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ABSTRACT
Observational cohort studies are increasingly being used for comparative 
effectiveness research to assess the safety of therapeutics. Recently, various 
doubly robust methods have been proposed for average treatment effect 
estimation by combining the treatment model and the outcome model via 
different vehicles, such as matching, weighting, and regression. The key 
advantage of doubly robust estimators is that they require either the treat-
ment model or the outcome model to be correctly specified to obtain 
a consistent estimator of average treatment effects, and therefore lead to 
a more accurate and often more precise inference. However, little work has 
been done to understand how doubly robust estimators differ due to their 
unique strategies of using the treatment and outcome models and how 
machine learning techniques can be combined to boost their performance, 
which we call double machine learning estimators. Here, we examine multi-
ple popular doubly robust methods and compare their performance using 
different treatment and outcome modeling via extensive simulations and 
a real-world application. We found that incorporating machine learning with 
doubly robust estimators such as the targeted maximum likelihood estimator 
gives the best overall performance. Practical guidance on how to apply 
doubly robust estimators is provided.
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1. Introduction

Randomized control trials (RCTs) are considered to be the gold standard for establishing the causal 
effects of interventions. They evaluate interventions among comparable groups (Hariton and Locascio  
2018; Stolberg et al. 2004). However, sometimes it would be impossible to conduct RCTs due to 
limited resources or ethical issues. Observational studies, on the other hand, examine effects in “`real 
world” settings without manipulation (Rosenbaum et al. 2010). As there is no intervention, some 
individuals with certain characteristics may have a different probability of being exposed to treatment 
than others, meaning that the covariate information between treatment groups may be highly 
imbalanced. Therefore, it’s important to adjust for covariate imbalance issues in observational studies.

There are two ways of adjustment for observational studies. The first kind is based on the treatment 
model, also known as the propensity score (PS) model, where the PS is defined to be the probability of 
being treated given covariates (Rosenbaum and Rubin 1983). The common inverse propensity 
treatment weighted estimator falls into this category. The idea of weighting is to create a weighted 
pseudo-population where treatments are “randomized”. Another kind is based on the outcome model. 
This outcome imputation approach tries to impute the missing potential outcomes based on outcome 
modeling (Little and Rubin 2019). Estimators based on PS modeling require the correct treatment 
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model, and estimators based on outcome modeling require the correct outcome model. In practice, it’s 
common to use linear models for PS and outcome modeling. This, however, could be problematic 
because linearity may be an inappropriate assumption for PS and outcomes when the response surface 
is nonlinear. To account for potential nonlinearity, more flexible models are needed to be considered.

Doubly robust estimators combine the above two adjustments in a fortuitous way that the causal 
estimator can be consistent if either the outcome model or the treatment model is correctly specified 
(Bang and Robins 2005). Recently, various doubly robust estimators of different kinds such as 
weighting, matching, and regression have been proposed in the literature to estimate the average 
treatment effects (ATEs) (Glynn and Quinn 2010; van der Laan and Rubin 2006; Yang and Zhang  
2022; Zhou et al. 2019). Although they all use the PS and outcome mean models, they combine them 
differently. Also, doubly robust estimators especially the ones derived from the semiparametric 
efficiency theory are known to have the rate double robustness property (Chernozhukov et al. 2018; 
Kang and Schafer 2007) in the sense that they remain root-n consistent and asymptotically normal 
when using machine learning approaches to estimating the nuisance functions. The unaddressed 
question is how different doubly robust estimators perform coupled with machine learning 
approaches. Also, little work has been done to understand the challenges of covariate selection, 
overlapping of covariate distribution, and treatment effect heterogeneity for doubly robust estimators 
(Naimi et al. 2023).

In this paper, we compare different double machine learning methods for estimating average 
treatment effects, where double machine learning is referred to as the doubly robust estimator using 
machine learning estimators for the propensity score and outcome mean. Specifically, we review 
multiple popular doubly robust methods from the categories of matching, weighting, or regression, 
and compare their performance using different PS and outcome modeling via extensive simulations as 
well as a real-world application. We found that incorporating machine learning with doubly robust 
estimators such as the targeted maximum likelihood estimator gives the best overall performance on 
estimating ATEs. The main contribution of the paper is that we conduct a comprehensive evaluation 
of the empirical performance of estimators. Also, practical guidance in applying these estimators is 
provided.

The remaining paper is organized as follows: In Section 2, we discuss both doubly robust estimators 
and singly robust estimators in detail. Section 3 presents the extensive comparative simulations and 
Section 4 reports on performance of these estimators on a real-world application. Section 5 provides 
practical guidance and concludes the paper.

2. Methodology: singly and doubly robust estimators

2.1. Notation, assumptions, and estimand

All aforementioned methods are based on the potential outcomes framework (Neyman 1923; 
Rubin 1974). Let Xi be the set of observed covariates, Ai be the binary treatment indicator, and Yi 
be the observed outcome for subject i = 1,2,. . .,n. Let Yi(a) be the potential outcome had subject i been 
given a treatment assignment a, where a = 1 is the treatment and a = 0 is the control. We assume 
subjects are independent. The causal estimand of interest is the average treatment effect τ, which is 
defined as τ = E{Y (1) − Y (0)}.

In reality, since only one of the potential outcomes is observed and another is missing, sometimes 
the fundamental problem of causal inference (i.e. estimating average treatment effect) is posited as 
a missing data problem. To estimate causal parameter τ from data with non-randomized treatment 
assignment, the following causal assumptions are needed.

