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Abstract
In this study, we focus on estimating the heterogeneous treatment effect (HTE) for 
survival outcome. The outcome is subject to censoring and the number of covari-
ates is high-dimensional. We utilize data from both the randomized controlled 
trial (RCT), considered as the gold standard, and real-world data (RWD), possibly 
affected by hidden confounding factors. To achieve a more efficient HTE estimate, 
such integrative analysis requires great insight into the data generation mechanism, 
particularly the accurate characterization of unmeasured confounding effects/bias. 
With this aim, we propose a penalized-regression-based integrative approach that 
allows for the simultaneous estimation of parameters, selection of variables, and 
identification of the existence of unmeasured confounding effects. The consistency, 
asymptotic normality, and efficiency gains are rigorously established for the pro-
posed estimate. Finally, we apply the proposed method to estimate the HTE of lobar/
sublobar resection on the survival of lung cancer patients. The RCT is a multicenter 
non-inferiority randomized phase 3 trial, and the RWD comes from a clinical oncol-
ogy cancer registry in the United States. The analysis reveals that the unmeasured 
confounding exists and the integrative approach does enhance the efficiency for the 
HTE estimation.
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1 Introduction

Recently, there has been a growing focus on the heterogeneity of treatment effect 
(HTE), a vital path towards personalized medicine (Hamburg and Collins 2010; 
Collins and Varmus 2015). Accommodating confounding effects is crucial for 
obtaining well-estimated HTE. In such comparative medical research, it is impor-
tant but challenging to fully determine what causes confounding effects and meas-
ure all of them. The most common approach is to conduct randomized controlled 
trials (RCTs). RCTs are known as the gold standard for assessing the causal effect 
of an intervention or treatment on the outcome of interest. The randomization 
allows the distribution of covariates in different groups to be balanced. However, 
RCTs have major downsides. For instance, they are costly and time-consuming, 
and often an inadequate sample size may result from recruitment challenges.

On the other hand, the increasing availability of real-world data (RWD) for 
research purposes, including electronic health records and disease registries, 
offers a broader demographic and diversity than RCTs. RWD provides abundant 
additional evidence to support HTE. Under the assumption that the records in 
RWD contain all the confounders, many approaches to harmonizing evidence 
from RCTs and RWD for HTE estimation have been developed, ranging from 
classic methods such as regression-based and inverse probability weighting to 
more recent machine learning models like neural networks (Shalit et  al. 2017) 
and random forests (Wager and Athey 2018). Inspired by Robinson transforma-
tion (Robinson 1988), Nie and Wager (2021) recently proposed an R-learner to 
estimate HTE. The R-learner possesses the property of Neyman orthogonality 
(Neyman 1959), enabling the integration of more extensive and flexible machine-
learning methods for estimating the nuisance functions. However, it is always 
possible that in uncontrolled real-world settings, important confounders may 
be overlooked or unmeasured. For instance, doctors assign treatment based on 
patient’s symptoms that are not documented in the medical chart. Unmeasured 
confounding can lead to unidentifiable causal effects of interest and result in dis-
torted estimates of HTE.

Classical approaches, such as instrumental variable methods (Angrist et  al. 
1996), negative controls (Kuroki and Pearl 2014), and sensitivity analysis (Robins 
et al. 1999), have been proposed to address biases caused by hidden confounding. 
In recent years, a promising strategy to overcome the challenges posed by hidden 
confounding is to characterize the confounding function in RWD, and then uti-
lize RCTs to identify both the HTE and confounding function. Drawing upon this 
idea, Kallus et al. (2018) proposed a regression-based method to estimate HTE. 
Yang et al. (2020b) established the semiparametric efficient score function to esti-
mate the HTE and confounding function and demonstrated that their method can 
not only address issues arising from hidden confounding but also enhance the 
efficiency of HTE estimates. Additionally, they introduced a testing procedure to 
ascertain the presence of unmeasured confounding, which informs the decision 
on whether to integrate RWD for a joint analysis (Yang et  al. 2023). However, 
once unmeasured confounding is detected, their approach discards all RWD data. 
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More recently, Wu and Yang (2022) leveraged the benefits of the R-learner to 
develop an integrative method for estimating the HTE and confounding function, 
utilizing experimental data for model identification and observational data for 
efficiency boosting.

However, the approaches mentioned above are all limited to fully observed data 
and low-dimensional covariates. With the ongoing advancements in data acquisi-
tion technology and cloud storage, there is a growing trend towards the collection 
of high-dimensional data. Censoring frequently occurs in various fields, especially 
for survival data, where the exact time of the event of interest cannot be observed 
due to the limited duration of the study. Literature on estimating HTE from high-
dimensional or censored data typically assumes the ideal case with no hidden con-
founding. Ma and Zhou (2018) proposed characterizing the hazard ratio to mimic 
the heterogeneous treatment effect, yet they did not take into account high-dimen-
sional covariates. Zhu and Gallego (2020) used the difference in survival functions 
to describe heterogeneous treatment effects. Hu et al. (2021) utilized the difference 
in survival quantile to characterize the survival treatment effect at the individual 
level and adopted a machine learning approach for model estimation. Zhou and Zhu 
(2021) applied the sufficient dimension reduction technique to high-dimensional 
data without censoring. To our knowledge, the literature on estimating HTE from 
high-dimensional censored data while offsetting the unmeasured confounding effect 
remains scarce.

