply imputed data sets for public usage. Moreover,

an improper MI deals only with regular estimators, but not with nonregular

estimators, such as the matching estimators. The proposed method can be

applied to a wide range of the ACE estimators adopted in MI, including the

outcome regression, weighting, and matching estimators. Indeed, the results of

our simulation studies indicate that Rubin’s variance estimator overestimates the

variance for the inverse probability weighting (IPW) and matching estimators,

because these two estimators are not self-efficient (Meng (1994); Xie and Meng

(2017)), whereas the proposed variance estimation procedure is consistent for all

types of estimators.

Importantly, our framework can easily accommodate scenarios in which both

the outcome and the confounders have missing values, and when the missing data

are missing not at random (MNAR). In the former case, we need only add the

imputation step for the missing outcomes. In the latter case, we need to modify

the imputation model by further considering the missing data probability model

in the data likelihood function. Our research is likely to bridge the advantages of

MI and its wide applications in causal inference and missing data analyses.

The rest of the paper is organized as follows. Section 2 introduces general

asymptotically linear estimators and common estimators in causal inference.

Section 3 describes the general MI used to fill in missing values that facilitate

full-sample estimators. Section 4 presents the martingale representation for the

MI estimators and the wild bootstrap inference procedure, and establishes its

validity. Section 5 extends the proposed method to scenarios with other causal

estimands, those in which both the outcome and the confounders have missing

values, and those in which the confounders are MNAR. In Section 6, we evaluate

the finite-sample performance of the proposed method using simulation studies.

In Section 7, we apply the proposed wild bootstrap inference method to data from

a U.S. National Health and Nutrition Examination Survey. Section 8 concludes

the paper.

2. Background

2.1. General setup

We introduce a general setup and illustrate it using common estimators of

the ACE in causal inference. Suppose we observe n independent and identically

distributed (i.i.d.) samples L = {Li : i = 1, . . . , n} governed by the distribution



1652 GUAN AND YANG

P(L). We are interested in an inference about the target parameter, a functional

of the observed data distribution, τ = τ(P), for example, the mean of the

distribution P. For simplicity of presentation, we assume τ to be a one-

dimensional parameter. An extension to a multi-dimensional parameter is feasible

at the cost of heavier notation. Let τ̂n denote a generic estimator of τ . We focus

on the class of asymptotically linear estimators. This class of estimators includes

the common regular and asymptotically linear (RAL) estimators, which can be

expressed by

τ̂n − τ =
1

n

n∑
i=1

ψ(Li) + oP(n
−1/2), (2.1)

where {ψ(Li) : i = 1, . . . , n} are i.i.d., with E{ψ(Li)} = 0 and E{ψ(Li)
2} < ∞.

The random variable ψ(Li) is called the influence function of τ̂n, and captures

the first-order asymptotic behavior of τ̂n (Bickel et al. (1993)). For the regularity

conditions, see, for example, Newey (1990). For a given estimator, upon

identifying its influence function, we can characterize the asymptotic distribution

and construct corresponding confidence intervals (CIs) for the target parameter.

The class of estimators also includes possibly nonregular asymptotically linear

estimators, which can be expressed by

τ̂n − τ =
1

n

n∑
i=1

ψi(L) + oP(n
−1/2), (2.2)

where the individual component ψi(L) may depend on the full sample, and

therefore is not i.i.d., but satisfies E{ψi(L)} = 0 and E{ψi(L)
2} < ∞. The

matching estimator is an example, as we illustrate later. For simplicity, we also

call ψi(L) the influence function of τ̂n.

2.2. Motivating application: Estimating the ACE

We explain the general framework by applying it to estimate the ACE. Let

X be a vector of p-dimensional covariates, A ∈ {0, 1} be a binary treatment,

with zero and one being the labels for the control and the active treatments,

respectively, and Y be the outcome of interest. Suppose we observe n i.i.d.

samples L = {Li = (Ai, Xi, Yi) : i = 1, . . . , n}.
Following Neyman (1923) and Rubin (1974), we use the potential outcomes

framework to formulate the causal parameter of interest. Under the stable unit

treatment value assumption (Rubin (1980)), for each level of treatment a, there

exists a potential outcome Y (a), representing the outcome had the unit, possibly

contrary to the fact, been given treatment a. We make the causal consistency

assumption that links the observed outcome to the potential outcomes; that is, the

observed outcome Y is the potential outcome Y (A) under the actual treatment.

We focus on estimating the ACE τ = E{Y (1) − Y (0)}. Our methodology also

applies to the broader class of causal estimands in Li, Morgan and Zaslavsky
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(2018); we discuss the extension to other causal estimands in Section 5.1. For

simplicity of exposition, denote

µa(X) = E{Y (a) | X} and e(X) = P(A = 1 | X),

where µa(X) is an outcome mean function for a = 0, 1, and e(X) is the propensity

score.

It is well known that under the common assumptions in the causal inference

literature, including the treatment ignorability and overlap assumptions (As-

sumptions 1 and 2 in the Supplementary Material), the ACE can be identified

using various estimators, including the outcome regression, augmented inverse

probability weighting (AIPW), IPW and matching estimators; see Imbens (2004)

and Rosenbaum (2002) for surveys of these estimators. These common estimators

are asymptotically linear and belong to the class of estimators in our general

setup. We review these estimators below and identify their influence functions in

the Supplementary Material.

The common estimators require correct specifications of different parts of the

observed data distribution, including the outcome model and propensity score.

Assumption 1 (Outcome model). The parametric model µa(X;βa) is a

correct specification for µa(X), for a = 0, 1; i.e., µa(X) = µa(X;β∗
a), where

β∗
a is the true model parameter.

Assumption 2 (Propensity score model). The parametric model e(X;α) is

a correct specification for e(X); i.e., e(X) = e(X;α∗), where α∗ is the true model

parameter.

Example 1. The outcome regression estimator is τ̂n,reg = n−1
∑n

i=1 τreg,i, where

τreg,i = µ1(Xi; β̂1)− µ0(Xi; β̂0). (2.3)

Example 2. The IPW estimator is τ̂n,IPW = n−1
∑n

i=1 τIPW,i, where

τIPW,i =
AiYi

e(Xi; α̂)
− (1−Ai)Yi

1− e(Xi; α̂)
. (2.4)

Example 3. The AIPW estimator is τ̂n,AIPW = n−1 ∑n
i=1 τAIPW,i, where

τAIPW,i =
AiYi

e(Xi; α̂)
+

{
1− Ai

e(Xi; α̂)

}
µ1(Xi; β̂1)

− (1−Ai)Yi

1− e(Xi; α̂)
−

{
1− 1−Ai

1− e(Xi; α̂)

}
µ0(Xi; β̂0). (2.5)
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Example 4 (Matching). For unit i, denote the imputed potential outcomes as

Ŷi(1) =

{
M−1

∑
j∈JX(i) Yj if Ai = 0,

Yi if Ai = 1,
Ŷi(0) =

{
Yi if Ai = 0,

M−1
∑

j∈JX(i) Yj if Ai = 1.