2.1.1. Assumption 1 (stable unit treatment value)
The potential outcomes of any individual are unrelated to the treatment assignment of other 
individuals and there are no multiple versions of the treatment. Sometimes, this is referred to as 
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“consistency” in that the observed outcome is equal to the potential outcome under the actually 
assigned treatment, i.e., the observed outcome is given by Y = Y (A) = AY (1) + (1 − A)Y (0).

2.1.2. Assumption 2 (conditional unconfoundedness or treatment ignorability)
Given covariates X, treatment assignment is independent of potential outcomes, i.e. {Y (0),Y (1)} ⊥ 
A|X.

2.1.3. Assumption 3 (overlap or common support or positivity)
All subjects are possible to receive either arm of treatment, i.e., 0 < P(A = 1|X = x) < 1 ∀x ∈ X.

Assumption 1 ensures there is no interference among subjects and there is no multiple versions of 
the treatment. For observational studies, because the exposure to treatment is not controlled, treat-
ment may be related to the way a subject might potentially respond. Assumption 2 states that it may be 
possible to identify all pre-treatment covariates that are predictors of treatment or outcome. If 
X contains all confounders, among subjects who share the same X there is no association between 
A and potential outcomes. A common practice, in reality, is to collect a large number of possible 
confounders in order to mitigate the violation of this assumption. However, including all available 
covariates in the analysis may introduce bias and variance of the causal effect estimator (Brookhart 
et al. 2006; Myers et al. 2011; Pearl 2011; Yang et al. 2020). Variable selection is hence an important 
procedure when estimating ATE. Assumption 3 adds a restriction on the joint distribution of 
treatment assignment and covariates. Overlap is an important issue in estimating treatment effects 
from non-randomized trials. It describes the extent to which the range of data is the same across the 
two treatment groups. In fact, the lack of overlap may affect all types of estimators. For matching 
estimators, that means it is difficult to find good matches; for weighting estimators, small overlap can 
result in extremely large weights; and for regression estimators, they may heavily rely on extrapolation. 
When Assumption 3 is violated, a common practice is to trim the sample to restrict inference to the 
one with sufficient overlap (Yang and Ding 2018), or to coarsen PS (Zhou et al. 2015).

Given the above stated assumptions, the ATE can be identified from observed data by conditioning 
on available covariates 

where the outer expectation is with respect to the distribution of X over the entire population.
In this section, we first review two kinds of singly robust estimators based on either outcome 

modeling or treatment modeling, respectively, in the sense that the consistency of the estimators 
relies on the correctness of the underlying model. Then, we review various doubly robust 
estimators that combine outcome modeling and treatment modeling in estimating ATE. 
Augmented inverse probability treatment weighting (AIPTW, Cao et al. 2009; Glynn and 
Quinn 2010; Lunceford and Davidian 2004; Robins et al. 2000) belongs to a class of weighting 
estimators. AIPTW is a combination of the basic inverse probability weighting estimator and 
a weighted average of the outcome imputation estimators. AIPTW improves the IPW estimator 
by fully utilizing information about both treatment and outcome. Targeted maximum likelihood 
estimation (TMLE, van der Laan and Rose 2011; van der Laan and Rubin 2006) is a regression 
estimator based on maximum likelihood estimation and includes a “targeting” step that opti-
mizes the bias-variance tradeoff for the causal estimand. Double score matching (DSM, Yang 
and Zhang 2022; Zhang et al. 2021) belongs to the class of matching estimators. DSM matches 
on both propensity score and prognostic score. Penalized spline of propensity methods for 
treatment comparison (PENCOMP, Zhang and Little 2009; Zhou et al. 2019) is an example of 
doubly robust regression estimator. PENCOMP estimates causal effects by imputing missing 
potential outcomes with flexible spline models using multiple imputations.
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2.2. Estimators for ATE based on outcome modeling

A traditional way to adjust for covariate imbalance in observational studies is via the formulation of 
a regression model for the outcome Y on A and X. That is, we can estimate the regression E(Y |A,X) by 
modeling on the observed data. Given the stated assumptions Section 2.1, the ATE can be identified by 
Equation 1.

An example of a regression imputation estimator can be obtained by fitting a linear regression of 
Y given A and all X, which is given by 

Suppose this is indeed the true regression model, by Equation 1, τ = α0+αA · 1+XT αX − (α0+αA·0+XT 

αX) = αA. The ATE can be obtained directly from the coefficient for A, i.e. αA in the regression model. 
If the true regression is specified, this estimator is consistent of τ. Hence, this regression imputation 
estimator is a singly robust estimator in the sense that it is consistent when the outcome model is 
correctly specified.

However, model (2) assumes a constant treatment effect and could be severely biased in the 
case of heterogeneous treatment effects. In practice, treatment effects may vary across subjects. 
The regression imputation estimator is usually obtained by modeling outcome separately within 
each treatment arm rather than by using a single model (2). Note that the regression above can be 
made more general as a general parametric model, since Y can be of any type. The missing 
potential outcomes are then imputed by their predictions from the corresponding posited models. 
The regression imputation estimator is given by the difference in the averages of potential 
outcomes. This can help to address heterogeneity in treatment effects; however, the issue of 
model misspecification still exists. Also, in the case of a near violation of Assumption 3, the 
outcome model-based approaches rely on extrapolation.

2.3. Estimators for ATE based on treatment modeling

Another class of ATE estimators for covariate adjustment relies on the treatment model, or the 
propensity score model. The propensity score is defined as the probability of treatment given 
covariates, i.e., e(X) = E(A|X) = P(A = 1|X).

