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SUMMARY 15

Functional principal component analysis has been shown to be invaluable for revealing varia-
tion modes of longitudinal outcomes, which serves as important building blocks for forecasting
and model building. Decades of research have advanced methods for functional principal com-
ponent analysis often assuming independence between the observation times and longitudinal
outcomes. Yet such assumptions are fragile in real-world settings where observation times may 20

be driven by outcome-related reasons. Rather than ignoring the informative observation time
process, we explicitly model the observational times by a general counting process dependent on
time-varying prognostic factors. Identification of the mean, covariance function, and functional
principal components ensues via inverse intensity weighting. We propose using weighted pe-
nalized splines for estimation and establish consistency and convergence rates for the weighted 25

estimators. Simulation studies demonstrate that the proposed estimators are substantially more
accurate than the existing ones in the presence of a correlation between the observation time pro-
cess and the longitudinal outcome process. We further examine the finite-sample performance of
the proposed method using the Acute Infection and Early Disease Research Program study.

Some key words: Functional data analysis; Informative sampling; Missing at random. 30

1. INTRODUCTION

Longitudinal data have been extensively studied in the literature of statistics. Our research
is motivated by the investigation of the disease progression in HIV-positive patients. Highly
active antiretroviral therapy (HAART) has been shown to be an effective treatment for HIV
in improving the immunological function and delaying the progression to AIDS (Hecht et al., 35

2006). Our goal is to study the mean trend and variation mode of CD4 counts, an indicator
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2 P. SANG ET AL.

of immune function, over time after treatment initiation, which is of major importance: first, it
depicts a whole picture of how the disease evolves over time and thus provides new insights
into the treatment mechanism. Second, it enables the prediction of disease progression and helps
patients manage the disease better. Third, such information can also be used to design optimal40

treatment regimes for better clinical outcomes (Guo et al., 2021).
Parametric random effect models (Laird & Ware, 1982) and generalized estimating equations

models (Liang & Zeger, 1986) are commonly adopted to fit longitudinal data; see Diggle et al.
(2002) for a comprehensive overview. Though the latter does not need to specify the parametric
distribution of the longitudinal response, it imposes a specific form of the mean response. To45

better understand the complexity of real-world data, Figure 2(a) shows the trajectories of CD4
counts at the follow-up visits from five randomly selected patients in the motivating applica-
tion, where the number and timing of the visits differ from one to the next. Extracting useful
information from such data has become a challenging statistical problem.

Functional data analysis offers a nonparametric means to modeling longitudinal data at ir-50

regularly spaced times. Repeated measurements of a longitudinal response from a subject are
regarded as sparsely sampled from a continuous random function subject to measurement errors.
Moreover, the underlying true random function is typically modeled in a nonparametric man-
ner, thus avoiding model misspecification suffered from the two aforementioned approaches. To
estimate the mean and covariance functions of the underlying continuous function from sparse55

observations, existing approaches usually assume that the observation times are independent of
the longitudinal responses and then apply nonparametric smoothing techniques such as kernel
smoothing to the aggregated observations from all subjects; see Yao et al. (2005), Li & Hsing
(2010) and Zhang & Wang (2016) for instance.

Yet the independence assumption of the observation times and responses is restrictive in prac-60

tice; e.g., patients with deteriorative health conditions may be more likely to visit the health care
facilities (Phelan et al., 2017). Without addressing the informative observation time process, the
study results can be biased and misleading (Lin et al., 2004; Sun et al., 2021). Xu et al. (2024)
considered using a marked point process to model the informative visit times in longitudinal
studies. But their work assumes that both the longitudinal outcome process and the latent pro-65

cess used to define the intensity function of the point process are Gaussian, which may not hold
in practice. To address the same issue, Weaver et al. (2023) assumed that both the intensity func-
tion of the point process and the longitudinal outcome process depend on a positive latent factor.
This assumption is slightly restrictive and can hardly be verified since it implies the dependence
between observation times and the longitudinal outcome can be completely explained through70

this single latent factor. In this article, we propose to model the observation time process by a
general counting process with an intensity function depending on time-dependent confounders.
But it should be noted that the time-dependent confounders can be just functions of the observed
outcome themselves. To account for the effect of the observation time process when estimating
the mean function, we leverage the inverse of the intensity function at each observation time75