The matching estimator of τ is

τ̂
(0)
n,mat =

1

n

n∑
i=1

{Ŷi(1)− Ŷi(0)} =
1

n

n∑
i=1

(2Ai − 1)

Yi −M−1
∑

l∈JX(i)

Yl

 . (2.6)

where M (M ≥ 1) is the number of matches and JX(i) is the index set of

the nearest M neighbors for unit i in its opposite treatment group based on the

matching variable X.

The above estimators are asymptotically linear with the influence functions

given in the Supplementary Material.

3. MI to Deal with Missing Values

3.1. General MI

Continuing with the general setup in Section 2.1, we now consider the case

where L is q-dimensional and L = (L[1], . . . , L[q]) contains missing values. Let

R = (R[1], . . . , R[q]) be the vector of missing indicators, such that R[j] = 1 if

the jth component L[j] is observed, and zero if it is missing. In addition, let 1q
denote the q-vector of ones. We write L = (LR, LR), where LR and LR represent

the observed and missing parts of L, respectively. This notation depends on the

missingness pattern; for example, if R[1] = 1 and R[j] = 0, for j = 2, . . . , q, then

LR = L[1] and LR = (L[2], . . . , L[q]). With missing values in L, the full-sample

estimator τ̂n is not feasible to calculate.

To facilitate applying a full-sample estimator, MI creates multiple complete

data sets by filling in missing values. Assume unit i has the complete data Zi =

(Li, Ri) and the observed data Zobs,i = (LRi,i, Ri). Denote Z = (Z1, . . . , Zn) and

Zobs = (Zobs,1, . . . , Zobs,n). Assume that the observed data likelihood is f(Zobs; θ),

with the true parameter value θ0. The MI procedure proceeds as follows.

Step MI-1. Create m complete data sets by filling in missing values using

imputed values generated from the posterior predictive distribution. Specif-

ically, to create the jth imputed data set, first generate θ∗(j) from the

posterior distribution p(θ | Zobs), and then generate L
∗(j)
Ri,i

from f(LRi,i
|

Zobs,i; θ
∗(j)) for each missing LRi,i

.

Step MI-2. Apply a full-sample estimator of τ to each imputed data set. Let

τ̂ (j) be the estimator applied to the jth imputed data set, and V̂ (j) be the

full-sample variance estimator for τ̂ (j).
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Step MI-3. Use Rubin’s combining rule to summarize the results from the

multiple imputed data sets. The MI estimator of τ is τ̂MI = m−1
∑m

j=1 τ̂
(j),

and Rubin’s variance estimator is

V̂MI(τ̂MI) =Wm + (1 +m−1)Bm, (3.1)

where Wm = m−1
∑m

j=1 V̂
(j) and Bm = (m− 1)−1

∑m
j=1(τ̂

(j) − τ̂MI)
2.

Remark 1. In Step MI-1, the full/observed data likelihood has to be specified

and fitted for MI, which can be challenging in the presence of several, if not many

variables. In practice, we suggest specifying the full data likelihood as a product

of a sequence of conditional models of one variable, given the preceding variables,

allowing model flexibility for each variable (e.g., the error distribution matches

the variable type, which is logistic for a binary variable). Furthermore, we can

perform a model diagnosis after the imputation to assess the goodness-of-fit; see

the real-data application in Section 7 for an example.

3.2. CI in the presence of confounders missing at random

We explain our method by estimating the ACE, assuming the confounders are

missing at random (MAR), in the sense of Rubin (1976). Extensions to settings

with missing outcomes and different missingness mechanisms are provided in

Section 5. We now consider the case in which values are missing from X =

(X[1], . . . , X[p]), a p-dimensional vector. Accordingly, let RX = (R[1], . . . , R[p]) be

the vector of missing indicators, such that R[j] = 1 if the jth component X[j]

is observed, and zero if it is missing. We write X = (XRX
, XRX

), where XRX

and XRX
represent the observed and missing parts of X, respectively. With

values missing from X, the aforementioned full-sample estimators (2.3)–(2.6) are

not feasible to calculate. Estimating of the ACE requires further assumptions.

Following most of the empirical literature, we impose the MAR assumption.

Assumption 3 (Missingness at random). We have XRX
⊥⊥ RX | Zobs.

Assumption 3 holds if the observed data capture all the information related to

missingness. Under Assumption 3, f(Ai, Xi, Yi, RXi; θ) = f(Ai, XRXi,i, Yi, RXi; θ)

f(XRXi,i
|Ai, XRXi,i, Yi, RXi = 1p; θ) is identifiable, which justifies the likelihood-

based or Bayesian inference. Moreover, by the Bayes rule, the posterior

distribution of the missing data can be expressed as

f(XRXi,i
| Ai, XRXi,i, Yi, RXi; θ

∗(j)) ∝ f(Ai, XRXi,i
, XRXi,i, Yi, RXi; θ

∗(j))

= f(RXi | Yi, XRXi,i, XRXi,i
, Ai; θ

∗(j))f(Yi, XRXi,i, XRXi,i
, Ai; θ

∗(j))

∝ f(Yi, XRXi,i, XRXi,i
, Ai; θ

∗(j)) (3.2)

∝ f(Yi | XRXi,i, XRXi,i
, Ai; θ

∗(j))f(Ai | XRXi,i, XRXi,i
; θ∗(j))

f(XRXi,i
| XRXi,i; θ

∗(j)),
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Table 1. Simulation results of the full-sample point estimators and MI point estimators
based on 5,000 simulated data sets

Method τ̂n V(τ̂n) V(τ̂MI) V(τ̂MI − τ̂n) cov(τ̂MI − τ̂n, τ̂n)

(×104) (×104) (×104) (×104)

Regression 24 35 11 0

IPW 62 66 22 -9

AIPW 25 36 12 0

matching 30 38 15 -4

where (3.2) follows because f(RXi | Yi, XRXi,i, XRXi,i
, Ai; θ

∗(j)) = f(RXi | Yi,

XRXi,i, Ai; θ
∗(j)), by Assumption 3. The MI procedure uses the imputation model

for XRXi,i
, which does not depend on the missingness pattern probability for RXi.

3.3. Issue of standard inference with MI

The variance of the MI estimator can be decomposed to

V(τ̂MI) = V(τ̂n) + V(τ̂MI − τ̂n) + 2cov(τ̂MI − τ̂n, τ̂n).

In Rubin’s variance estimator (3.1),Wm estimates the within-imputation variance

V(τ̂n), and (1+m−1)Bm estimates the between-imputation variance V(τ̂MI − τ̂n).