In this paper, we focus on improving the estimate of HTE for a survival out-
come by integrating high-dimensional censored RCTs and RWD data, particularly 
in situations where unmeasured confounding may exist. We propose an integrative 
regression approach to simultaneously estimate parameters, select important vari-
ables, and determine the presence of unmeasured confounding effects. The proposed 
method assumes the transportability of the HTE. Therefore, the RCTs can be uti-
lized to identify the HTE in RWD. Both the HTE and confounding function can 
be estimated through regularized weighted least square regression to accommodate 
censoring. The proposed method possesses the property of Neyman orthogonality, 
making it possible to adopt flexible machine-learning methods for the estimations 
of the nuisance functions. Theoretical properties are rigorously established, includ-
ing estimation consistency, variable selection consistency, and asymptotic normal-
ity. We demonstrate that the proposed integrative method results in a more efficient 
HTE estimate, at least on par with estimates solely based on RCTs data. When there 
is unmeasured confounding, instead of excluding all data from RWD, the proposed 
method can still make use of the RWD data in some cases. This study has the poten-
tial to enhance the existing literature in multiple important aspects. First, an inte-
grative analysis to include high-dimensional censored RWD data in HTE estima-
tion is conducted, which can be more challenging than analyzing low-dimensional 
completely observable data. Secondly, the proposed approach permits the presence 
of unmeasured confounding, which is more flexible and complements the analysis 
that assumes the unconfoundness in RWD. Thirdly, the proposed approach can iden-
tify whether the unmeasured confounding effect exists in a fully data-driven manner. 
This can contribute to more accurate estimates and lead to a deeper understanding of 
the data generation mechanism. Lastly, and equally importantly, this study offers a 



 X. Ye et al.

valuable practical tool for addressing a wide range of scientific issues. In particular, 
we apply the proposed integrative approach to improve the estimate of HTE on over-
all survival for patients with early-stage non-small-cell lung cancer undergoing lobar 
resection and limited resection, which convincingly demonstrates the usefulness of 
the proposed method.

The remaining part of the paper is organized as follows. In Sect. 2, we introduce 
the proposed method. Theoretical properties are provided in Sect. 3. Numerical stud-
ies are conducted in Sect. 4, and application to real data is presented in Sect. 5. Con-
cluding remarks are given in Sect. 6. Technical details are given in the Appendix.

2  Methods

Let T̃  be the failure time, C be the censored time, T = min(T̃ ,C) be the observation 
with censoring indicator � = I(T̃ ≤ C) , and A = 0, 1 be the binary treatment varia-
ble. Let X ∈ ℝ

p be the covariates vector, which includes the intercept term X0 ≡ 1 . 
Let S denote the data source, taking the value of 0 for RWD and 1 for RCT. The 
sample size of RCT is n1 and RWD is n0 . Let the observed data be 
OB =

{
OBi, i = 1, 2, ..., n = n1 + n0

}
 , where OBi = (Ti, �i,Xi,Ai, Si). Under the 

potential outcome framework, denote that T̃(a) , C(a) and T(a) = min
{
T̃(a),C(a)

}
 

be the potential failure time, potential censored time and potential observed time 
under treatment a ∈ {0, 1} , respectively. We aim to evaluate the heterogeneous treat-
ment effect (HTE) defined as follows

The definition of the HTE aligns seamlessly with conventional survival models, as 
illustrated, e.g., in (1) and (2). The basic assumptions for modelling are as follows: 

(A0)  (i) T̃ = AT̃(1) + (1 − A)T̃(0) , C = AC(1) + (1 − A)C(0) , and T = AT(1)+

(1 − A)T(0).

  (ii) T̃(a) ⟂ A|(X, S = 1) , a ∈ {0, 1}.

  (iii) �
{
log

(
T̃(1)

)
− log

(
T̃(0)

)
|X

}
= �

{
log

(
T̃(1)

)
− log

(
T̃(0)

)
|X, S

}
.

[Style2 Style3 Style3]Remark 1 (i) assumes that the consistency between observation 
and potential outcome holds.

(ii) holds for the RCT by default. (iii) states that the HTE is the same for the trial 
participants and the patient population at large. It holds that if trial participants are 

�(X) = �

{
log

(
T̃(1)

)
− log

(
T̃(0)

)
|X

}
.
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randomly recruited for each subgroup of X, or the exclusion criteria of trial partici-
pation do not affect the treatment response.

Define �a(X, S) = �

{
log(T̃)|A = a, S,X

}
 , a = 0, 1 . By assumption, it can be 

seen that for RCT, �1(X, S = 1) − �0(X, S = 1) = �(X) . However, this equation 
may not hold in RWD if unmeasured confounding exists. Define the confounding 
function uc(X) = �1(X, S = 0) − �0(X, S = 0) − �(X) . It can be seen that uc(X) 
captures the unmeasured confounding effect. The above formulations can be sum-
marized into

By this formulation, we assume the following model on the failure time

where �(�|X,A, S) = 0 , and �(�2|X,A, S) is finite. Taking expectation conditional on 
(X, S) on both sides of this model leads

where e(X, S) = �(A|X, S) is the propensity score. Calculating (1) minus (2) leads to

where �(X, S) = �

{
log(T̃)|S,X

}
 , �(�|X,A, S) = 0 , and �(𝜖2|X,A, S) < ∞ . Based 

on assumption (A0) , the above-induced formulation (3) is an accelerated failure time 
(AFT) model. AFT model is a natural choice for clinical decision-making, because 
it has an intuitive regression interpretation on failure time. There is rich literature 
considering the AFT model for observational studies (Henderson et  al. 2020; Hu 
et al. 2021; Simoneau et al. 2020; Yang et al. 2020a). Estimation of the AFT model 
with an unspecified error distribution has been studied extensively. Here, we adopt 
the weighted least squares (LS) approach (Stute 1993) which is computationally 
more feasible.

[Style2 Style3 Style3]Remark 2 More generally, instead of a logarithmic transfor-
mation on failure time, any other known monotone transformation can be consid-
ered. Then, the definition of HTE and assumption (A0) should be correspondingly 
modified.

In (3), we aim to estimate the HTE � and the confounding function uc , with e 
and � being the nuisance functions. First, we make the following assumptions for 
modelling heterogeneous treatment effects and unmeasured confounding effects. 