point as its weight and then apply penalized B-spline functions to the aggregated observations.
This idea is further extended to estimating the covariance function with the tensor product of
B-spline bases, weighted by a product of the inverse of the intensity functions at the two time
points, to correct the selection bias of the pairs of observations. Variation modes can thus be vi-
sualized through an eigen-decomposition on the estimated covariance function, which is referred80

to as functional principal component analysis.
The proposed functional principal component analysis accounts for the dependence between

the response process and the observation time process via inverse intensity function weighting.
This fills an important gap in the literature as traditional approaches often assume that response
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Functional principal component analysis under informative sampling 3

observations are independent of the observation times, which however is likely to be violated 85

in real-world studies. Moreover, we establish consistency and convergence rates of our proposed
estimator when estimating the mean function, covariance function, and functional principal com-
ponents of a random function. Numerical studies demonstrate that in contrast to the traditional
approaches, our approach can yield consistent estimates when the response observation times are
indeed correlated with the underlying response process. 90

2. BASIC SETUP

2.1. Functional principal component analysis and observation time process
Suppose that X is a random function defined on a compact set I ⊂ R. Let L2(I) denote

the collection of measurable square-integrable functions on I. Furthermore, we assume that∫
I E{X

2(t)}dt < ∞. Let µ(t) = E{X(t)} and C(s, t) = cov{X(s), X(t)} denote the mean 95

function and the covariance function of X , respectively. Then we can define the covariance
operator C : L2(I) → L2(I) that satisfies (Cf)(t) =

∫
IC(s, t)f(s)ds for any f ∈ L2(I). It fol-

lows from Mercer’s theorem that there exists an orthonormal basis (φj)j of L2(I) and a se-
quence of nonnegative decreasing eigenvalues (κj)j such that C(s, t) =

∑∞
j=1 κjφj(s)φj(t).

The eigenfunctions of C, φj’s are also referred to as functional principal components of X . In 100

fact, X admits the following Karhunen-Loève expansion, X(t) = µ(t) +
∑∞

j=1 ζjφj(t), where
ζj =

∫
I{X(t)− µ(t)}φj(t)dt is called the jth functional principal component score of X and

satisfies E(ζjζk) = δjkκj , where δjk = 1 if j = k and 0 otherwise. The expansion is use-
ful to approximate an infinite-dimensional random function because approximating X(t) by
µ(t) +

∑p
j=1 ζjφj(t) yields the minimal mean squared error when using an arbitrary orthonor- 105

mal system consisting of p functions for any p ∈ N+. Additionally, functional principal compo-
nent analysis enables us to understand variation modes of this random function, as it displays the
greatest variations along with the directions of principal components.

In practice, a fully observed trajectory of a random function may not be accessible due to
various practical hurdles and is only observed at sparsely and irregularly spaced time points. 110

To describe the irregularly-spaced observation time process for observing Xi(t), let the set of
visit times be 0 ≤ ti1 < . . . < timi ≤ τ , where mi is the total number of observations, and τ
denotes the predetermined study end time. Therefore, the domain of the random function X(t)
is I = [0, τ ]. In stark contrast to the regular time setting, the observed time points are allowed
to vary from one subject to another. Let Xij = Xi(tij) + ϵij denote the noisy observation of the 115

ith random function at time tij , where ϵij is the measurement error. Our primary interest is to
perform functional principal component analysis from observations {Xij : j = 1, . . . ,mi, i =
1, . . . , n}. Yao et al. (2005) and Li & Hsing (2010) address this problem under the assumption
that the observed time points are independently and identically distributed, and Xij, tij and mi

are independent of each other for subject i. However, in practice, whether or not there exists 120

an observation at one particular time point often depends on the response process. Therefore,
analysis of such data requires assumptions on the mechanism for the observation time process.

2.2. Informative observation times
Let Ni(t) be the general counting process for the observation times; that is, Ni(t) =∑∞
j=1 I(tij ≤ t) for t ∈ [0, τ ]. We use overline to denote the history; e.g., Xi(t) = {Xi(u) : 0 ≤ 125

u ≤ t} is the history of the stochastic process X until time t for the ith subject. It is possible that
the dependence between the longitudinal outcome and the observation times can be explained
by merely using functions of the observed outcomes. Next we focus on a more complicated sce-
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4 P. SANG ET AL.