Under the assumptions defined in Section 2.1, given the propensity score, the potential outcomes 
and treatment assignment are independent (Rosenbaum and Rubin 1983), i.e., {Y (0),Y (1)} ⊥ A |e(X). 
Traditionally, the estimation of propensity is by using a logistic regression where e(X,β) = logit−1{exp 
(β0 + XT βX)}.

Consider the inverse of the propensity score as a weight for the outcome, under the assumptions 
stated in Section 2.1 and the true propensity score 

Similarly, E{(1 − Z)Y/e(X)} = E{Y (0)}.
A well-known common estimator based on propensity score is Inverse Probability Treatment 

Weighting (IPTW) (Lunceford and Davidian 2004). Specifically, IPTW estimates τ by the difference of 
inverse probability of treatment weighted averages, which is given by 
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The inverse weights create a pseudo-population where there is no confounding so the weighted 
averages can reflect averages in the target population. If the true model for the propensity score 
model is specified, τˆIPTW is a consistent estimator of τ. Hence, IPTW is a singly robust estimator in 
the sense that it is consistent when the treatment model is correctly specified. A major drawback of the 
IPTW estimator is that IPTW is highly unstable due to weighting by the inverse of the propensity 
score. If any propensity score is close to zero or one, the IPTW estimator may be extreme.

Variable selection is an important consideration when constructing propensity scores. Including 
predictors of treatment but not outcome, i.e., instrument variables, in the treatment model or the 
outcome model may amplify bias and variance of the causal estimator (Myers et al. 2011; Pearl 2011). 
Including outcome predictors, on the other hand, could boost efficiency (Brookhart et al. 2006; Tan 
et al. 2022; Yang et al. 2020). Therefore, variable selection is needed before the estimation of treatment 
effects to remove variables not related to outcomes. Besides, weighting estimators are inferior in the 
case of extreme propensity scores (Kang and Schafer 2007). Poor overlap in propensity score 
distributions can result in extremely large weights, leading to an unstable estimator with a large 
variance. Furthermore, model misspecification of the propensity score would also lead to a biased 
causal estimate.

2.4. Augmented inverse probability treatment weighted (AIPTW)

AIPTW estimator is a weighting-based estimator that improves IPTW by fully utilizing information 
about both the treatment assignment and the outcome (Glynn and Quinn 2010). It is a combination of 
IPTW estimator and a weighted average of the outcome imputation estimators. Specifically, AIPTW is 
given by 

where m1(X) is a postulated model for E(Y |A = 1,X) and m0(X) is a postulated model for E(Y |A = 0,X). 
The first line of equation (3) is the same as τˆIPTW and the rest adjusts this estimator by a weighted 
average of the two outcome imputation estimators. Rearranging terms in equation (3), τˆAIPTW can be 
given by 

AIPTW is a doubly robust estimator in that as long as either the outcome model is correct or the 
propensity score model is correct, τˆAIPTW is a consistent estimator for τ (Glynn and Quinn 2010). 
Also, it enjoys good large-sample theoretical properties that it can be shown to be asymptotically 
normally distributed via derivation through the theory of M-estimation. Bootstrap can also be used 
to obtain the standard error estimates (Imbens 2004). These standard error estimators tend to be 
reasonable unless the estimated propensity scores are very extreme as weighting estimators are 
inferior in the case of extreme propensity scores (Kang and Schafer 2007). In these scenarios, 
AIPTW is less robust to data sparsity and near violation of the positivity assumption (Glynn and 
Quinn 2010).

Recently, machine learning has gained popularity in the field of causal inference 
(Peters et al. 2017; Prosperi et al. 2020; Tan 2023; Tan et al. 2022, 2022). Chernozhukov et al. 
(2018) shows that the regression imputation and IPTW estimators using machine learning 
nuisance function estimators tend to have large finite sample biases. AIPTW, derived from the 
semiparametric efficiency theory, on the other hand, enjoys the rate double robustness when 
combined with machine learning (Chernozhukov et al. 2018; Kang and Schafer 2007). That is, 

JOURNAL OF BIOPHARMACEUTICAL STATISTICS 5



these doubly robust estimators remain root-n consistent and asymptotically normal when using 
machine learning approaches to estimating the nuisance functions. Incorporating AIPTW with 
machine learning could help to mitigate the impact of regularization bias and overfitting on causal 
estimate (Chernozhukov et al. 2018).

2.5. Targeted maximum likelihood estimation (TMLE)

TMLE, introduced by van der Laan and Rubin (2006), is a maximum likelihood-based estimator 
that incorporates a “targeting” step that optimizes the bias-variance tradeoff for the targeted 
estimator, i.e., ATE. Specifically, TMLE obtains initial outcome estimates via outcome modeling 
and propensity scores via treatment modeling, respectively. These initial outcome estimates are 
then updated to reduce the bias of confounding, which generates the so-call “targeted” predicted 
outcome values.

The estimation steps of TMLE are given as follows: First, initial outcome estimates are constructed 
by Yˆ1 = Eˆ(Y |A = 1,X) and Yˆ0 = Eˆ(Y |A = 0,X), respectively, and the propensity scores eˆ(X) are 
estimated through treatment modeling. Then, the targeted steps begin by first calculating the inverse 
propensity Ha for each subject, 

H1(A = 1,X) = {eˆ(X)}−1 and H0(A = 0,X) = −{1 − eˆ(X)}−1.                              