(M0)  uc(X) can be modelled by XT� , and �(X) can be modelled by XT� , where � , 
� ∈ ℝ

p.

�1(X, S) − �0(X, S) = �(X) + (1 − S)uc(X).

(1)log T̃ = �0(X, S) + A�(X) + A(1 − S)uc(X) + �,

(2)�

{
log(T̃)|S,X

}
= �0(X, S) + e(X, S)�(X) + e(X, S)(1 − S)uc(X),

(3)log(T̃) = �(X, S) + {A − e(X, S)}�(X) + {A − e(X, S)}(1 − S)uc(X) + �,
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Define the parameters of interests be � = (�T, �T)T ; nuisance functions be 
� = (e,�) . Let Z = (X, S) , and U = (X, (1 − S)X) . Then, the weighted loss function 
is

where T(1) ≤ T(2) ≤ ... ≤ T(n) , and Z(i) , U(i) are in corresponding order, wi is defined 
as follows

Suppose that the nuisance function � can be pre-estimated, then we propose to use 
the following penalized regression to get the estimate. It can simultaneously select 
important variables and determine whether the unmeasured confounding exists:

where �(t;�) is a penalty function with tuning parameters 𝜆 > 0 to recover sparsity, 
various kinds of penalty functions can be used to derive sparse and unbiased esti-
mates, such as adaptive Lasso (Zou 2006), SCAD (Fan and Peng 2004), and MCP 
(Zhang 2010). It can be seen that the penalty function in (5) consists of two parts 
with tuning parameters �1 , �2 respectively. The first part corresponds with the param-
eter of HTE, i.e., � , and the second part corresponds with the parameter of unmeas-
ured confoundings, i.e., � . By adopting penalties respectively, the method can fit 
in with a more general case where the sizes of coefficient in HTE and confounding 
function are different. A Similar strategy can be found in Cheng et al. (2023). The 
final estimate can be written as

where the tuning parameters �1 and �2 can be selected by criteria such as AIC, BIC, 
and cross-validation (CV).

3  Theoretical properties

Denote that the true parameters be �∗ = (�∗T, �∗T)T , and true nuisance functions 
be �∗ . Define index sets of non-zero parameters as follows: 

D =
{
1 ≤ j ≤ 2p|�∗

j
≠ 0

}
 with element number dn , D1 =

{
1 ≤ j ≤ p|�∗

j
≠ 0

}
 

with element number d1n , D2 =
{
1 ≤ j ≤ p|�∗

j
≠ 0

}
 with element number d2n . 

Following the notations in Stute (1996), let G be the probability distribution 

(4)�(�, �|OB) =

n∑

i=1

wi

[
log(T(i)) − �(Z(i)) −

{
A(i) − e(Z(i))

}
UT

(i)
�
]2
,

w1 =
�(1)

n
, wi =

�(i)

n − i + 1

i−1∏

j=1

(
n − j

n − j + 1

)�(j)

, i = 2, 3, ..., n.

(5)��1,�2
(�, �̂|OB) = �(�, �̂|OB) +

p∑

j=1

�(|�j|;�1) +
2p∑

j=p+1

�(|�j|;�2).

(6)�̂ = argmin
�

��1,�2
(�, �̂|OB),
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function (p.d.f) of C , with �G = inf {x ∶ G(x) = 1} , F be the p.d.f of T̃  , with 
�F = inf {x ∶ F(x) = 1} , and H be the p.d.f of T  , with �H = inf {x ∶ H(x) = 1} . Let 
F0 ∈ P be the p.d.f of (Z̃, T̃) , where Z̃ = (Z,A) . Define

with H denoting the set of atoms of H , possibly empty. Define the score function

where j = 1, 2, ..., 2p . It can be seen that ��(Z̃, T̃;�∗, �∗) = 0 , where 
� =

(
�j, j = 1, 2, ..., 2p

)
 . Define �0(y) = exp

{∫ y−

0
{1 − H(v)}−1H̃0(dv)

}
 , where 

H̃0(y) = Pr(T ≤ y, � = 0) . 

(B0)  (i) Pr(T̃ ≤ C|X, S,A, T̃) = Pr(T̃ ≤ C|T̃).

  (ii) The p.d.f. F and G have no jump in common, and 𝜏F < 𝜏G.

  (iii) �
{
𝜙j(

�Z,T;�∗, 𝜂∗)𝛾0(T)𝛿
}2

< ∞.

  (iv) Let g(y) = ∫ y−

0
{1 − H(w)}−1{1 − G(w)}−1G(dw) . It holds that 

(B1)  (i) The eigenvalues of �
[
{A − e∗(Z)}2UUT

]
 are larger than a positive con-

stant c1.

  (ii) The eigenvalues of �UUT are smaller than a positive constant c2.

(B2)  The penalty function satisfies the following properties.

  (i) �(x;�) is nondecreasing in x ∈ [0,∞) and �(0;�) = 0.

  (ii) Let �̇�(x;𝜆) = 𝜕𝜌(x;𝜆)∕𝜕x . It exists and is bounded in 
x ∈ (0,∞) . In addition, �̇�(x;𝜆)∕𝜆 > 0 , as x → 0+ , n → ∞ , and 
|�̇�(x1;𝜆) − �̇�(x2;𝜆)| ≤ O(1)𝜆|x1 − x2| , for x1, x2 ∈ (0,∞).

  (iii) Let �̈�(x;𝜆) = 𝜕2𝜌(x;𝜆)∕𝜕x2 . It exists and is bounded in x ∈ (�1�,∞) , 
where 𝛾1 > 0 is a constant. It holds that |�̈�(x1;𝜆) − �̈�(x2;𝜆)| ≤ O(1)|x1 − x2| , 
for x1, x2 ∈ (�1�,∞).