nario, where an auxiliary process is also involved in inducing the dependence of the outcome and
observation times. In addition to the response process, we also observe a covariate process Zi(t)130

that is related Xi(t) and Ni(t), which can be multivariate, time-independent, or time-varying. Let
X

obs
i (t) = {Xi(s) : dNi(s) = 1, 0 ≤ s ≤ t} and N i(t) = {Ni(s) : 0 ≤ s ≤ t} be the history of

observed variables and observation times through t, respectively. We denote the observed history
of variables for subject i at time t as Oi(t) = {Xobs

i (t−), N i(t−), Z
obs
i (t−)}, where t− indi-

cates the time up to but excluding t. We use F∗
it to denote the filtration generated by Oi(t) and135

Xi(t), and E{dNi(t) | F∗
it} denotes the estimated number of observation made in [t, t+ dt),

given the observed history up to t for the ith subject. Let λ{t | Oi(t)} = E{dNi(t) | Oi(t)}/dt
denote the conditional intensity function of Ni(t) given the observed history up to t, but not
including t. For the above notations, we suppress i to denote their population counterparts. In
practice, the irregular observation times can be due to a number of reasons that may be related to140

subjects’ responses, in which case, we say that the observation times are informative. In this case,
ignoring the observation time process leads to biased results for the response variable. Similar
to the missing data literature, we require a further assumption to identify the mean and variance
functions of X(t) under an informative observation time process.

Assumption 1. (i) E{dNi(t) | Oi(t), Xi(t)} = E{dNi(t) | Oi(t)}, and (ii) λ{t | Oi(t)} > 0145

almost surely for i = 1, . . . , n.

Assumption 1(i) implies that the observed history collects all prognostic variables that affect
the observation time process. It is plausible when Oi(t) includes the past observed responses
X

obs
(t−), historical observation pattern N(t−), and past observed important auxiliary con-

founder process Z
obs

(t−) that is related to both observation time and response. Assumption150

1(ii) suggests that all subjects have a positive probability of visiting at any time t. Assumption 1
is key toward identification, see §2.3; however, it is not verifiable based on the observed data and
thus requires careful consultation of subject matter knowledge.

2.3. Identification via inverse intensity function weighting
We show that Assumption 1 leads to the identification of µ(t), C(t, s), and φj(t) by providing155

a brief outline of the proof below, while a detailed proof is deferred to §S.1 in the supplementary
material. First, by the law of total expectation, we have for any t ≤ τ ,

E[X(t)λ−1{t | O(t)}dN(t)] = E[X(t)λ−1{t | O(t)}E{dN(t) | F∗
t }] = µ(t)dt. (1)

Weighting by λ−1{t | O(t)} serves to create a pseudo-population in which the observation time
process is no longer associated with X(t) as if the observed responses were sampled completely
at random. Thus, µ(t) is identifiable.160

Next, assuming s < t and by the double use of the law of total expectation, we have

E[{X(t)− µ(t)}{X(s)− µ(s)}λ−1{s | O(s)}dN(s)λ−1{t | O(t)}dN(t)]

= E[{X(t)− µ(t)}{X(s)− µ(s)}λ−1{s | O(s)}dN(s)λ−1{t | O(t)}E{dN(t) | F∗
t }]

= E[{X(t)− µ(t)}{X(s)− µ(s)}λ−1{s | O(s)}dN(s)dt]

= E[{X(t)− µ(t)}{X(s)− µ(s)}λ−1{s | O(s)}E{dN(s) | X(t),F∗
s }dt]

= E[{X(t)− µ(t)}{X(s)− µ(s)}dtds] = C(t, s)dtds. (2)

Weighting by λ−1{s | O(s)}λ−1{t | O(t)} serves to create a pseudo-population in which the
observation time process is no longer associated with {X(t)− µ(t)}{X(s)− µ(s)}. Hence,
C(t, s) is identifiable.
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Functional principal component analysis under informative sampling 5

3. ESTIMATION 165

In practice, the intensity function for the observation time process is unknown and re-
quires modeling and estimation. Following Lin et al. (2004) and Yang et al. (2018, 2020),
we assume the intensity function follows a proportional intensity function λ{t | O(t)} =
λ0(t) exp[g{O(t)}Tβ], where g(·) is a pre-specified multivariate function of O(t). Let θ =