This is similar in form to inverse probability weights. Then, for the treatment arm and the 
control arm, separately, the observed outcome Y is regressed on those estimated inverse 
propensity with fixed intercepts. Take a binary outcome as an example. A logistic transform 
can be applied with a binary outcome Y where logit EðYjA ¼ 1;XÞ ¼ logit Ŷ 1ð Þ þ ε1H1f

and logit EðYjA ¼ 0;XÞ ¼ logit Ŷ 0ð Þ þ ε0H0:f

In this way, we are able to generate updated, or so-called “targeted” estimates of the set of potential 
outcomes, incorporating information from the treatment mechanism in order to reduce the bias. The 
predicted outcomes are then updated to be 

logit Ŷ�1Þ ¼ logit Ŷ1Þ þ ε̂1H1
��

and logit ^Y�0Þ ¼ logit Ŷ0Þ þ ε̂0H0
��

The final estimates is given by calculating ATE as mean difference in targeted predicted outcome pairs 
across individuals 

The variance of the TMLE estimator is obtained based on the efficient influence curve (Díaz 
and van der Laan 2011; Porter et al. 2011; van der Laan and Rubin 2006; van der Laan et al.  
2007). In general, TMLE and AIPTW are both efficient and have the minimum asymptotic 
variance under the large-sample theory. However, it has been shown that under finite sample 
size or challenging scenarios such as misspecified models, and nearly violated positivity, TMLE 
may still provide causal estimates in the range of ATE since Yˆa* in Equation 4 is range- 
preserving while AIPTW may not (Pirracchio et al. 2015; Porter et al. 2011; van der Laan and 
Rose 2011). The estimation of TMLE is usually coupled with SuperLearner (Díaz and van der 
Laan 2011; van der Laan et al. 2007) for Yˆa and eˆ(X), which is an ensemble of multiple 
statistical and machine learning models. It learns an optimal weighted average of these models 
by giving higher weights to more accurate models and has been proven to have high accuracy 
(Díaz and van der Laan 2011; van der Laan et al. 2007). The performance of TMLE continues 
to boost with the help of SuperLearner. Note that hybrid estimators have been proposed to 
resemble TMLE and AIPTW that use coarsened propensity score estimates instead of model- 
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based ones (Zhou et al. 2015). They may have better performance in case of severe model 
misspecification. However, the choice of coarsening mechanism and the coarsening parameters 
may introduce extra challenges (Zhou et al. 2015), and thus these hybrid estimators are not 
included for comparison in later simulation studies.

2.6. Double score matching (DSM)

Matching methods are powerful because they can be used to re-create a randomized trial that is hidden 
under the observational study. DSM is a matching-based estimator that uses the double balancing 
properties of propensity score e(X) and prognostic score Φ(X), the latter obtained via outcome 
modeling, before the matching is conducted (Yang and Zhang 2022). The prognostic score is defined 
as a balancing score where {Y (0),Y (1)} ⊥ A|Φ(X) (Hansen 2008). The combination of e(X) and Φ(X), 
the double score, is also shown to be a balancing score (Antonelli et al. 2018). That is, {Y (0),Y (1)} ⊥ A| 
{e(X),Φ(X)}.

DSM estimator enjoys the double robustness property in that this result holds even if only 
one score is correctly specified. For unit i, the potential outcome under Ai is the observed 
outcome Yi. The potential outcome under 1 − Ai is not observed but can be imputed by the 
observed outcomes of the nearest M units with 1 − Ai. Denote the augmented score S = {e(X),Φ 
(X)T }T as the matching variable, JS,i as the index set for these matched subjects for subject i, 
and KS;i ¼ Σn

j¼1I i 2 JS;i
� �

as the number of times subject i is used as a match. The matched set 
is constructed with distance metric such as Mahalanobis distance on S that combines pro-
pensity score and prognostic score. The initial DSM estimator of τ is 

A de-biasing DSM estimator τˆDSM suggested by Yang and Zhang (2022) further corrects bias by the 
method of sieves. Correctly the bias may help to improve finite sample performance in practice 
although this bias is asymptotically negligible (Yang and Zhang 2022). A wild bootstrap procedure is 
used to obtain the confidence interval based on Otsu and Rai (2017) for matching estimators (Yang 
and Zhang 2022).

Matching methods tend to be more stable tools when the propensity score is extreme (Stuart  
2010). Matching estimators are robust to model misspecifications if the misspecified model 
belongs to the class of covariate scores (Waernbaum 2012). DSM is robust against model 
misspecification of either the propensity score model or the prognostic score model (Antonelli 
et al. 2018; Yang and Zhang 2022). Specifically, DSM provides multiple protections to model 
misspecification by positing multiple candidate models for both propensity and prognostic scores. 
This helps DSM to achieve near nominal coverage even under model misspecification (Yang and 
Zhang 2022). Furthermore, DSM can serve as a dimensional reduction tool in high-dimensional 
confounding. However, adding too many covariates could result in potential bias as matching 
estimators may not work well on high-dimensional covariates (Abadie and Imbens 2006). It is also 
pointed out that the number of posited models and their functional forms affect the efficiency of 
DSM in a complex way, resulting in an unstable performance if there is a large number of working 
models (Yang and Zhang 2022; Zhao and Yang 2021). Hence, variable selection in matching 
estimators is needed to help identify outcome predictors for better efficiency and remove bias in 
estimating the ATE. Zhang et al. (2021) investigate the performance of DSM under different 
strategies of variable selection, using a caliper, and matching with or without replacement, 
providing the best practice. Also, as the success of matching depends on the functional forms of 
posited models, flexible machine learning methods can be adopted in the modeling of propensity 
scores and prognostic scores before matching.
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2.7. Penalized spline of propensity methods for treatment comparison (PENCOMP)

PENCOMP is a type of regression- and multiple imputation-based approach (Zhou et al. 2019). It 
builds on the method of the penalized spline of propensity prediction previously used in missing data 
problems (Little and An 2004; Zhang and Little 2009). Specifically, PENCOMP obtains propensity 
score e(X) via treatment modeling and uses spline-based regressions with propensity score included 
for outcome modeling. Under the assumptions in Section 2.1, PENCOMP has a double robustness 
property for estimating ATE.