However, it ignores the covariance between τ̂MI − τ̂n and τ̂n. Rubin’s variance

estimator is asymptotically unbiased only under the congeniality condition (Meng

(1994)), that is, cov(τ̂MI − τ̂n, τ̂n) = o(1). Therefore, Rubin’s variance estimator

using a different full-sample estimator τ̂n may be inconsistent.

For illustration, we conduct a numerical experiment to assess the congeniality

condition for the outcome regression, IPW, AIPW, and matching estimators of

the ACE. The data-generating mechanism is described in scenario (a) in Section

6. For each simulated data set, we compute the full-sample point estimators τ̂n,

assuming the confounders are fully observed and the MI point estimators τ̂MI.

Table 1 presents the simulations results of the variances of the full-sample point

estimators and the MI point estimators, and the covariance between τ̂MI− τ̂n and

τ̂n. The covariance is significantly negative for the IPW and matching estimators.

Rubin’s variance estimator overestimates the variances of these estimators and, as

a result, MI is not congenial for them. Thus, the congeniality condition required

for MI can be quite restrictive for general ACE estimation.
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4. A Martingale Representation of the MI Estimators of Causal Effects

4.1. A novel martingale representation

Based on the unified linear form of the full-sample estimator, as in (2.1) or

(2.2), we express the MI estimator in general form as

τ̂MI − τ =
1

m

m∑
j=1

(τ̂ (j) − τ) =
1

nm

n∑
i=1

m∑
j=1

ψ(L
∗(j)
i ) + oP(n

−1/2), (4.1)

where L
∗(j)
i = (LRi,i, L

∗(j)
Ri,i

) and oP(n
−1/2) is from (2.1), or

τ̂MI − τ =
1

m

m∑
j=1

(τ̂ (j) − τ) =
1

nm

n∑
i=1

m∑
j=1

ψi(L
∗(j)) + oP(n

−1/2), (4.2)

where L∗(j) = (L
∗(j)
1 , . . . , L∗(j)

n ) and oP(n
−1/2) is from (2.2). In the following,

we explain our framework using (4.1); the same exposition applies to (4.2) by

replacing ψ(Li) with ψi(L) and L
∗(j)
i with L∗(j).

To express (4.1) further, it is important to understand the properties of

the posterior distribution and the imputed values L
∗(j)
i . Using the Bernstein–

von Mises theorem (van der Vaart (2000); Chap. 10), under the regularity

conditions described in Assumption 4, conditioned on the observed data, the

posterior distribution p(θ | Zobs) converges to a normal distribution with mean

θ̂ and variance n−1I−1
obs almost surely, where θ̂ is the MLE of θ0, and I−1

obs

is the inverse of the Fisher information matrix. Let S(θ;L,R) be the score

function of θ. In the presence of missing data, define the mean score function

S̄(θ0;Zobs,i) = E{S(θ0;Li, Ri) | Zobs,i, θ0}.
The MLE θ̂ can be viewed as the solution to the mean score equation∑n

i=1 S̄(θ;Zobs,i) = 0. Under the regularity conditions described in Assumption 4,

we can then express θ̂−θ0 = n−1I−1
obs

∑n
i=1 S̄(θ0;Zobs,i)+oP(n

−1/2). It is insightful

to write (4.1) as

τ̂MI − τ =
1

nm

n∑
i=1

m∑
j=1

[
ψ(L

∗(j)
i )− E{ψ(Li) | Zobs, θ̂}

]
+

1

nm

n∑
i=1

m∑
j=1

E{ψ(Li) | Zobs, θ̂}+ oP(n
−1/2), (4.3)

where we recall Zobs = (Zobs,1, . . . , Zobs,n). Now, by a Taylor expansion of

E{ψ(Li) | Zobs, θ̂} around the true value θ0,

τ̂MI − τ =
1

nm

n∑
i=1

m∑
j=1

[
ψ(L

∗(j)
i )− E{ψ(Li) | Zobs, θ̂}

]
(4.4)



1658 GUAN AND YANG

+
1

nm

n∑
i=1

m∑
j=1

[E{ψ(Li) | Zobs, θ0}+ ΓI−1
obsS̄(θ0;Zobs,i)] + oP(n

−1/2),

where Γ = E
[
E{ψ(Li)S(θ0;Li, Ri) | Zobs, θ0} − E{ψ(Li) | Zobs, θ0}S̄(θ0;Zobs,i)

]T
.

Based on (4.4), we can write

n1/2(τ̂MI − τ) =
n+nm∑
k=1

ξn,k + oP(n
−1/2), (4.5)

where

ξn,k =


1

n1/2

[
E{ψ(Li) | Zobs, θ0}+ ΓI−1

obsS̄(θ0;Zobs,i)
]
, if k = i,

1

n1/2m

[
ψ(L

∗(j)
i )− E{ψ(Li) | Zobs, θ̂}

]
, if k = n+ (i− 1)m+ j,

where i = 1, . . . , n and j = 1, . . . ,m. For the decomposition in (4.5), the first

n terms of ξn,k contribute to the variability of τ̂MI, because of the unknown

parameters, and the remaining nm terms of ξn,k contribute to the variability

of τ̂MI, because of the imputations given the parameter values, reflecting the

sequential MI procedure.

We discuss the mean properties of ξn,k in order to create suitable σ-fields in

the martingale presentation. For k = i, where i = 1, . . . , n, we have

E(ξn,k) =
1

n1/2
E
[
E{ψ(Li) | Zobs, θ0}+ ΓI−1

obsS̄(θ0;Zobs,i)
]

=
1

n1/2
E{ψ(Li)}+

1

n1/2
ΓI−1

obsE{S̄(θ0;Zobs,i)} = 0, (4.6)

where E{ψ(Li)} = 0 and E{S̄(θ0;Zobs,i)} = 0 are from the mean zero property

of the influence function and the mean score function. For k = n+ (i− 1)m+ j,

where i = 1, . . . , n and j = 1, . . . ,m, we have

E(ξn,k | Zobs) =
1

n1/2m
E
[
ψ(L

∗(j)
i )− E{ψ(Li) | Zobs, θ̂} | Zobs

]
=

1

n1/2m

[
E{ψ(L∗(j)

i ) | Zobs} − E{ψ(Li) | Zobs, θ̂}
]
= 0, (4.7)

where the last equality follows because, given Zobs, the posterior predictive

distribution of L
∗(j)
i follows the distribution f(Li | Zobs; θ̂), by the Bernstein–von

Mises theorem (van der Vaart (2000, Chap. 10)). Consider the σ-fields Fn,k =

σ{N} if k = i, with N being the null set, and Fn,k = σ{Zobs} if k = n+(i−1)m+j,

where i = 1, . . . , n and j = 1, . . . ,m. Therefore, by (4.6) and (4.7),{
k∑

i=1

ξn,i,Fn,k, 1 ≤ k ≤ n(1 +m)

}
is a martingale for each n ≥ 1.
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Equation (4.4) is a martingale representation of the MI estimator by expressing

the MI estimator in terms of a series of random variables that have mean zero,

conditional on the sigma algebra generated from the preceding variables. This

martingale representation is used to construct the bootstap replicate for the

variance estimation.