�F0(z, t) =

{
F0(z, t), t < 𝜏H ,

F0(z, 𝜏H−) + F0(z, 𝜏H)I(𝜏H ∈ H), t ≥ 𝜏H ,

�j(Z̃, T̃;�
∗, �∗) = {A − e∗(Z)}Uj

[
log(T̃) − �∗(Z) − {A − e∗(Z)}UT�∗

]
,

∫ �𝜙j(z,w;�
∗, 𝜂∗)�

√
g(w)�F0(dz, dw) < ∞.
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(B3)  The pre-estimated nuisance parameter �̂  is independent of the samples used 
to build the loss function. Considering the abuse of notation, we continue to 
use n to denote the sample size for constructing the loss function and assume 
that the pre-estimated nuisance parameter �̂� is obtained from another sample 
of size r�n , where r�n is bounded by a positive constant. Let Re,n be the con-
vergence rate of ‖ê − e∗‖∞ , R�,n be the convergence rate of ‖�̂ − �∗‖∞ . 
Define rate Rn = max

�
R�,n,Re,n‖�∗‖2,

√
p∕n

�
 . The real parameter satisfies 

minj∈D1
|�∗

j
|∕�1 → ∞ , minj∈D2

|�∗
j
|∕�2 → ∞ , as n → ∞ . Additional condi-

tions are listed in the followings.

  (i) max
j∈D1

�
�̇�(�𝛼∗

j
�;𝜆1)

�
= O(Rn∕

√
d1n) , max

j∈D2

�
�̇�(�𝛽∗

j
�;𝜆2)

�
= O(Rn∕

√
d2n).

  (ii) max
j∈D1

{
|�̈�(|𝛼∗

j
|;𝜆1)|

}
= o(1) , max

j∈D2

{
|�̈�(|𝛽∗

j
|;𝜆2)|

}
= o(1).

  (iii) max
j∈D1

�
�̇�(�𝛼∗

j
�;𝜆1)

�
= O(1∕

√
nd1n) , max

j∈2

�
�̇�(�𝛽∗

j
�;𝜆2)

�
= O(1∕

√
nd2n)

.

  (iv)
√
nR2

n
= o(1) , and 

√
nmax

�
�1, �2

�
Rn = o(1).

  (v) ���j(Z̃, T̃;�, �) − �j(Z̃, T̃;�
∗, �∗)�2 ≤ �

‖� − �∗‖2 ∨ ‖� − �∗‖∞
�b
c3 , 

j ∈ D , where b and c3 are positive constants. In addition, 
√
dnR

b∕2
n = o(1) , √

dnn
−1∕2+1∕q = o(1) , q > 2.

(B4)  In what follows, we use ‖ ⋅ ‖Q,q to denote the Lq(Q) norm. The uniform 
entropy numbers for set F  with radius 𝜉 > 0 under Lq(Q) norm are defined 
as supQ logN(�,F, ‖ ⋅ ‖Q,q) , where N(�,F, ‖ ⋅ ‖Q,q) is the corresponding cov-
ering number. Let � =

�
� ∶ ‖� − �∗‖2 ≤ Rnc4

�
 , where c4 is a positive con-

stant. Define class 

 with measurable envelop F1,� . It satisfies ‖F1,�‖F0,q ≤ c5 where c5 is a positive con-
stant and F0 ∈ P . It holds that for all 0 < 𝜉 ≤ 1 , the uniform entropy number of F1,� 
obeys 

 where c6 is a positive constant.

[Style2 Style3 Style3]Remark 3 (B0) guarantees that Stute’s empirical probability 
measure converges to F0 (Stute 1993). In addition, it assures the asymptotic nor-
mality of 

∑n

i=1
wi�j(Z̃(i), T(i)) given real nuisance functions (Stute 1996). (B0)(i) 

assumes that the censoring variable is conditionally independent of (X,A, S) given 

F1,� =
{
�j(⋅;�, �) ∶ j ∈ D,� ∈ �

}
,

sup
Q∈P

logN(�‖F1,�‖Q,2,F1,� , ‖ ⋅ ‖Q,2) ≤ v log
c6

�
,
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the failure time T̃  . By contrast, the utilization of the Inverse Censoring Probabil-
ity Weight (IPCW) of the form 𝛿∕Pr(C > T|X,A, S, T) often requires C ⟂ T̃|S,A,X 
instead. While Stute’s weights are fully non-parametric, using the IPCW requires 
estimating of the survival function for the censoring time, Pr(C > t|X,A, S) , which 
may introduce additional model assumptions. We discuss the further development 
based on IPCW in Sect. 6. (B1) puts constraints on eigenvalues of design matrices. 
(B2) states the basic properties of the penalty function. Many penalty functions, such 
as SCAD and MCP, can meet these properties. (B3) contains several assumptions on 
nuisance functions, penalty function and convergence rate. It should be noted that 
the assumption of independent pre-estimated nuisance parameter can be reached 
by data splitting. (B3)(i)-(iii) naturally hold when the signal of the real parameter 
is strong enough. (B3)(iv) requires the convergence rate of the nuicance function 
estimate to be at least faster than n−1∕4 , and p = o(n1∕2) . (B4) is used to reach the 
condition in Lemma 6.2 in Chernozhukov et al. (2018).

Theorem 1 (Consistency) If (M0) , (A0) , (B0) , (B1) , (B2) and (B3) (i)(ii) hold, then 
‖�̂ − �∗‖2 = Op(Rn) , where Rn is defined in (B3).

Theorem  2 (Sparsity recovery) Suppose the result in Theorem  1 holds. If 
min

{
�1, �2

}
R−1
n

→ ∞ as n → ∞ , then Pr
(
�̂D

c = 0
)
→ 1.