PENCOMP uses Rubin’s rules for combining multiply imputed datasets. The method first gen-
erates a bootstrap sample b from the original data stratified on the treatment group. The propensity 
score e(X) is then estimated. Then, the potential outcomes for the treatments not assigned to subjects 
are predicted with regression models that include splines on the logit of the propensity to be assigned 
that treatment, plus other outcome predictors. For each treatment group, each regression model is 
fitted separately. Specifically, the regression model fitted for subjects with Ai = a is given by 

E{Yi(a)|Xi,Ai = a} = s{eˆ(Xi)} + g{eˆ(Xi),Xi}, i ∈ {i : Ai = a}                              

where s{eˆ(X)} is a penalized spline with pre-specified knots, and g{eˆ(X),X} is a parametric function of 
outcome predictors as well as the estimated propensity. The missing potential outcome of a subject is 
then imputed based on the predictive distribution of E{Y (a)|X,A}. The bootstrap estimate 
τˆPENCOMP

(b) is the difference in the treatment means based on the observed outcome and the imputed 
values of Y. The above procedure is repeated multiple (B) times. The final ATE estimate. The 
confidence interval of τPENCOMP ¼ B� 1ΣB

b¼1τ̂ bð Þ
PENCOMP is generated from this procedure.

According to Zhou et al. (2019), PENCOMP achieves comparable performance with AIPTW in 
terms of bias, RMSE, and coverage under settings of low confounding and correctly specified model 
with linear settings. Also, PENCOMP has some advantages in nonlinear settings compared to AIPTW 
(Zhou et al. 2019). However, in the case of model misspecification, there exists a severe overcoverage 
with wider confidence interval for PENCOMP compared to AIPTW even under a linear setting (Zhou 
et al. 2019). It was also pointed out by Kang and Schafer (2007) that if regression models are 
misspecified, doubly robust methods could suffer from larger bias compared to singly robust methods. 
Besides, the choice of the splines and knots can be challenging in practice.

3. Simulation studies

In this section, we design Monte Carlo simulations to compare each doubly robust method under 
different scenarios mimicking real-world data where there is high nonlinearity in the relationship 
between covariates and treatment, and the relationship between covariates and outcome. Specifically, 
we consider settings with complex data generative models with multivariate covariates. We also 
consider cases of different degrees of separation of the propensity score distributions where the 
propensity scores may be close to zero or one. In Table 1, we provide open-source software or code 
that implements the surveyed DR estimators. The code of our simulation studies can be found on 
GitHub (https://github.com/ellenxtan/RealWorld-DoublyRobustML).

Table 1. Open-source software or code that implements the sur-
veyed DR estimators.

DR estimators Open source code or package

AIPTW AIPW Zhong et al. (2021)
TMLE tmle Gruber and van der Laan (2012)
DSM dsmatch Yang et al. (2020)
PENCOMP PENCOMP Zhou et al. (2019)
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3.1. Data generating process

We design the data generating procedure following the work of Leacy and Stuart (2014), but with the 
nonlinearity of treatment and outcome surfaces considered. The sample size is set to be n = 2000 
throughout. The relationship of variables generated in simulation is illustrated in Figure 1. First of all, 
we generate m = 9 independent and identically distributed standard normal variables X ∈ R9 ∼ N(0,1). 
Let W ∈ R9 be a nonlinear transformation of X where W1,W2,W3 are confounders (i.e., predictors of 
both treatment assignment and outcome), W4,W5,W6 are treatment (only) predictors or instrumental 
variables, W7,W8,W9 are outcome (only) predictors. Specifically, we let 

All W are standardized to have mean zero and variance 1.
We generate the binary treatment indicator A following Bernoulli{e(X)} where e(X) is the propen-

sity score model. The propensity score model is designed to be a linear combination of confounders 
and treatment predictors in terms of W. To assess the property of different degrees on the separation 
of propensity score distributions, we consider two settings for the PS overlap to test the performance of 
estimators. A large overlap is an ideal case, which means there is a reasonable amount of common 
support for the treated subjects and the control subjects. The case of a small overlap, on the other 
hand, indicates a majority of the treated subjects may fail to find any suitable control in their 
neighborhoods. This could be common in scenarios such as rare diseases in practice. Specifically, 
we design the large overlap case to be logit−1{e(X)} = (−3−W1 +2W2 −3W3 +3W4 +2W5+W6)/15. The 
distribution of the resulting propensity score is given in Figure 2. We design the case of a small overlap 
to be logit−1{e(X)} = (−8W1 +1.5W2 +0.5W3 −0.5W4 +2.5W5 −0.5W6)/5. The distribution of the 
resulting propensity score is given in Figure 3.