4.2. Wild bootstrap for the MI estimator

Invoked by the martingale representation, we propose a wild bootstrap

procedure (Wu (1986); Liu (1988)), which provides a valid variance estimation

and inference of the linear statistic for martingale difference arrays, based on the

martingale central limit theory, for estimating the variance of τ̂MI.

Step 1. Sample uk, for k = 1, . . . , n + nm, to satisfy that E(uk | Zobs) = 0,

E(u2
k | Zobs) = 1, and E(u4

k | Zobs) <∞.

Step 2. Compute the bootstrap replicate as T ∗ = n−1/2
∑n+nm

k=1 ξ̂n,kuk, where

ξ̂n,k =


1

n1/2

[
E{ψ(Li) | Zobs, θ̂}+ Γ̂Î−1

obsS̄(θ̂;Zobs,i)
]
, if k = i,

1

n1/2m

[
ψ(L

∗(j)
i )− E{ψ(Li) | Zobs, θ̂}

]
, if k = n+ (i− 1)m+ j,

where i = 1, . . . , n and j = 1, . . . ,m.

Step 3. Repeat Step 1–Step 2 B times, and estimate the variance of τ̂MI using

the sample variance of the B copies of T ∗.

Remark 2. There are many choices for generating uk, such as the standard

normal distribution, Mammen’s two-point distribution (Mammen (1993)),

uk =


1− 51/2

2
, with probability

1 + 5−1/2

2
,

51/2 + 1

2
, with probability

1− 5−1/2

2
,

a simpler distribution with probability 0.5 of being 1 and probability 0.5 of

being −1, or the Poisson distribution with parameter one re-centered at zero

(Beyersmann, Termini and Pauly (2013)). Our simulation study shows that the

wild bootstrap procedure is not sensitive to the choice of the sampling distribution

of uk. In particular, one can also use nonparametric bootstrap weights; that is,

let uk = (nm + n)−1/2(Wk − W ), where {Wk : k = 1, . . . , n(m + 1)} follows

a multinomial distribution with n(m + 1) draws on n(m + 1) cells with equal

probability, and W = (nm+ n)−1
∑n(m+1)

k=1 Wk.

Several authors have used a nonparametric bootstrap to estimate the variance

of MI estimators. Schomaker and Heumann (2018) combined MI with a bootstrap

to perform an inference for the quantity of interest. However, their discussions



1660 GUAN AND YANG

are restricted to the MLEs of the model parameters and require a bootstrap on

top of MI, which is computationally intensive. Moreover, in the causal inference

literature, in the absence of missing data, Abadie and Imbens (2008) show that

a nonparametric bootstrap cannot provide a consistent variance estimation for

the matching estimators of the ACE, owing to the nonsmooth nature of the

matching procedure. Note that the proposed wild bootstrap procedure with

the nonparametric bootstrap weights differs from the naive bootstrap. The

martingale representation and wild bootstrap procedure work for asymptotically

linear ACE estimators, including the matching estimator.

Remark 3. In Step 2, we approximate ξn,k, which involves the MLE θ̂, the

estimated observed Fisher information, and the conditional expectations taken

with respect to the distribution of the missing values, given the observed values.

These estimators are readily available from the posterior draws, or can be

approximated by using Monte Carlo integration based on the imputed values.

For example, we approximate E{ψ(Li) | Zobs, θ̂} by M−1
∑M

j=1 ψ(L
∗(j)
i ). Thus,

the computation is not as intimidating as it appears, although it is heavier than

Rubin’s combining rule. However, as shown in Theorem 1, the proposed inference

procedure is valid, whereas Rubin’s method may not be.

We show the asymptotic validity of the above bootstrap inference method in

the following theorem, with regularity assumptions.

Assumption 4. Suppose the standard conditions hold for the MLE θ̂ to be n1/2-

consistent for θ0:

1. Zobs,1, . . . , Zobs,n are i.i.d. and follow f(z | θ);

2. θ is identifiable; that is, if θ ̸= θ′, then f(z | θ) ̸= f(z | θ′);

3. the density f(z | θ) has a common support (not depending on θ);

4. the parameter space contains an open set, of which the true parameter θ0 is

an interior point.;

5. for every z in the support, f(z | θ) is three times differentiable with respect to

θ, the third derivative is continuous in θ, and
∫
∂3 log f(z | θ)/∂θ3dz <∞;

6. for any θ0 in the parameter space, there exists a positive number c and

a function M(z), such that |∂3 log f(z | θ)/∂θ3| ≤ M(z), for all z in the

support, θ0 − c < θ < θ0 + c, with Eθ0{M(Z)} <∞.

Define ψ̄(θ;Zobs,i) = E{ψ(Li) | Zobs,i, θ}.

Assumption 5. ψ̄(θ;Zobs), V{ψ(Li) | Zobs, θ}, S̄(θ;Zobs,i), and V{S(θ;Li, Ri) |
Zobs,i, θ} are continuous functions of θ.
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Assumption 6. E[{ψ̄(θ;Zobs)}4] < ∞ and E[{S̄(θ;Zobs,i)}4] < ∞, for θ in a

neighborhood of θ0.

Assumption 7. {ψ̄(θ;Zobs−ψ̄(θ0;Zobs)}2 and {S̄(θ;Zobs,i)−S̄(θ0;Zobs,i)}2 belong
to a Donsker class.

Assumption 4 is the standard assumption in the literature to guarantee the

consistency of the MLE (van der Vaart (2000)). Assumption 5 is imposed to

guarantee sufficient smoothness on the conditional mean and variance functions

for the influence function and the score function. It holds for the general

estimands, such as themean-type estimands, and the commonly used class of

parametric models, such as the exponential family. For Assumption 6, the

moment conditions are used to invoke the central limit theory, and typically

hold for the general estimands and parametric models, coupled with the bounded

moment conditions for L. In practice, L often has a bounded support, and

thus the bounded moment conditions are reasonable. Assumption 7 ensures the

convergence of the empirical process to its limiting version (Kennedy (2016)).

Interested readers can consult Kennedy (2016) for details and examples of the

Donsker class.

Theorem 1. Suppose that Assumptions 1, 2 and 4–7 hold. Suppose that f(LRi,i
|

Zobs,i; θ) is specified correctly. Then, for MI that adopts the full-sample estimator

that satisfies (2.1) or (2.2), we have

sup
r

∣∣∣P(n1/2T ∗ ≤ r | Zobs)− P{n1/2(τ̂MI − τ) ≤ r}
∣∣∣ P→ 0,

as n→ ∞.