{λ0(t), β}. Under Assumption 1, the estimator of θ, denoted by θ̂ = {λ̂0(t), β̂}, can be obtained 170

from the standard software.
We treat the estimated intensity function, {λ̂0(tij)}−1 exp[−g{Oi(tij)}Tβ̂], as the sampling

weight of Xij . To estimate the mean function, because we cannot accurately recover each trajec-
tory of Xi from sparse and noisy observations, we propose using weighted penalized splines to
borrow information from aggregated observations from all subjects. In particular, let 0 = ξ0 < 175

ξ1 ≤ · · · ≤ ξK < ξK+1 = τ be a sequence of knots. The number of interior knots K = Kn = nη

with 0 < η < 0.5 being a positive integer such that max1≤k≤K+1 |ξk − ξk−1| = O(n−η). Let Sn

be the space of polynomial splines of order l ≥ 1 consisting of functions h satisfying: (i) in each
subinterval, h is a polynomial of degree l − 1; and (ii) for l ≥ 2 and 0 ≤ l′ ≤ l − 2, h is l′ times
continuously differentiable on [0, τ ]. Let {Bj(·), 1 ≤ j ≤ qn}, qn = Kn + l, be the normalized 180

B-spline basis functions of Sn. Then for any h ∈ Sn, there exists γ = (γ1, . . . , γqn)
T ∈ Rqn such

that h(t) =
∑qn

j=1 γjBj(t) = γTB(t) for t ∈ [0, τ ]. To account for the effect of the observation
time process on estimating the mean function, we define the weight

wij(µ) = {λ̂0(tij)}−1 exp[−β̂Tg{Oi(tij)}] (3)

for the jth observation of the ith subject, where j = 1, . . . ,mi and i = 1, . . . , n. Let m be a
positive integer, smaller than l. Suppose the penalty term in the penalized splines is 185∫ τ

0
γT

{
B(m)(t)

}⊗2
γ dt,

where a⊗2 = aaT for any matrix or column vector a. Consequently, the penalty matrix is Qµ =∫ τ
0 {B(m)(t)}⊗2 dt. We then estimate the mean function by µ̂(t) = BT(t)γ̂µ with

γ̂µ = argmin
γ∈Rqn

 n∑
i=1

mi∑
j=1

{Xij −B(tij)
Tγ}2wij(µ) +

λµ

2
γTQµγ

 , (4)

where λµ > 0 is a tuning parameter controlling the roughness of the estimated mean function.
Next, we present an estimator of the covariance function. Let Gi(tij , til) = {Xij − 190

µ̂(tij)}{Xil − µ̂(til)} be the raw estimate of the covariance function evaluated at (tij , til). By
(2), we introduce

wijl(C) = {λ̂0(tij)λ̂0(til)}−1 exp
(
−β̂T[g{Oi(tij)}+ g{Oi(til)}]

)
, (5)

where j, l = 1, . . . ,mi and i = 1, . . . , n, to account for the effect of the observation time
process on estimating the covariance function. We use the tensor product of Bj(t)’s to
estimate this bivariate covariance function. More specifically, C(t, s) is approximated by 195∑

1≤j1≤j2≤qn
ηj1j2

Bj1
(t)Bj2

(s). To ensure that C(t, s) = C(s, t), we require Ξ = (ηj1j2
) to be

a qn × qn symmetric matrix. Denote D(t, s) = B(t)⊗B(s), which is a vector of length q2
n, and

η = vec(Ξ). Then the estimated covariance function is Ĉ(t, s) =
∑qn

j1,j2=1 η̂j1j2
Bj1

(t)Bj2
(s),
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6 P. SANG ET AL.

where Ξ̂ is obtained by solving the minimization problem:

Ξ̂ = argmin
Ξ=ΞT

 n∑
i=1

∑
1≤j ̸=l≤mi

{
Gi(tij , til)−

qn∑
j1,j2=1

ηj1j2
B(tij)B(til)

}2

wijl(C) +
λC

2
ηTQCη

 .