We generate a continuous outcome, which is a linear combination of confounders and outcome 
predictors in terms of W. Specifically, we let Y (0) = −2 + 1.5W1 −2W2 +1.5W3 +2.5W7 − W8 + W9 + ϵ 
where ϵ ∼ N(0,1). We assume that only X’s are included in the candidate set, therefore nonlinearity in 
the outcome and treatment models induced by W’s should be explicitly modeled by the analyst. This 
mimics that in practice there exists a potential nonlinearity between covariates and outcome and this 
nonlinearity is needed to be considered when fitting models. We consider both a homogeneous 

W1 W2 W3

W4

W5

W6

W7

W8

W9

Figure 1. Illustration of variables involved in simulation studies.
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treatment effect setting and a heterogeneous treatment effect setting. For the homogeneous setting, we 
consider a constant treatment effect. We use τ = 0 in our simulation. Specifically, Y (1) = Y (0) + τ. For 
the heterogeneous setting, we allow the treatment effect to vary by some covariates, and here W1 and 
W3. Specifically, Y (1) = Y (0)+τ +5W1 +3W3 +2W1W3. We try τ = 0. Figure 4 shows how W1 and W3 
affect the treatment effect. The observed outcome Y is given by Y = Y (1)A + Y (0)(1 − A).

To summarize, there are four scenarios in total, which are

(1) homogeneous treatment effect with a large PS overlap (Homo TE + large overlap)
(2) homogeneous treatment effect with a small PS overlap (Homo TE + small overlap)
(3) heterogeneous treatment effect with a large PS overlap (Hetero TE + large overlap)
(4) heterogeneous treatment effect with a small PS overlap (Hetero TE + small overlap)

3.2. Evaluation metrics

We consider the following metrics averaged over observations and simulation replications.

● Bias: bias ¼ R� 1 PR
r¼1 τ̂ rð Þ � τ
n o

● MSE: mse ¼ R� 1PR
r¼1 τ̂ rð Þ � τ
n o2 

● Confidence interval coverage: coverage ¼ R� 1 PR
r¼1 1 τ 2 τ̂ rð Þ

L;0:05; τ̂ rð Þ
U;0:05

� �n o

Figure 2. Distribution of the propensity score under the large overlap case.

Figure 3. Distribution of the propensity score under the small overlap case.

10 X. TAN ET AL.



● Confidence interval width: width ¼ R� 1 PR
r¼1 τ̂ rð Þ

U;0:05 � τ̂ rð Þ
L;0:05

n o

● Type I error: α ¼ 1 � R� 1 PR
r¼1 1 0 2 τ̂ rð Þ

L;0:05; τ̂ rð Þ
U;0:05

� �n o

● Variance ratio: var:ratio ¼ R� 1PR
r¼1 varm τ̂ rð Þ

n oh i
varb τ̂ð Þf g

� 1 where varm(τˆ(r)) is squared  

estimated standard error τˆ(r) for the r-th replication and varb(τˆ) is variance of τˆ over 
R replications. Variance ratio measures the ratio between the mean variance of an 
estimator over R replicates and the variance of estimates from R replicates. It evaluates 
the performance of model-based standard errors of τˆ by comparing them with simulation 
variance reflecting the true variability of estimated τ.

3.3. Analysis steps and compared estimators

For analysis steps, we generate simulated data of n = 2000 subjects (n = 1000 for treatment and 
control, respectively). We apply Lasso (Tibshirani 1996), a variable selection technique before the 
estimation in order to remove variables that are not related to outcomes. The outcome predictors are 
chosen by using all X’s as covariates and the observed outcomes as response. Five-fold cross- 
validation is used to select the best tuning parameter in Lasso, with the cross-validation deviance 
within 1 standard error of the minimum, as recommended by Zhang et al. (2021). Outcome 
predictors are obtained for each treatment arm, respectively. We then use GLM, GAM, or 
SuperLearner separately to model PS and/or outcome before estimating the final ATE. The candi-
date learners in the SuperLearner library are: linear regression, stepwise regression, GAM, and 
Bayesian Additive Regression Trees (Chipman et al. 2010). Doubly robust estimators for compar-
ison are AIPTW, TMLE, DSM, and PENCOMP. We also include for comparison the singly robust 
estimator IPTW, and a regression imputation estimator, denoted as IMP, which fits a twin outcome 

Figure 4. Treatment effect under heterogeneous treatment effect setting.
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model on covariates separated by the treatment group and the control group and then imputes the 
missing potential outcomes with the posited models. Note that IPTW involves fitting the PS model 
only. We generate R = 1000 replications of simulated data sets. For AIPTW and TMLE, bootstrap 
CIs are also computed. Each replication uses B = 500 for the bootstrap CI.