We provide the proof of Theorem 1 in the Supplementary Material, which

draws on the martingale central limit theory (Hall and Heyde (1980)) and the

asymptotic property of the weighted sampling of martingale difference arrays

(Pauly (2011)). Theorem 1 indicates that the distribution of the wild bootstrap

statistic consistently estimates the distribution of the MI estimator.

Theorem 1 requires that the imputation model f(LRi,i
| Zobs,i; θ) be specified

correctly (the congeniality condition of Meng (1994)). This requirement is needed,

not only for the consistency of the MI variance estimator, but also for the

consistency of the MI point estimator. The following corollaries hereafter clarify

the required imputation models in various scenarios.

Corollary 1. For the scenario with confounders MAR, the assumption that the

imputation model f(LRi,i
| Zobs,i; θ) is specified correctly in Theorem 1 implies that

the outcome distribution f(Yi | Xi, Ai; θ), the propensity score model f(Ai | Xi; θ),

and the confounder distribution f(XRXi,i
| XRXi,i; θ) should be specified correctly.
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5. Extensions

5.1. Different causal estimands

Our inference framework extends to a wide class of causal estimands, as

long as the estimand admits an asymptotically linear full-sample estimator, as in

(2.1). For example, we can consider the ACEs over a subset of the population

(Crump et al. (2006); Li, Morgan and Zaslavsky (2018)), including the ACE on

the treated. We can also consider nonlinear causal estimands. For example, for

a binary outcome, the log of the causal risk ratio is

log CRR = log
P{Y (1) = 1}
P{Y (0) = 1}

= log
E{Y (1)}
E{Y (0)}

,

and the log of the causal odds ratio is

log COR = log
P{Y (1) = 1}/P{Y (1) = 0}
P{Y (0) = 1}/P{Y (0) = 0}

= log
E{Y (1)}/[1− E{Y (1)}]
E{Y (0)}/[1− E{Y (0)}]

.

The key insight is that under Assumptions 1 and 2, we can estimate E{Y (a)}
using commonly used estimators, denoted by Ê{Y (a)}, for a = 0, 1. We can

then obtain an estimator for log CRR as log[Ê{Y (1)}/Ê{Y (0)}]. By the Taylor

expansion, we can linearize these estimators and establish a similar linear form as

(2.1), which serves as the basis for constructing the weighted bootstrap inference.

5.2. Missingness not at random

If Assumption 3 fails, the missing pattern also depends on the missing values

themselves, even after controlling for the observed data, a scenario known as

MNAR. In our motivating example discussed in Section 7, the family poverty

ratio is likely to be MNAR because subjects with higher income may be less

likely to disclose their income information (Davern et al. (2005)). In general,

MNAR occurs frequently for sensitive questions related to, for example, alcohol

consumption, income, and so on.

Causal inference with data MNAR is more challenging because the full

data distribution, and therefore the ACE, are not identifiable, in general. To

use MI in causal inference with confounders MNAR, we require identification

conditions that ensure that the full data distribution is identifiable. For example,

Wang, Shao and Kim (2014) introduce a nonresponse instrument as a sufficient

condition for the identifiability of the observed likelihood. Miao, Ding and

Geng (2016) investigate the identifiability of normal and normal mixture models

with nonignorable missing data. Yang, Wang and Ding (2019) propose an

outcome-independence missingness mechanism, under which, the missing-data

mechanism is independent of the outcome, given the treatment and confounders,

and establish general identification conditions.
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Our proposed method can easily extend to the scenario in which the con-

founders are MNAR when additional assumptions are made for the identifiability

of the full data distribution. After the identification check, we need only modify

the posterior predictive distribution of X
(j)

Ri,i
. For example, following Yang, Wang

and Ding (2019), we assume that the missingness pattern R is independent of

the outcome, given the treatment and confounders.

Assumption 8 (Outcome-independent missingness). We have Y ⊥⊥ RX |
(A,XRX

, XRX
).

Under the regularity conditions in Yang, Wang and Ding (2019),

f(A,X, Y,RX) is identifiable (Yang, Wang and Ding (2019)). Then, in Step

MI-1, the posterior distribution of X
(j)

RXi,i
can be decomposed to

f(XRXi,i
| Ai, XRXi,i, Yi, RXi; θ

∗(j))

∝ f(Yi | XRXi,i, XRXi,i
, Ai; θ

∗(j))× f(RXi | XRXi,i, XRXi,i
, Ai; θ

∗(j))

f(Ai | XRXi,i, XRXi,i
; θ∗(j))f(XRXi,i

| XRXi,i; θ
∗(j)).

After imputation, the wild bootstrap steps remain the same.

Corollary 2. For the scenario with confounders MNAR, the assumption that the

imputation model f(LRi,i
| Zobs,i; θ) is specified correctly in Theorem 1 implies that

the outcome distribution f(Yi | Xi, Ai; θ), propensity score model f(Ai | Xi; θ),

confounder distribution f(XRXi,i
| XRXi,i; θ), and missingness model f(RXi |

Xi, Ai; θ) should be specified correctly.

5.3. Partially observed outcome and confounders

In some cases, both the outcome and the confounders are subject to

missingness. Our framework can easily accommodate this scenario by adding

an outcome imputation step to the MI procedure.

We now introduce another missingness indicator RY for Y ; that is, RY = 1 if

Y is observed, and RY = 0 otherwise. In Step MI-1, we first generate θ∗(j) from

the posterior distribution p(θ | Zobs). Then, for unit i with RY = 1, generate

X
∗(j)
RXi,i

from f(XRXi,i
, | Ai, XRXi,i, Yi, Ri, RY i = 1; θ∗(j)); for unit i with RY = 0,

generate X
∗(j)
RXi,i

and Y
∗(j)
i from f(XRXi,i

, Yi | Ai, XRXi,i, RXi, RY i = 0; θ∗(j)) to

create the jth imputed data set. Then, the MI estimator can be written in a

general form with both imputed outcome and confounders as

τ̂MI − τ =
1

nm

n∑
i=1

m∑
j=1

ψ(Ai, X
∗(j)
i , Y

∗(j)
i ) + oP(1).

Accordingly, the martingale difference arrays in the wild bootstrap procedure can

be written as
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ξ̂n,k =
1

n1/2
[E{ψ(Ai, Xi, Yi) | Zobs, θ̂}+ Γ̂Î−1

obsS̄(θ̂;Zobs,i)], if k= i,

1

n1/2m
[ψ(Ai, X

∗(j)
i , Y

∗(j)
i )− E{ψ(Ai, Xi, Yi) | Zobs, θ̂}], if k=n+ (i− 1)m+ j,

where i = 1, . . . , n and j = 1, . . . ,m. The other steps in the MI and wild bootstrap

procedures remain the same, as when only the confounders have missing values.

Corollary 3. For the scenario where both the outcome and the confounders

are subject to missingness, the assumption that the imputation model f(LRi,i
|

Zobs,i; θ) is specified correctly in Theorem 1 implies Corollary 1 under MAR and

Corollary 2 under MNAR.