To derive the asymptotic normality of the proposed estimator, we introduce some 
notations first. Let H̃1(z, y) = Pr(Z̃ ≤ z,T ≤ y, � = 1),

and �1(y) =
{
�1j(y), j = 1, 2, ..., 2p

}
 , and �2(y) =

{
�2j(y), j = 1, 2, ..., 2p

}
 . Define 

V = B−1�DB
−1 , where

Theorem 3 (Asymptotic normality) Suppose the result of consistency and sparsity 
recovery hold. Assume that (M0) , (A0) , (B0)-(B2) and (B3) (iii)(iv)(v) hold. For any 
q ∈ ℝ

dn , ‖q‖2 < ∞ , if �2qTVq → �2
∗
 as n → ∞ , then

𝛾1j(y) =
1

1 − H(y) ∫ 1{y<v}𝜙j(z, v;�
∗, 𝜂∗)𝛾0(v)�H

1(dz, dv),

𝛾2j(y) =∫ ∫
1{v<y,v<w}𝜙j(z,w;�

∗, 𝜂∗)𝛾0(v)

{1 − H(v)}2
�H0(dv)�H1(dz, dw),

B =�
[
{A − e∗(Z)}2UDU

T
D

]
,

� = Var
{
�(Z̃, T̃;�∗, �∗)�0(T̃)� + �1(T̃)(1 − �) − �2(T̃)

}
.

√
nqT

�
�̂D − �∗

D

�
→d N(0, �

2
∗
).
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We need additional conditions to derive the asymptotic properties of the RCT-
only estimator. Since the conditions are similar to (B0)-(B4) , details are presented in 
the Appendix. Define rate Rn1

= max
�
R�,n1

,Re,n1
‖�∗‖2,

√
p∕n1

�
 , and 

Vr = B−1
r
�rD1

B−1
r

 , where

The definition of � , �r0 , �r1 , �r2 are presented in Appendix for details.

Theorem  4 (Asymptotic normality for RCT-only estimator) Suppose the result 
of consistency with rate Rn1

 and sparsity recovery hold. Assume that (M0) , (A0) , 
(C0) , (C1) and (C2) (in the Appendix) hold. For any q ∈ ℝ

d1n , ‖q‖2 < ∞ , if 
�2qTVrq → �2

r∗
 as n1 → ∞ , then

Theorem 5 (Efficiency gain) Suppose the results in Theorem 3 and 4 hold. If there 
is no censoring, it can be seen that �rD1

= Br , and �D = B . For any q ∈ ℝ
d1n , 

‖q‖2 < ∞ , with probability converging to 1, we have

where the equality holds if and only if there exists a d2n × d1n constant matrix Q , 
such that when S = 0 , XD1

= QTXD2
 . Specially, when D1 ⊂ D2 , the equality holds. 

When D2 = � , under (B1)(i), the inequality in (7) strictly holds.

[Style2 Style3 Style3]Remark 4 Censoring leads to a more complicated form of vari-
ance, thus it is difficult to see the efficiency gain directly. Let B = (B11,B12;B21,B22) 
where B

11
= �

{
A − e

∗(Z)
}2

X1
X

T1

 , B
12

= �(1 − S)
{
A − e

∗(Z)
}2

X1
X

T2

 , 

B22 = �(1 − S){A − e∗(Z)}2XD2
XT

D2
 . Define �11 =

(
B11 − B12B

−1
22
BT
12

)−1 . Let �11 
be the submatrix of � with columns and rows corresponding to �∗

D1
 , �12 be the sub-

matrix with columns corresponding to �∗
D1

 and rows corresponding to �∗
D2

 , �22 be 
the submatrix with columns and rows corresponding to �∗

D2
 . Let r

S
= Pr(S = 1) , and 

��11 = �11 − B12B
−1
22
�T

12
−�12B

−1
22
BT
12
+ B12B

−1
22
�22B

−1
22
BT
12

 . Generally, if

that is, the matrix is semi-definite, then the variance of the proposed estimate √
nqT�̂D1

 will not larger than the RCT-only estimate 
√
nqT�̂

rct

D1
 . Specially when 

D2 = � , B11 = Br and �11 = �r , i.e., the distributions of (A,X) and censoring in 
RCT and RWD are similar, then the variance of the proposed estimate 

√
nqT�̂D1

 will 
be rigorously smaller than that of the RCT-only estimate 

√
nqT�̂

rct

D1
.

Br =�
[
{A − e∗(Z)}2XD1

XT
D1
|S = 1

]
,

�r = Var
{
�(X̃, T̃;�∗, �∗)�r0(T̃)� + �r1(T̃)(1 − �) − �r2(T̃)|S = 1

}
.

√
n1q

T
�
�̂
rct

D1
− �∗

D1

�
→d N(0, �

2
r∗
).

(7)Var (
√
nqT�̂D1

) ≤ Var (
√
nqT�̂

rct

D1
),

B−1
r
�rB

−1
r

− r
S
�11��11�11 ≥ 0,
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[Style2 Style3 Style3]Remark 5 (Variance estimation) The theoretical variances 
obtained in Theorems 3 and 4 are not easy to estimate based on the formulations. 
Following Huang et al. (2006), we estimate the variance using the nonparametric 
0.632 bootstrap (Efron and Tibshirani 1993), in which approximately 0.632n sam-
ples from the n observations are randomly selected without replacement.