3.4. Simulation results

Figure 5 shows the performance of various causal estimators under the four simulation scenarios. 
A summary of the performance of the estimators is given in Figure 6. In general, doubly robust 
estimators outperform singly robust estimators. IMP tends to have robust performance by chance 
under homogeneous settings but may fail under heterogeneous settings with GLM and GAM because 
of extrapolation and model misspecification. With SuperLearner, IMP greatly reduces bias and 
variance. IPTW has improved performance with GAM in terms of bias and MSE. However, with 
GLM and SuperLearner, IPTW may suffer from large bias and MSE. IPTW may achieve a small bias 
under homogeneous treatment effects but fails under settings of heterogeneous treatment effects. 
Compared to overlap between propensity score distribution, treatment effect heterogeneity has 
a larger effect on the performance of doubly robust estimators. Using SuperLearner for treatment 
and outcome modeling, doubly robust estimators achieve the smallest bias and MSE. Using GLM for 
treatment and outcome modeling could suffer from huge bias because the relationship between 
covariates and the outcome is nonlinear. Using GAM would help improve the bias and MSE (bias 
in particular), but some nonlinearity may still be hard to capture. Under the relatively easy homo-
geneous treatment effect setting, doubly robust estimators including AIPTW, TMLE, and DSM 
achieve a nominal confidence interval. Under challenging settings such as the heterogeneous treat-
ment effect, all doubly robust estimators suffer from overcoverage. Overall, TMLE and AIPTW enjoy 
the most favorable performance with SuperLearner. They have minimal bias and MSE, especially with 
SuperLearner. Under the relatively simple homogeneous treatment effect setting, TMLE and AIPTW 
achieve nominal coverage, and with SuperLearner, these two estimators even achieve the smallest CI 
width and control type I error under 5%. Under the challenging settings, SuperLearner could inflate 
the variance ratio and show an overcoverage issue. With GAM, TMLE, and AIPTW may be able to 
achieve a nominal confidence interval by using bootstrap (see in the setting of heterogeneous 
treatment effects with a small overlap). However, in terms of model misspecification, TMLE is more 
robust than AIPTW with GLM and GAM. TMLE tends to have a smaller bias and MSE. DSM is more 
robust in terms of bias in the case of model misspecification compared to other doubly robust 
estimators (typically revealed in settings of heterogeneous treatment effects). DSM with GAM may 
outperform DSM with SuperLearner in terms of bias and variance ratio (see in the setting of 
heterogeneous treatment effects with a large overlap). PENCOMP suffers from severe bias and MSE 
with GLM or GAM. PENCOMP has improved performance with SuperLearner in terms of bias and 
MSE. However, PENCOMP suffers from severe overcoverage and large type I error in nearly all 
settings. This may be related to previous studies where in the presence of model misspecification, 
PENCOMP tends to exhibit substantial overcoverage, resulting in wider confidence intervals com-
pared to AIPTW, even in a linear setting (Zhou et al. 2019). Additionally, Kang and Schafer (2007) 
highlight that when regression models are misspecified, doubly robust methods may experience 
greater bias than singly robust methods.

4. A real-world application

We apply different causal estimators to a real-world application, the Reflections study (REFL), 
which is a study of real-world examination of fibromyalgia for longitudinal evaluation of costs and 
treatments (Robinson et al. 2012). We focus the analysis on opioid treatment arm (OPI cohort), 
and non-narcotic opioid-like treatment arm (TRA cohort). There are 544 patients in total. The 
outcome of interest is the change from baseline to LOCF in the total score of the Fibromyalgia 
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(a)

(b)

Figure 5. Performance of various causal estimators under the four simulation scenarios. (a) Box plots of the estimators. The red 
dotted lines indicate the ground truth ATE. (b) Performance of the estimators in terms of CI coverage and width, type I error, and 
variance ratio. The red dotted lines indicate the ideal value or threshold of corresponding metrics. Methods with a “_b” indicate 
a bootstrap CI coverage.
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Impact Questionnaire (FIQ), which is a continuous variable ranging from 0 to 80. There are 69 
covariates in total, 24 of which are continuous variables and the other 45 are binary variables. 
Earlier studies showed there is no difference in FIQ among the treatment groups (Robinson et al.  
2012; Yang et al. 2016). Here, we apply the compared causal estimators to estimate the causal 
effect of treatments for fibromyalgia on the FIQ score. The analysis steps are similar to those in 
Section 3.3. Figure 7 shows the performance of different estimators using different PS and out-
come modeling. The estimated treatment effect is about 0.03 with confidence intervals of all 
doubly robust estimators including zero, which indicates there is no evidence that there are 
treatment effects between the OPI cohort and the TRA cohort on the FIQ score. With 
SuperLearner, the estimators achieve the smallest standard error.

Figure 7. Performance of various causal estimators on the real-data application. Different colors imply different causal estimators, 
x-axis differentiate the PS and/or outcome models. The red dotted line indicates a zero ATE.

Figure 6. Summary of the performance of various causal estimators under the four simulation scenarios. Colors indicate the 
performance of the estimator with green, yellow, and red meaning good, average, and poor performance, respectively.
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4.1. Simulated REFL study

Motivated by the real-world REFL study, we are interested in evaluating the effects of a higher 
dimension of covariates and the effects of binary variables on estimating treatment effects. The 
simulated REFL study is hence designed to mimic the data distribution in the real REFL study. We 
generate covariates X using Iman-Conover transformation (Iman and Conover 1982) to simulate 
correlated covariates from the real REFL data. The simulated REFL data is of sample size 2000 (1000 
for the OPI cohort and 1000 for the TRA cohort).

To simulate the treatment indicator A, we first generate the treatment model by fitting an XGBoost 
(Chen and Guestrin 2016) with cross-validation tuning using the real REFL data. This is referred to as 
the “true” treatment model. Specifically, the treatment indicator is used as the outcome and all patient 
characteristics are included as covariates. We then generate the simulated treatment assignment A for 
the simulated REFL data following Bernoulli(pˆ) with pˆ estimated from the “true” treatment model. 
Similarly, the simulated outcomes Y are obtained from the outcome model which is fit by an XGBoost 
with crossvalidation tuning. This is referred to as the “true” outcome model.

Two simulation scenarios are designed with different “true” outcome models. The first one is the 
zero treatment effect (Zero ATE) scenario, where the “true” outcome model is based on fitting an 
XGBoost to outcome data with no treatment indicator, then using the predicted value from that 
model, denoted as Yˆ, to generate simulated outcomes by adding a Gaussian noise with variation 
obtained from the cross-validation process. The resulting simulated outcomes are considered 
“observed” outcomes, and Yˆ’s are considered “truth”. The second one is the nonzero treatment effect 
(Nonzero ATE) scenario, where the “true” outcome model is constructed by fitting an XGBoost to 
outcome data with A simulated from the “true” treatment model as a covariate and other covariates 
included in the candidate set. The corresponding predicted value Yˆ from that fitted model is used to 
simulate data. There are 1000 simulated datasets generated, each one conducts a bootstrap 500 times.