6. Simulation Study

We conduct simulation studies to evaluate the finite-sample performance of

the proposed inference when MI adopts different full-sample estimators, including

the outcome regression, IPW, AIPW, and matching estimators.

For each sample, the confounders X = (X[1], X[2]) are sampled from a

multivariate normal distribution with mean (0, 0), variance (1, 1), and correlation

coefficient 0.2. The potential outcomes follow Y (0) = 2+3X[1]+2X[2]+ ϵ(0) and

Y (1) = 1 + 2X[1] +X[2] + ϵ(1), where ϵ(0) ∼ N (0, σ2
0) and ϵ(1) ∼ N (0, σ2

1), with

σ0 = σ1 = 1, and ϵ(0) and ϵ(1) are independent. Thus the true value of the

ACE is τ = −1. We generate the treatment indicator A from Bernoulli{πA(X)}
and πA(X) = P (A = 1 | X) = Φ(−0.2 + 0.3X[1] + 0.4X[2]), where Φ(·) is the

cumulative density function for the standard normal distribution. In the sample,

we assume A andX[1] are fully observed, butX[2] and Y can be partially observed,

with missing indicators R[2] and RY , respectively. We consider four scenarios:

(a) X[2] is MAR; that is, its missingness depends only on the observed data. Let

R[2] ∼ Bernoulli{πR1(A,X[1], Y )}, where πR1(A,X[1], Y ) = Φ(−0.1+ 0.1A+

0.5X[1] + 0.2Y ), with the missingness rate being about 45%. Moreover, the

inference procedure assumes a correct missingness mechanism;

(b) X[2] is MNAR; that is, its missingness depends on unobserved data. Let

R[2] ∼ Bernoulli{πR2(A,X[1], X[2])}, where πR2(A,X[1], X[2]) = Φ(0.2 +

1X[2]), with the missingness rate being about 45%. Moreover, the inference

procedure assumes a correct missingness mechanism;

(c) X[2] is MNAR as in scenario (b), but the inference procedure assumes an

incorrect missingness mechanism;

(d) both X[2] and Y are MNAR, with the missingness indicators R[2] and

RY , respectively. Let R[2] ∼ Bernoulli{πR(X[2])}, where πR(X[2]) =

Φ(0.8 + 1X[2]), with the missingness rate being about 30%. Let RY ∼
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Bernoulli{πY (A,X)}, where πY (A,X) = Φ(1 + 0.2A + 0.5X[1] + 0.5X[2]),

with the missingness rate being about 20%.

We generate 5,000 Monte Carlo samples with size n = 3000 for each scenario. In

MI, the missing-data mechanism is specified according to the above scenarios

and other components of the distribution are specified correctly. We use

noninformative priors for the parameters. Suppose that the prior distribution for

each coefficient in the outcome model, the propensity score model, and missing

indicator model is N (0, 100); the prior distribution for the variance parameters

σ0 and σ1 in the outcome regression model is Gamma(0.01, 0.01); the prior

distribution for the mean of X is (0, 0); the prior distribution for the variance

covariance matrix of X is I2, where I2 is the two-dimensional identity matrix.

Further information on the priors and posterior sampling are provided in the

Supplementary Material. We consider three sizes of MI with m = 5, 10, or 100.

To generate the posterior samples of the missing values X
∗(j)
R

, we use Gibbs

sampling with 5,000 iterations, discard the first 2,000 burn-in samples, and

randomly choose m posterior samples from the remaining 3,000 draws. For each

imputed data set, we calculate the full-sample point estimators and variance

estimators of the ACE using an outcome regression, IPW, AIPW, and matching,

and then use Rubin’s method to obtain the corresponding MI estimators τ̂MI and

Rubin’s variance estimators V̂MI. For the matching estimator, we set the number

of matches as M = 1.

We compare the standard MI inference and the proposed bootstrap inference.

For the standard MI inference, the 100(1 − α)% CIs are calculated as (τ̂MI −
tν,1−α/2V̂

1/2
MI , τ̂MI + tν,1−α/2V̂

1/2
MI ), where tν,1−α/2 is the 100(1 − α/2)% quantile

of the t distribution with degrees of freedom ν = (m − 1)λ−2, with λ =

(1 +m−1)Bm/{Wm + (1 +m−1Bm)}. For the proposed bootstrap procedure, we

use B = 1000, generate the weights µk from Mammen’s two-point distribution,

as suggested in Remark 2, and calculate the variance estimate V̂BS. The

corresponding 100(1 − α)% CI is estimated using two methods: (i) a quantile-

based CI (τ̂MI − q∗1−α/2, τ̂MI − q∗α/2), where q
∗
1−α/2 and q∗α/2 are the (1 − α/2)th

and (α/2)th quantiles, respectively, of T ∗; and (ii) the Wald-type CI (τ̂MI −
z1−α/2V̂

1/2
BS , τ̂MI + z1−α/2V̂

1/2
BS ), where z1−α/2 is the (1 − α/2)th quantile of the

standard normal distribution.

We assess the performance in terms of the relative bias of the variance

estimator and the coverage rate of CIs. The relative bias of the variance

estimators is calculated as {E(V̂MI) − V(τ̂MI)}/V(τ̂MI) × 100% and {E(V̂BS) −
V(τ̂MI)}/V(τ̂MI)×100%. The coverage rate of the 100(1−α)% CI is estimated by

the percentage of Monte Carlo samples for which the CIs contain the true value.

Tables 2–5 present the simulation results for the four scenarios. When the

imputation model is specified correctly, as in scenarios (a), (b), and (d), the MI

point estimator has small biases for all full-sample estimators. In addition, as



1666 GUAN AND YANG

Table 2. Simulation results: point estimate (Monte Carlo mean of point estimates), true
variance (Monte Carlo variance of point estimates), relative bias of the variance estimator,
and the coverage and mean width of the interval estimate using Rubin’s method and the
proposed wild bootstrap method under scenario (a), with missingness at random.

Method τ̂n m Point est True var Relative Bias Coverage (%) Mean width (×102)

(×10) (×104) (%) for 95% CI for 95% CI

Rubin BS Rubin BS Rubin BS

Quantile Wald Quantile Wald

5 -10.0 35.8 -2.1 1.9 94.3 94.9 95.4 23.9 23.6 24.1

Regression 10 -10.0 34.9 -1.9 3.7 94.6 95.3 95.8 23.1 23.6 24.0

100 -10.0 33.8 -1.4 5.6 94.8 95.6 95.9 22.6 23.4 23.9

5 -10.0 68.0 25.8 -0.3 96.0 93.9 94.7 35.6 31.1 31.9

IPW 10 -10.0 66.3 27.4 0.3 96.3 94.2 94.6 34.9 30.8 31.6

100 -10.0 64.4 29.7 1.2 96.3 94.2 94.7 34.4 30.4 31.3

5 -10.0 36.6 3.0 -3.9 95.2 94.4 94.9 24.8 23.2 23.7

AIPW 10 -10.0 35.7 3.0 -2.7 94.9 94.5 95.0 24.0 23.1 23.5

100 -10.0 34.6 3.7 -1.1 95.3 94.7 95.3 23.5 22.9 23.4

5 -10.0 39.1 18.2 -4.5 96.5 94.4 95.0 27.5 23.9 24.4

Matching 10 -10.0 37.8 18.7 -3.5 96.5 94.5 95.1 26.6 23.7 24.2

100 -10.0 36.4 20.1 -2.1 96.9 94.4 95.0 26.0 23.4 23.9

Table 3. Simulation results under scenario (b), with missingness not at random.