4  Simulation

We conduct simulation studies to evaluate the performance of the proposed method 
including efficiency gain (compared with the estimators that only use RCT data), 
parameters estimation, variable selection and identification of unmeasured con-
founding. The data is generated from the following model

where �0(X, S) = sin(X1) + 0.2X2
4
− 0.5XT�∗ − 0.5(1 − S)XT�∗ . Here X is 

observable, while u is the unmeasured confounding effect. We generate n = 2500 
samples from this model with the following distributions: S ∼ Bernoulli(0.2) , 
A ∼ Bernoulli(0.5) , X|A ∼ N(0.2A × (18, 0p−8),�) , u|A ∼ N(AXT�∗,�) , and 
� ∼ N(0, 1) , where � = (0.3|i−j|, i, j = 1, 2, ..., p) . Let �∗ = Signal × (14,−14, 0p−8) , 
�∗ = Signal × (12,−12, 0p−4) , Signal = 2 , provided that unmeasured confound-
ing effect exists, otherwise �∗ = 0p . The dimension of X is considered to be 
p ∈ {20, 50} , the censored time logC ∼ Unif[t0, t1] , where t0 , t1 adjust the censored 
rate to be around 20% or 40%. We adopt the MCP function as the penalty function, 
i.e., �(t;�) = � ∫ t

0

(
1 − x∕(��)

)
+
dx.

4.1  Finite‑Sample studies

For the proposed method, cross-validation and BIC to select the tuning parameters 
and refer to them as RL.cv and RL.bic, respectively. We also implement the analy-
sis  that ignores the unmeasured confounding effect and refers to it as RL.NAI. In 
addition, we compare the proposed method with the following methods:

Outcome-adjusted method: define the adjusted outcome 

 Under assumption (A0) and (M0) , �
(
T̃adjust|Z

)
= XT� + (1 − S)XT� . Then we 

can build the penalized regression model based on this equation (similar to the 
construction of the proposed method). We use the same penalty function as the 
proposed method to identify unmeasured confounding effect and adopt CV and 

log(T̃) = �0(X, S) + AXT�∗ + (1 − S)u + �,

T̃adjust =
A
{
log(T̃) − �1(Z)

}

e(Z)
+ �1(Z) −

(1 − A)
{
log(T̃) − �0(Z)

}

1 − e(Z)
− �0(Z).



 X. Ye et al.

BIC to select the tuning parameters. This method is referred to as OA.cv and 
OA.bic respectively.
AFT model with �0 : under assumption (A0) and (M0) , it holds that 

 Then we can build the AFT model based on this equation. The estimation proce-
dures are the same as the outcome-adjusted method. This method is referred to as 
GM0.cv and GM0.bic respectively.
AFT model with �1 : under assumption (A0) and (M0) , it holds that 

 Then we can build the AFT model based on this equation. The estimation proce-
dures are the same as the outcome-adjusted method. This method is referred to as 
GM1.cv and GM1.bic respectively.
The meta estimates: combine GM0.cv and GM1.cv (GM0.bic and GM1.bic) 
by weights of sample size. This method is referred to as Meta.cv and Meta.bic 
respectively.
AFT model with �0 , �1 : under assumption (A0) and (M0) , it holds that 

 Then we can build the AFT model based on this equation. The following proce-
dures are the same as the outcome-adjusted method. This method is referred to as 
GM01.cv and GM01.bic respectively.

We calculate the RCT-only estimates for all these methods and use CV to select 
tuning parameters referred to as RL.RCT, OA.RCT, GM0.RCT, GM1.RCT, Meta.
RCT, GM01.RCT, respectively. In addition, assuming that we correctly select the 
variables, we can calculate the oracle estimates referred to as RL.or, RL.NAIor, 
OA.or, GM0.or, GM1.or, Meta.or, GM01.or, RL.RCTor, OA.RCTor, GM0.
RCTor, GM1.RCTor, Meta.RCTor, GM01.RCTor, respectively.

For the estimation of HTE’s parameter, we use mean square error (MSE) to 
evaluate the performance (variance) of estimation and use false discovery rate 
(FDR) to evaluate the performance of variable selection. The definitions are as 
follow: for simulation times b = 1, 2, ...,B , RMSE = (MSE)1∕2 , where 
MSE = (Bp)−1

∑B

b=1

∑p

j=1
(�̂

(b)

j
− �∗

j
)2,

We also record whether we correctly identify the existence of an unmeasured con-
founding effect, denoted by TIR. The definition is

�

{
log(T̃) − �0(Z)|Z,A = 1

}
= XT� + (1 − S)XT�.

�

{
�1(Z) − log(T̃)|Z,A = 0

}
= XT� + (1 − S)XT�.

�
{
�1(Z) − �0(Z)|Z

}
= XT� + (1 − S)XT�.

FDR =
1

B

B∑

b=1

|||
{
j|�∗

j
= 0, �̂

(b)

j
≠ 0

}|||
|||
{
j|�̂(b)

j
≠ 0

}|||

.
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The empirical results are based on B = 500 replications.
The simulation results are shown in Table  1 and 2. We make the following 

observations. (i) For the Oracle estimators, the estimators that utilize RWD act 
better than RCT-only estimators. The proposed Oracle estimator (RL.or) has the 
minimal RMSE in all settings compared with the estimates from other meth-
ods. (ii) The estimator that ignores the unmeasured confounding effect in RWD 
(RL.NAI) has the highest RMSE. This shows that ignorance of unmeasured 
confounding can lead to significant estimation error, confirming the necessity 
of identifying unmeasured confounding effect in RWD. (iii) For the methods to 
select tuning parameters, CV is competitive with BIC when there is no unmeas-
ured confounding effect and better than BIC when there is unmeasured con-
founding effect. In the following, we just analyze the results from the CV. All 
estimators that utilize RWD have smaller RMSE than the RCT-only estimators. 
Among the reported estimators, the RMSE of the proposed estimate (RL.cv) is 
sensibly lower than other methods. The RMSE of OA.cv is the second lowest. 
The RMSE of Meta.cv is slightly higher than that of OA.cv. (iv) The proposed 
estimator (RL.cv) has a slightly lower/competitive FDR than that of OA.cv, and 
it is sensibly lower than that of other methods. (v) Based on the results of TIR, 
it can be seen that all methods can identify the case well when there is unmeas-
ured confounding. When no unmeasured confounding effect exists, the proposed 
and outcome-adjusted methods perform better than other methods. (vi) Gener-
ally, the RMSEs and FDRs have no better performances when the censoring rate 
increases. If there is no unmeasured confounding effect, the estimators that uti-
lize RWD gain more efficiency than the estimators in the case where an unmeas-
ured confounding effect exists. 