Figure 8 illustrates the performance of various causal estimators on the simulated REFL study consider-
ing Zero-ATE design and Nonzero-ATE design, respectively. Similar to findings in the simulation study in 
Section 3, doubly robust estimators, in general, outperform singly robust ATE estimators. Using 
SuperLearner for treatment and outcome modeling, doubly robust estimators achieve the smallest bias 
and MSE compared to using GLM, or GAM. Overall, TMLE and AIPTW share similar performance. With 
GAM or SuperLearner, TMLE and AIPTW may be able to achieve a nominal confidence interval by using 
bootstrap confidence intervals. DSM has a relatively larger bias compared to TMLESL, TMLE, and AIPTW. 
DSM may achieve a nominal confidence interval with GAM. PENCOMP suffers from severe bias and MSE 
with GLM or GAM. PENCOMP has improved performance with SuperLearner in terms of bias and MSE. 
However, PENCOMP suffers from severe overcoverage and large type I error in nearly all settings.

5. Practical recommendations and discussion

We have reviewed multiple doubly robust estimators and conducted simulations across a broad range of 
data scenarios. We vary causal inference test settings by adjusting a variety of knobs in the simulations, 
which include nonlinearity of treatment and outcome surfaces, degree of overlap between treatment 
distributions as well as treatment effect heterogeneity. We make use of a powerful machine learning 
technique SuperLearner to help improve ATE estimation. Also, various doubly robust estimators are 
applied to a real-life application of fibromyalgia as an example. In particular, we find that incorporating 
machine learning with doubly robust estimators such as the TMLE gives the best overall performance. 
Although in general TMLE and AIPTW are both efficient and have the minimum asymptotic variance 
under the large-sample theory, under finite sample sizes TMLE tends to be more robust to data sparsity and 
near violations of positivity assumption because of its range-preserving procedure for the predicted 
outcome estimates. Similar findings have been shown in previous studies such as van der Laan and Rose 
(2011), Porter et al. (2011), Luque-Fernandez et al. (2018), Bahamyirou et al. (2019). DSM is robust to model 
misspecification as a matching estimator, but tends to have a larger MSE compared to TMLE and AIPTW. 
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The regression-based PENCOMP shows the least ideal performance among all doubly robust estimators in 
the case of model misspecification and challenging scenarios, even when pairing with SuperLearner. Further 
research is needed to demystify the performance of PENCOMP found in our simulation studies.

Our paper helps to provide guidelines for practical use of doubly robust estimators. Based on our 
extensive and realistic simulations, we recommend to estimate the ATE in the following steps:

● Perform variable selection to select outcome predictors.
● Model the PS and the outcomes with SuperLearner, separated by the treatment group and the 

control group.

(a)

(b)

Figure 8. Performance of various causal estimators on the simulated REFL study considering both a homogeneous treatment effect 
design (left, zero ATE) and a heterogeneous treatment effect design (right, nonzero ATE), respectively. (a) Box plots of the estimators. 
The red dotted lines indicate the ground truth ATE. (b) Performance of the estimators in terms of CI coverage and width, type I error, 
and variance ratio. The red dotted lines indicate the ideal value or threshold of corresponding metrics. Methods with a “_b” indicate 
a bootstrap CI coverage.
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● Estimate the ATE by applying TMLE with the estimated propensity and outcome estimates.
● Use bootstrap for variance estimation of the ATE.

Throughout the paper, we have found that machine learning methods, such as SuperLearner, improve 
performance compared to traditional approaches like GLM and GAM, particularly when there is 
uncertainty about the distributions of the propensity and outcome models. A practical recommenda-
tion is to apply machine learning techniques to both propensity and outcome modeling in doubly 
robust estimators. In real-world applications, it is crucial to balance model complexity and sample size. 
For smaller datasets, more complex methods can be useful, but careful consideration is needed to 
avoid overfitting. We recommend using simulations based on real-world data to identify the most 
appropriate method for varying sample sizes and to establish best practices for method selection.

This work has multiple limitations that should be noted. First, throughout the paper we only 
consider Lasso for variable selection to illustrate the importance of the variable selection procedure. 
There might be better ways to remove treatment predictors such as using machine learning algorithms 
like random forest and neural networks. Soft variable selection strategies may also be used where the 
variable selection is conducted without requiring any modeling on the outcome, and thus provides 
robustness against misspecification (Tang et al. 2021). Second, our work focuses only on doubly robust 
methods, which is in part due to their advantages in robustness over traditional methods. However, 
these methods still require the correct specification of at least one of the models. Recent research has 
proposed the use of model averaging across many methods to improve the robustness of comparative 
analyses (Zagar et al. 2022). Future work should compare the operating characteristics of doubly 
robust approaches to model averaging, or perhaps simply incorporating multiple doubly robust 
methods within the model averaging framework. In addition, an extension of evaluating the use of 
doubly robust estimators on survival data could be explored in the future. Another important 
direction for future research is the use of propensity score matching to build external control arms 
from real-world data, particularly in single-arm designs where the control arm may have a larger 
sample size than the treatment arm (e.g., multiple controls per treatment subject). Future studies could 
explore how different ratios of treatment to external control subjects affect estimator performance, 
particularly regarding bias and variance. Additionally, examining the robustness of estimators when 
external controls come from heterogeneous data sources would provide valuable insights for improv-
ing estimation in clinical trials, especially in rare diseases.

In summary, this work has provided best practice guidance on the use of doubly robust methods for 
comparative analysis based on real-world data. The use of machine learning for variable selection and 
model development, along with estimation of treatment effects using TMLE, is found to help improve 
operating characteristics of doubly robust methods.
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