(6)
Here QC is a q2

n × q2
n penalty matrix with (j1, j2)th entry being∫ τ

0

∫ τ

0

 ∑
i+j=m

(
m

i

)
∂iDj1

(t, s)∂jDj2
(t, s)

 dtds

(Lai & Wang, 2013), and λC > 0 is a tuning parameter that controls the trade-off between fidelity200

to the data and plausibility of C(t, s). The functional principal components are then estimated
by solving ∫ τ

0
Ĉ(s, t)φj(s)ds = κ̂jφj(t) (7)

subject to
∫ τ
0 φ2

j (t)dt = 1 and
∫ τ
0 φj(t)φk(t)dt = 0 when j ̸= k. Detailed steps for solving these

equations can be found in Chapter 8.4 of Ramsay & Silverman (2005).
In the following numerical implementations, we take m = 2. The generalized cross-validation

is used to choose the tuning parameters λµ, λC and the number of basis function qn. In par-
ticular, let Y denote the vector of length N =

∑n
i=1mi consisting of observations Xij , j =

1, . . . ,mi, i = 1, . . . n. Let W = diag{wij(µ), j = 1, . . . ,mi, i = 1, . . . , n} and Yw = W 1/2Y .
According to Chapter 3 of Gu (2013), the generalized cross-validation score for (4) is

Vµ(λµ) =
N−1Y T

w {I −Aw(λµ)}2Yw
[N−1tr{I −Aw(λµ)}]2

,

where I is an N ×N identity matrix and Aw(λµ) is the so-called smoothing matrix satisfying205

Ŷw = W 1/2Ŷ = Aw(λµ)Yw. An explicit form of Aw(λµ) can be found in (3.12) of Gu (2013).
We select λµ by minimizing Vµ(λµ). The smoothing parameter λC for the covariance function
estimate defined in (6) is chosen in a similar manner. Moreover, the number of basis functions
qn is selected by gradually increasing its value in a grid until it leads to a significant decrease in
the generalized cross-validation score; see §S.2.2 of the supplementary material for details.210

4. THEORETICAL PROPERTIES

4.1. Large sample properties of the mean function estimator
For d ∈ N+, let Cd([0, τ ]) denote the class of functions with continuous dth derivatives over

[0, τ ]. Without loss of generality, we assume τ = 1 in the theoretical analysis. Below, we present
the regularity assumptions for deriving the large sample properties for proposed mean and co-215

variance function estimators, as well as the estimated functional principal components.

Assumption 2. The true mean function of X , µ(·), belongs to Cd([0, τ ]) for some d ≥
max(2,m).

Assumption 3. The knots are equally spaced in Sn. The order of the spline functions satisfies
l ≥ d and l > m.220
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Functional principal component analysis under informative sampling 7

Remark 1. Assumptions 2 and 3 ensure that there exists a spline function µ̃(·) = BT(·)γ̃ ∈ Sn

such that ∥µ− µ̃∥∞ = O(q−d
n ). The equal-spaced knots assumption is used for the convenience

of deriving the decay rate; see Proposition 4.2 of Xiao (2019). Proof of this result is similar to
that of Lemma 1 of Smith & Barrow (1979) and is omitted here. Without the equal-spaced knots
assumption, deriving the decay rate of the eigenvalues of the relevant penalty matrix would be 225

more challenging. This is left for future research.

Assumption 4. Therefore exists some constant δ > 2 such that E(∥X∥δ∞) < ∞.

Assumption 5. The random errors ϵij’s are independent and identically distributed with mean
0 and E(∥ϵ∥δ∞) < ∞, where δ is defined in Assumption 4 and ϵ denotes the random process of
the error. 230

Establishing the uniform convergence rate on the estimated mean function entails strong mo-
ment conditions on X and ϵ as in Assumptions 4 and 5. Similar assumptions are considered in
Li & Hsing (2010) and Zhang & Wang (2016).

Assumption 6. In the intensity function λ(t) = λ0(t) exp[g{O(t)}Tβ0], λ0(t) belongs to
Cp([0, τ ]) for some p ≥ d and is strictly positive, and g{O(t)} is almost surely bounded over 235

[0, τ ].

This assumption specifies a smoothness property for the baseline intensity to ensure that a de-
sirable convergence rate can be achieved when replacing the true intensity function with the
estimated one in (3). This assumption is commonly adopted in a semiparametric Cox model
(Cox, 1972) for modeling the intensity function for a counting process. We can estimate β by 240

the partial likelihood approach, the cumulative baseline intensity function Λ0(t) =
∫ t
0 λ0(s)ds

by Breslow’s estimator, and further λ0(t) by a kernel-smoothed estimator defined in (S18). More
details can be found in §S.2 in the supplementary material. Under Assumption 6, according to
Andersen et al. (1993), β̂ is