Method τ̂n m Point est True var Relative Bias Coverage (%) Mean width (×102)

(×10) (×104) (%) for 95% CI for 95% CI

Rubin BS Rubin BS Rubin BS

Quantile Wald Quantile Wald

5 -10.0 34.5 -0.5 2.8 94.6 95.2 95.7 23.6 23.3 23.8

Regression 10 -10.0 33.6 0.9 4.4 94.8 95.4 95.7 22.9 23.2 23.7

100 -10.0 32.9 -0.1 5.6 94.8 95.5 96.0 22.5 23.1 23.6

5 -10.0 67.5 28.0 0.3 96.4 94.5 94.8 35.7 30.9 31.7

IPW 10 -10.0 65.6 30.6 1.3 96.7 94.6 95.0 35.0 30.6 31.4

100 -10.0 64.2 29.8 1.4 96.7 94.7 95.0 34.5 30.4 31.2

5 -10.0 35.5 5.0 -2.3 95.2 94.8 95.2 24.6 23.1 23.5

AIPW 10 -10.0 34.5 5.6 -0.7 95.5 94.9 95.5 23.9 22.9 23.4

100 -10.0 33.6 5.7 -0.5 95.5 95.1 95.4 23.4 22.8 23.2

5 -10.0 38.0 21.0 -3.5 96.9 94.8 95.4 27.5 23.7 24.2

Matching 10 -10.0 36.7 21.8 -2.1 96.9 95.0 95.5 26.5 23.5 24.0

100 -10.0 35.6 22.4 -1.1 97.0 94.9 95.3 25.9 23.2 23.7

m increases, the variance of the MI point estimator becomes smaller, suggesting

that using more imputations can improve the efficiency of the MI estimator.

Across different choices of m, the relative bias of the proposed variance estimator

stays small, and the accuracy of the estimator is less sensitive to the choice of

m. Rubin’s variance estimator is unbiased for the outcome regression estimator

and the AIPW estimator; however, it overestimates the variances of the IPW
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Table 4. Simulation results under scenario (c) when the true missing mechanism is
MNAR but MAR is assumed.

Method τ̂n m Point est True var Relative Bias Coverage (%) Mean width (×102)

(×10) (×104) (%) for 95% CI for 95% CI

Rubin BS Rubin BS Rubin BS

Quantile Wald Quantile Wald

5 -11.5 34.6 1.7 10.9 27.2 29.1 30.2 23.7 24.3 24.8

Regression 10 -11.5 33.8 1.8 12.3 25.6 24.1 24.6 23.2 24.1 24.6

100 -11.5 33.2 1.4 13.0 23.9 27.9 28.9 22.8 24.0 24.5

5 -12.0 130.1 31.5 1.1 66.1 54.5 53.7 46.3 39.1 40.5

IPW 10 -12.0 127.8 31.3 -1.4 64.9 53.1 51.9 45.6 38.6 40.0

100 -12.0 126.4 33.3 -1.8 64.7 52.1 50.9 45.4 38.2 39.6

5 -11.5 36.3 6.0 -0.7 31.0 27.5 28.6 24.7 23.5 24.0

AIPW 10 -11.5 35.5 5.8 0.2 29.0 26.5 27.8 24.1 23.3 23.8

100 -11.5 34.9 5.5 0.5 27.6 26.3 27.4 23.8 23.2 23.7

5 -11.6 38.7 26.2 -1.3 40.9 29.4 30.8 28.1 24.2 24.7

Matching 10 -11.6 37.5 26.6 -0.5 38.4 27.8 29.1 27.3 23.9 24.4

100 -11.6 36.6 26.7 -0.2 36.5 27.2 28.6 26.7 23.6 24.1

estimator and the matching estimator, for example, by as much as 29.7% and

20.1% in scenario (a). Because of the variance overestimation, the coverage

rate of Rubin’s method exceeds the nominal level for the IPW and matching

estimators, all exceeding 96%, and some reaching 97.3%. In contrast, our

proposed wild bootstrap procedure for variance estimation is unbiased for all

four ACE estimators, and therefore the coverage rate of the CIs based on this

method is close to the nominal level. Moreover, the proposed method is not

sensitive to the number of imputations m or the choice of a quantile-based or

Wald-type CI. However, in scenario (c), when the true missing-data mechanism

is MNAR, but the inference procedure assumes MAR, the MI point estimator

has large biases and all the CIs have poor coverage rates; see Table 4.

Other methods have been developed for MI inference. For example, Xie

and Meng (2017) propose a doubling variance approach for a more conservative

variance estimation when Rubin’s method underestimates the variance. However,

it further overestimates the variance of the MI estimators in our simulation

settings, such that the performance is even worse than that of Rubin’s method.

Meng and Rubin (1992) and Chan and Meng (2022) propose likelihood ratio-

based procedures for multiply imputed data inference. However, these procedures

are not easily implemented for the variance and CI construction for the treatment

effect estimation.

7. An Application

We apply our method to a data set from the 2015–2016 U.S. National Health

and Nutrition Examination Survey to estimate the ACE of education on general
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Table 5. Simulation results under scenario (d), where both the outcome and the
confounders are missing and MNAR is assumed.