Additional simulation experiments considering a weaker signal strength of 
the coefficients ( Signal = 1 ), a more severer censoring rate (CR= 60% ), and the 
log-logistic distribution of the survival time are presented in the supplemen-
tary materials in detail. The results show that the proposed method maintains 
its effectiveness across these settings. To summarize, the proposed method can 
identify unmeasured confounding effects well and gains more efficiency than the 
RCT-only estimators. The proposed estimator did well in cases including rela-
tively high dimensions and severe censoring. In addition, it acts the best com-
pared with the estimates from other reported methods.

4.2  Variance estimation

Simulations are implemented to evaluate the nonparametric bootstrap approach for 
variance estimation. The details of the estimation method are presented in Remark 
5. We compute the variance estimates for the proposed method using two types of 
data: one combining RCT with RWD (denoted as RCT+RWD), and the other using 
RCT data alone. Here we take the bootstrap sample size of 500. In Table 3 and 4, we 

TIR =
1

B

B∑

b=1

{
1
(
�̂ = 0, �∗ = 0

)
+ 1

(
�̂ ≠ 0, �∗ ≠ 0

)}
.
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Table 1  The RMSE ( ×102 ) of the HTE estimation when Signal = 2 over 500 experiment replicates

Some results are marked in bold to make it clear for readers to make comparison between different meth-
ods. The results behave the best except for the oracle estimates (i.e., smallest RMSE) are marked with 
underlines
In the table, CR represents cencoring rate. Among these methods, those with names starting with “RL" 
indicate the proposed model. RL.cv and RL.bic represent the proposed estimates under CV and BIC cri-
terion respectively. RL.RCT represents the estimate merely based on RCT data. RL.NAI is the naive 
estimate which completely ignores unmeasured confounding effect. RL.or, RL.RCTor, and RL.NAIor are 
the oracle estimates of the integrative analysis, RCT-only analysis, and naive analysis respectively. Other 
methods with names starting with “OA”, “GM0”, “GM1”, “Meta” and “GM01” are introduced in detail 
in Sect. 4

Methods with unmeasured confounding no unmeasured confounding

p=20 p=50 p=20 p=50

CR=20% CR=40% CR=20% CR=40% CR=20% CR=40% CR=20% CR=40%

RL.or 8.24 10.08 5.29 6.64 5.42 6.71 3.55 4.22
RL.RCTor 15.16 18.15 9.22 11.07 15.20 17.94 8.96 11.09
RL.NAIor 71.00 71.10 44.83 44.98
RL.cv 8.40 10.35 5.31 6.71 5.64 7.15 3.59 4.35
RL.bic 8.26 10.13 5.32 7.63 5.48 6.81 3.56 4.19
RL.RCT 15.67 19.05 9.29 11.78 15.71 18.95 9.22 11.82
RL.NAI 71.67 72.28 45.88 46.67
OA.or 11.30 12.97 7.10 8.54 8.87 10.72 5.71 7.04
OA.RCTor 22.23 25.97 15.82 18.49 22.32 25.95 15.75 18.57
OA.cv 11.34 13.10 7.13 8.60 8.90 10.81 5.73 7.05
OA.bic 11.33 13.03 7.13 9.12 8.89 10.75 5.72 7.04
OA.RCT 22.36 26.20 15.89 18.65 22.44 26.20 15.84 18.73
GM0.or 13.73 15.87 8.81 10.33 10.47 12.43 6.76 8.06
GM0.RCTor 24.92 29.09 17.40 20.61 24.92 29.09 17.40 20.42
GM0.cv 14.26 16.69 9.03 10.81 11.16 13.13 6.98 8.45
GM0.biv 13.78 16.20 8.97 11.41 10.74 12.54 6.85 8.10
GM0.RCT 24.81 29.10 17.35 21.02 24.81 29.10 17.32 20.85
GM1.or 11.76 13.79 7.54 9.23 9.52 11.35 6.13 7.40
GM1.RCTor 22.67 26.66 15.84 18.36 22.62 26.62 15.93 18.36
GM1.cv 12.35 14.68 7.81 9.86 9.99 11.98 6.34 7.77
GM1.bic 11.93 14.02 7.62 10.16 9.70 11.50 6.22 7.46
GM1.RCT 22.57 26.64 15.77 18.51 22.51 26.61 15.88 18.48
Meta.or 11.14 12.86 7.16 8.49 9.32 11.12 6.02 7.24
Meta.RCTor 22.34 25.93 15.68 18.19 22.31 25.93 15.67 18.12
Meta.cv 11.48 13.39 7.31 8.86 9.70 11.45 6.18 7.45
Meta.bic 11.21 13.04 7.25 9.20 9.51 11.20 6.11 7.27
Meta.RCT 22.17 25.77 15.59 18.35 22.13 25.77 15.58 18.28
GM01.or 13.77 17.05 8.95 11.30 11.50 14.86 7.49 9.77
GM01.RCTor 28.50 36.42 19.88 25.77 28.41 36.36 19.93 25.56
GM01.cv 14.63 18.69 9.66 13.40 12.49 16.61 8.06 11.80
GM01.bic 13.94 17.48 9.03 11.60 11.83 15.50 7.54 10.09
GM01.RCT 28.65 36.67 19.95 26.03 28.56 36.60 19.99 25.77
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Table 2  The averaged TIR(∕% ) and FDR(∕% ) when Signal = 2 over 500 experiment replicates