√
n-consistent, and λ̂0(t) is a consistent estimator of λ with rate

n−p/(2p+1), if the bandwidth hn satisfies hn ≍ n−1/(2p+1) and the kernel K is of order ⌊p⌋, 245

which denotes the greatest integer strictly less than p (Tsybakov, 2009, p. 5). Under this as-
sumption, the convergence rate of λ̂(t) is no slower than the uniform convergence rate given
in Theorem 1. Consequently, this semiparametric estimate of λ(t) will not affect the uniform
convergence rate of the proposed mean and/or covariance function. The following theorem es-
tablishes the uniform convergence rate for the proposed mean function estimator. 250

THEOREM 1. Assume Assumptions 1–6 hold. Then the estimated mean function µ̂(t) =
B(t)Tγ̂µ, where γ̂µ is defined in (4), satisfies

sup
t∈[0,τ ]

|µ̂(t)− µ(t)| = OP

{
q−d
n + λµq

m
n +

(
qn log n

n

) 1
2

}
, (8)

provided that λµq
2m
n = O(1), qδn = O{(n/log n)δ−2} and log n/n = o(q−4

n ).

Remark 2. If qn ≍ (n/ log n)1/(1+2d) and λµ = o{q−(d+m)
n }, the uniform convergence rate

of µ̂ is OP {(n/ log n)−d/(1+2d)}. Our mean function estimator achieves the optimal conver- 255

gence rate {n/ log(n)}−d/(2d+1), established in Stone (1982) for independent and identically
distributed data and in Li & Hsing (2010) for sparse functional data with the assumption that the
observational times are independent of the functional data.

To derive the convergence rate for the proposed covariance function estimator, we further need
the following assumption. 260
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8 P. SANG ET AL.

Assumption 7. The true covariance function of X , C(·, ·), belongs to Cd([0, τ ]2).

Similarly to the mean function, by the result on p.149 of De Boor (1978), Assumption 7 leads
the existence of η̃ ∈ Rq2n such that

sup
(t,s)∈[0,τ ]2

|C(t, s)−DT(t, s)η̃| = O(q−d
n ).

The following theorem establishes the convergence rate for the proposed covariance function
estimator.

THEOREM 2. Assume Assumptions 1–7 hold with some δ > 4 in Assumptions 4 and 5. The
estimated covariance function Ĉ(t, s) = D(t, s)Tη̂, where η̂ = vec(Ξ̂) defined in (6), satisfies

sup
(t,s)∈[0,τ ]2

|Ĉ(t, s)− C(t, s)| = OP

{
q−d
n + λCq

m
n +

(
q2n log n

n

) 1
2

}
,

provided that λCq
2m
n = O(1), qδn = O{(n/log n)(δ−2)/2} and log n/n = o(q−4

n ).

Remark 3. If qn ≍ (n/ log n)1/(2d+2) and λC = O(q−m−d
n ), then the uniform convergence265

rate of Ĉ is OP {(n/ log n)−d/(2d+2)}. In other words, the uniform convergence rate of the co-
variance function estimator is the same as the optimal rate established in Stone (1982) for inde-
pendent and identically distributed data and in Li & Hsing (2010) for sparse functional data with
the assumption that the observational times are independent of the functional data.

COROLLARY 1. Under the same assumptions of Theorem 2, qn ≍ n1/(4d+2) and λC =270

O(q−m−d
n ), for 1 ≤ j ≤ j0 satisfying κ1 > · · · > κj0 > κj0+1 ≥ 0, we have

|κ̂j − κj | = OP (n
− 1

2 ) and
{∫ τ

0
|φ̂j(t)− φj(t)|2dt

} 1
2

= OP (n
− d

2d+1 ),

where κ̂j and φ̂j denote the jth eigenvalue and eigenfunction of Ĉ(t, s), respectively.

This conclusion is similar to Theorem 1 of Hall et al. (2006), which is a refined result of
Theorem 2 of Yao et al. (2005).

5. SIMULATION STUDIES275

5.1. Simulation design
The simulated response process {Xi(t) : i = 1, . . . , n} is generated by Xi(t) = sin(t+

1/2) +
∑50

k=1 νkζikφk(t) + ϵi(t) for t ∈ [0, τ ] with τ = 3, where νk = (−1)k+1(k + 1)−1, ζik’s
are independently following a uniform distribution over [−