Method τ̂n m Point est True var Relative Bias Coverage (%) Mean width (×102)

(×10) (×104) (%) for 95% CI for 95% CI

Rubin BS Rubin BS Rubin BS

Quantile Wald Quantile Wald

5 -10.0 35.6 -2.4 -1.5 94.6 94.7 95.2 23.7 23.2 23.7

Regression 10 -10.0 34.3 -0.9 0.7 94.9 95.0 95.7 23.1 23.0 23.5

100 -10.0 33.4 -0.5 2.2 95.0 95.3 95.7 22.6 22.9 23.4

5 -10.0 68.5 28.6 -2.7 96.3 94.2 94.7 36.6 30.8 31.6

IPW 10 -10.0 65.9 32.7 -0.8 96.7 94.5 94.9 35.6 30.4 31.3

100 -10.0 64.0 34.3 -0.2 97.3 94.5 95.1 35.2 30.1 30.9

5 -10.0 36.5 7.3 -3.9 95.5 94.4 94.9 25.4 23.2 23.7

AIPW 10 -10.0 34.9 9.7 -1.3 96.1 94.6 95.4 24.5 23.0 23.5

100 -10.0 33.8 10.2 0.1 96.1 94.9 95.3 23.9 22.8 23.3

5 -10.0 39.5 18.5 -4.7 96.6 94.1 94.6 27.8 24.0 24.5

Matching 10 -10.0 37.7 21.4 -2.6 97.1 94.5 95.0 26.8 23.7 24.2

100 -10.0 36.5 22.1 -1.5 97.2 94.8 95.6 26.2 23.5 24.0

health satisfaction. The general health satisfaction outcome (Y ) is fully observed,

with a lower value indicating better satisfaction. A sample of 4,845 individuals is

divided into two groups: one (76%) with at least high school education, denoted

as A = 1, and the other (24%) with an education level lower than high school,

denoted as A = 0. The covariates X consist of four categorical variables, namely,

age, race, gender, and marital status, and one continuous variable, namely, the

family poverty ratio, which is truncated at zero and five. About 10% of the family

poverty ratio values are missing. The other four covariates are fully observed.

The general health satisfaction outcome (Y ) is an ordinal variable, with

distinct values 1, 2, 3, 4, 5. We introduce a latent continuous variable Y ∗ to link

the ordinal outcome to the continuous space with support (−∞,+∞):

Y =


1 if Y ∗ < 1,

[Y ∗] if 1 ≤ Y ∗ ≤ 5,

5 if Y ∗ > 5,

where [·] represents rounding to the nearest integer. Because the family poverty

ratioX[1] is a continuous variable truncated at zero and five, we introduce another

latent variable X∗
[1] to link the recorded truncated family poverty ratio values to

the full continuous space (−∞,+∞):

X[1] =


0 if X∗

[1] < 0,

X∗
[1] if 0 ≤ X∗

[1] ≤ 5,

5 if X∗
[1] > 5.
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Table 6. Result for the ACE of education on general health satisfaction: point estimates,
variance of the point estimators, and 95% CI estimated using Rubin’s method and
proposed wild bootstrap method.

Rubin BS

Method Point est Var est 95% CI Var est 95% CI

(×104) (×104) Wald

Regression -0.36 19 (-0.45,-0.27) 19 (-0.45,-0.27)

IPW -0.25 65 (-0.41,-0.10) 54 (-0.40,-0.11)

AIPW -0.27 32 (-0.38,-0.16) 31 (-0.38,-0.16)

Matching -0.25 40 (-0.37,-0.12) 28 (-0.35,-0.14)

Accordingly, let X∗ include the latent family poverty ratio variable X∗
[1] and

the other four variables. To facilitate imputation and estimation, we assume

the latent outcome Y ∗ follows a linear regression model, that is, Y ∗(a) =

X∗Tβa + ϵ(a), where ϵ(a) ∼ N (0, σ2
a), for a = 0, 1. The treatment indicator

follows Bernoulli{πA(X
∗)}, with πA(X

∗) = Φ(X∗Tα). The missing indicator

follows Bernoulli{πR(X
∗, A)}, with πR(X

∗, A) = Φ{(X∗, A)Tγ}, under which the

missingness of the family poverty ratio probably depends on the missing values

themselves, but not the outcome variable (i.e., Assumption 8). In addition,

we assume the latent family poverty ratio follows a linear regression model

with the other covariates, that is, X∗
RX

= XRX
η + ϵX , where X∗

RX
= X∗

[1]

represents the latent family poverty ratio, and XR represents the other four

covariates, ϵX ∼ N (0, σ2
X). We conduct model diagnoses in the Supplementary

Material and the diagnosis plots show that the proposed model fits the data well.

Given the outcome model and the covariate model, the missing values of the

family poverty ratio can be imputed by f(X∗
RX

| A,XRX
, Y, RX ; θ

∗(j)) ∝ f(Y ∗ |
X∗, A; θ∗(j))f(RX | X∗, A; θ∗(j))f(A | X∗; θ∗(j))f(X∗

RX
| XRX

; θ∗(j)) given each

posterior sample of the parameters θ∗(j). Further details about the priors and the

posterior sampling are provided in the Supplementary Material.

For each imputed data set, we consider the full-sample point estimators

of the ACE using an outcome regression, IPW, AIPW, and matching based

on the propensity score to reduce the dimensionality of the matching variable

(Abadie and Imbens (2016)). We compare Rubin’s variance estimator and the

proposed wild bootstrap variance estimator. Table 6 shows that education has

a significantly positive effect on general health satisfaction. The variances for

the IPW estimator and matching estimator estimated using Rubin’s method are

larger than those estimated using the wild bootstrap method, whereas the two

methods give similar results for the regression estimator and the AIPW estimator.

This suggests that Rubin’s method works well for the regression estimator and the

AIPW estimator, but might overestimate the variances of the IPW and matching

estimators, which is consistent with our observations in the simulation studies.
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8. Conclusion

We have established a unified inference framework for MI using a martingale

and a wild bootstrap inference for consistent variance estimation. Our framework

allows a wide class of asymptotically linear full-sample estimators. We demon-

strate its utility in estimating the ACE with missing values. The simulation

results indicate good finite-sample performance of the proposed method when MI

adopts different full-sample estimators, including the outcome regression, IPW,

AIPW, and matching estimators. Our framework works well when the missing

mechanism is either MAR or MNAR.

Our framework can also be extended in the following directions. First, MI

originated for survey data, which often contain design weights (or sample weights)

to account for sample selection. If the sampling weights are noninformative, the

sample data follow the population model, and therefore the imputation can ignore

the sampling weights. However, if the sampling weights are informative, then the

sample data distribution differs from that of the population model, in which case,

the imputation must consider the sampling weights. The full Bayesian imputation

is difficult (if not impossible) to implement in this case. To mitigate this problem,

Kim and Yang (2017) and Wang, Kim and Yang (2018) propose an approximate

Bayesian computation techniques that can be used for MI in complex sampling.

It would be interesting to extend the martingale representation to this setting in

future work. Second, in the current work, we assume that the imputer’s model

and the analyst’s model are the same and are specified correctly. Xie and Meng

(2017) argue that the uncongeniality of the imputer’s model and the analyst’s

model is the rule, but not an exception. Their findings suggest that even when

both models are specified correctly, if the imputation model is more saturated

than the analysis model, then the standard MI inference may be invalid. In

future work, we will extend our framework to this setting for consistent inference

allowing uncongeniality.

Supplementary Material

The online Supplementary Material contains common ACE estimators and

their influence functions, proofs, the priors and MCMC details for the simulation

study and application, and the model diagnosis in the application. The R code to

implement the proposed method is available at https://github.com/qianguan/

miATE.
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