√
3,
√
3] and φk(t) =

√
2/3 cos(kπt)

for k ≥ 1 and ϵi(t)’s are independently normally distributed across both i and t, with mean 0 and280

variance 0.01. We consider the following design for observation times. The observation times
of Xi(·) are generated sequentially by a general counting process with the intensity function
λ{t | Xobs

i (t−)} = exp{2Xobs
i (t−)}. This design leads to sparse observations of Xi(t) with

an average of 11.5 observations on each trajectory. We vary the sample size from n = 100 to
n = 200.285

We compare the proposed estimators with the unweighted functional principal component
analysis (Yao et al., 2005) without adjusting for the informative observation time process. For a
fair comparison, we use the penalized spline for smoothing instead of the original local linear
smoother proposed by Yao et al. (2005). For the proposed estimators, we consider both cases
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Functional principal component analysis under informative sampling 9

when the true intensity function is known or estimated to examine the impact of intensity func- 290

tion estimation on subsequent analysis. We report the mean integrated squared errors for the es-
timated mean function, covariance function, and first functional principal component, defined as∫ τ
0 {µ̂(t)− µ(t)}2dt,

∫ τ
0

∫ τ
0 {Ĉ(s, t)− C(s, t)}2dsdt, and

∫ τ
0 {ϕ̂1(t)− ϕ1(t)}2dt, respectively.

We also report the bias and the standard error of the estimated first eigenvalue, denoted by λ̂1.

Table 1: Mean integrated squared errors (×0.01) for the estimated mean function, covariance
function, and first functional principal component. The actual numerical values are the ones
displayed in the table multiplied by 0.01. Standard deviations are presented in the bracket.

n
µ̂(t) Ĉ(s, t) φ̂1(t) κ̂1

UW TW EW UW TW EW UW TW EW UW TW EW
100 6.41 1.13 1.10 3.18 2.63 2.40 14.4 9.8 9.2 4.46 1.11 1.09

(2.00) (.67) (.63) (1.55) (1.04) (.85) (8.4) (5.3) (4.6) (4.73) (3.96) (3.81)

200 6.29 .83 .82 2.94 1.91 1.75 12.6 7.1 6.6 4.68 .50 .56
(1.45) (.46) (.42) (1.94) (.56) (.49) (7.9) (3.7) (3.2) (4.02) (3.00) (2.91)

UW denotes the unweighted method, TW denotes the proposed method assuming that the true inten-
sity function is known, and EW denotes the proposed method where the intensity function is estimated.

Table 1 summarizes mean integrated squared errors over 200 Monte Carlo runs. Figure 1 295

plots the average of the estimated mean functions and the first functional principal components
across 200 Monte Carlo replicates. The unweighted method shows clear biases in estimating
the mean function and the first principal component, while our proposed weighted method can
reduce the biases. Interestingly, the proposed estimators with estimated weights improve the
counterparts with true weights in terms of the mean integrated squared errors of Ĉ(s, t) and 300

φ̂1(t); see Table 1. This phenomenon is similar to the inverse propensity weighting estimator
of the average treatment effect, where one can achieve better efficiency by using the estimated
propensity score instead of using the true score.

0.0

0.4

0.8

1.2

1 2

t

μ
(t
)

a

-1.0

-0.5

0.0

0.5

1.0

1 2

t

ϕ
1
(t
)

b

Fig. 1: Simulation results of the average of estimated mean function (Panel a) and the average of estimated first
functional principal component (Panel b) across 200 Monte Carlo replicates. In both panels, the black solid line
denotes the true function, while the red dashed, green dash-dotted, and blue dotted lines denote the estimates from
the proposed method with estimated weights, the proposed method with true weights, and the unweighted method,
respectively.

In addition, we consider various designs in §S.3 of the supplementary material:
1. λ(t) depends on both an auxiliary process Z and the past history of X , and the true process X 305

also depends on Z. Z can either be a null set or be a multivariate random vector or a stochastic
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10 P. SANG ET AL.

process.
2. The baseline intensity function λ0(t) can be set to be a constant or a linear function.
3. The observational time is independent of the response process.
For all these settings, our proposed method performs similarly to the comparison shown earlier;310

see §S.3 for details.

6. APPLICATION
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Fig. 2: (a) & (b) Trajectories of log CD4 counts and log viral load observed at irregularly spaced follow-up visits
from 5 randomly selected patients. (c) & (d) Estimated mean function and the first eigenfunction of log CD4 counts
from the unweighted method and the proposed weighted method. Here red dashed and blue dotted lines represent the
estimates from the weighted and unweighted methods, respectively.

Most existing studies focused only on the treatment effect of highly active antiretroviral ther-
apy on a clinical endpoint at a fixed time point, e.g. CD4 counts at two years after treatment
initiation (Yang, 2021). On the contrary, our goal is to study the mean trend and variation mode315

of CD4 counts. The observational AIEDRP (Acute Infection and Early Disease Research Pro-
gram) Core 01 study was established by Hecht et al. (2006). It established a cohort of newly
infected HIV patients. The patients were protocolized to visit the physicians for outcome assess-
ment such as CD4 count and viral load at weeks 2, 4, and 12, and then every 12 weeks thereafter,
through week 96. In our analysis, we include 72 patients from the AIEDRP program who initi-320

ated HAART between 52 and 92 days after HIV diagnosis. These patients also had more than 2
visits during the study follow-up. The outcome of interest is log CD4 count, lower values mean-
ing worse immunological function. A unique challenge arises due to substantial variability in
the follow-up visit times at which patient outcomes were assessed. Figure 2(a) and (b) show the
trajectories of log CD4 counts and log viral load at the follow-up visits from 5 randomly se-325

lected patients, respectively. The number and timing of visits differ from one patient to the next,
resulting in irregularly spaced observations. Moreover, such irregular visit times can be due to
obstacles that may be related to patients’ health status and thus informative about the outcome
of interest.
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Functional principal component analysis under informative sampling 11

We apply the proposed method to estimate the mean trend and variation mode of log CD4 330

counts over time. To address the irregularly spaced and informative observation times, we model
the intensity of visit times by a Cox proportional intensity function adjusting for log CD4 counts
and log viral load at the closest past visit. The fitted result for the intensity function, presented
in §S.4 of the supplementary material, shows that patients with lower CD4 counts and higher
viral load are more likely to visit. Figure 2(c) displays the estimated mean functions of the log 335

CD4 counts from unweighted and weighted analyses. The unweighted estimator shows persis-
tently lower means than the weighted estimator over time. This is in line with the fitted result
of the intensity function which suggests that the worse outcomes are more likely to be assessed
and thus the unweighted estimator is biased downward. Figure 2(d) displays the estimated first
eigenfunction which depicts the dominant mode of variation of CD4 counts. The weighted and 340

unweighted analyses tend to agree on the variation mode after 10 months; however, there exist
great discrepancies between them before 10 months. The weighted analysis uncovers the phase
transitions of CD4 counts following treatment initiation: an immediate dramatic change, fol-
lowed by a plateau between 10 months and 20 months, and a rebound after 20 months. Such
transitions are reasonable because antiretroviral therapy promptly reduces the amount of HIV 345

and helps recover the immune system and produce more CD4 cells, while drug resistance can be
developed in extended long treatment uptake and affects CD4 counts to change.

For the sensitivity analysis of the intensity function for the observation times of CD4 counts,
we fit another intensity function with g(O(t)) taken as the log viral load and its square. This new
intensity function leads to a similar estimate of the mean function and the first eigenfunction of 350

log CD4 counts. More details can be found in §S.4 of the supplementary material.

7. DISCUSSION

To handle the informative observation time process, we describe identifying assumptions that
are tantamount to the missingness at random assumption; that is, the unobserved outcomes are
unrelated to the probabilities of observations so long as controlling for observed information. 355

Our weighting strategy can be readily extended to other functional principal component analy-
ses, such as the Principal Analysis by Conditional Expectation proposed by Yao et al. (2005).
Empirical results in §S.3.1 and §S.4 demonstrate similar performance to the proposed approach,
while theoretical comparisons will be explored in future research. More robust and efficient es-
timation than weighting-alone estimators can be developed by using the augmentation of the 360

conditional mean functions (Coulombe & Yang, 2024), which will be another interesting future
research topic. In practice, if a prognostic variable that is related to the observation time pro-
cess is not captured in the data, the observed information is not sufficient to explain away the
dependence between the longitudinal outcomes and the observational time process, leading to ob-
servations not at random or missingness not at random (Pullenayegum & Lim, 2016; Sun et al., 365

2021). Because such assumptions are untestable, sensitivity analysis methodology is critically
important for assessing the robustness of the study conclusion against violation of assumptions;
however, no such methodology has been developed previously. In the future, we will develop a
sensitivity analysis toolkit following (Robins et al., 1999; Yang & Lok, 2017; Smith et al., 2022)
for functional data with irregular observation times. 370
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