In the table, CR represents cencoring rate. TIR is the rate of correctly identifying the real case where 
unmeasured confounding effect exists or not. FDR is the false discovery rate of the HTE estimates. 
Among these methods, those with names starting with “RL" indicate the proposed model. RL.cv and 
RL.bic represent the proposed estimates under CV and BIC criterion respectively. RL.RCT represents 
the estimate merely based on RCT data. RL.NAI is the naive estimate which completely ignores unmeas-
ured confounding effect. Other methods with names starting with “OA”, “GM0”, “GM1”, “Meta” and 
“GM01” are introduced in detail in Sect. 4

Index Methods with unmeasured confounding no unmeasured confounding

p=20 p=50 p=20 p=50

CR=20% CR=40% CR=20% CR=40% CR=20% CR=40% CR=20% CR=40%

TIR RL.cv 100 100 100 100 97.8 97.3 98.5 98.1
RL.bic 100 100 100 100 97.8 98.6 99.2 98.8
OA.cv 100 100 100 100 98.8 97.8 99.2 99.0
OA.bic 100 100 100 100 99.4 99.4 99.2 99.1
GM0.cv 100 100 100 100 85.0 82.0 90.8 87.2
GM0.biv 100 100 100 100 95.4 95.4 97.8 97.6
GM1.cv 100 100 100 100 87.0 84.6 92.4 86.8
GM1.bic 100 100 100 100 96.6 94.2 98.4 95.2
Meta.cv 100 100 100 100 74.2 70.2 85.0 75.4
Meta.bic 100 100 100 100 92.0 89.6 96.2 92.8
GM01.cv 100 100 100 100 60.2 26.8 61.6 13.4
GM01.bic 100 100 100 100 88.4 67.8 92.6 64.2

FDR RL.cv 0.28 0.67 0.07 0.71 0.32 0.93 0.13 0.37
RL.bic 0.07 0.20 0.04 0.51 0.07 0.20 0.02 0.09
RL.RCT 3.51 5.00 3.48 6.16 3.39 5.07 3.63 5.81
RL.NAI 1.31 2.61 0.87 2.28
OA.cv 0.04 0.11 0.04 0.18 0.09 0.37 0.04 0.07
OA.bic 0.04 0.04 0.02 0.11 0.02 0.09 0.00 0.00
OA.RCT 0.90 1.55 0.56 1.59 0.80 1.71 0.74 1.71
GM0.cv 1.37 2.71 1.63 3.85 0.90 1.91 1.15 3.00
GM0.biv 0.18 0.77 0.40 1.34 0.24 0.34 0.16 0.24
GM0.

RCT 
1.51 2.24 0.86 1.81 1.51 2.24 1.03 1.65

GM1.cv 1.14 2.26 0.92 3.35 0.68 1.49 0.84 2.51
GM1.bic 0.13 0.59 0.07 1.18 0.16 0.18 0.11 0.24
GM1.

RCT 
1.21 2.55 0.46 1.85 1.29 2.66 0.68 1.44

Meta.cv 2.45 4.71 2.50 6.80 1.54 3.24 1.98 5.23
Meta.bic 0.31 1.35 0.46 2.43 0.37 0.52 0.27 0.46
Meta.

RCT 
2.66 4.63 1.31 3.58 2.76 4.74 1.71 3.05

GM01.cv 1.69 7.05 3.99 19.3 1.38 5.50 2.51 16.6
GM01.bic 0.16 1.02 0.28 2.24 0.18 1.08 0.13 2.24
GM01.

RCT 
1.18 2.30 0.37 1.81 1.12 2.09 0.30 1.60
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show the average of the point estimates (Mean), standard deviations (SD), the means 
of the bootstrap estimated standard deviations (SE), and the 0.95 coverage propor-
tion (CP) based on 500 replications.

Upon examining Tables 3 and 4, it is evident that the bootstrap standard deviation 
estimates match the standard deviations of the estimates well. Furthermore, the vari-
ance of the estimates derived from the combined RCT+RWD dataset is observed 
to be lower than that obtained from RCT data alone. This variance reduction, or 
shrinkage, is particularly pronounced for the coefficients in D1 ⧵D2.

5  Application

Lung cancer has become the primary cause of cancer-related deaths across the 
globe, with increasing incidence over the last two decades (Sung et al. 2021). Sur-
gical resection, including lobectomy and sublobar resection, is commonly used for 
early-stage lung cancer. Lobectomy involves the complete removal of the lung lobe 
where the tumor is located, while sublobar resection only entails the removal of a 
smaller section of the complicated lobe. In 1995, Ginsberg and Rubinstein reported 
a randomized trial that compared lobectomy with sublobar resection in patients 
with clinical T1N0 non-small-cell lung cancer (NSCLC) (Ginsberg and Rubinstein 
1995). They found that compared with lobectomy, sublobar resection does not confer 
improved perioperative morbidity, mortality, or late postoperative pulmonary func-
tion. These results made lobectomy the standard of surgical treatment for patients 
with clinical T1N0 NSCLC. Sublobar resection for early-stage lung cancer has only 
been assigned for patients with poor pulmonary reserve or other major comorbidi-
ties contraindicating lobectomy. Over the years, however, advances in imaging and 
staging methods have allowed the detection of smaller and earlier tumors, leading to 
a renewed interest in sublobar resection for patients with clinical stage IA NSCLC 
who might otherwise accept a lobectomy (Saji et al. 2022).

C140503 is a multicenter, noninferiority, phase 3 trial where NSCLC patients 
with tumor size ≤2  cm were randomly assigned to undergo sublobar resection or 
lobar resection after intraoperative confirmation of node-negative disease (Altorki 
et al. 2023). From June 2007 to March 2017, a total of 697 patients were assigned 
to undergo sublobar resection (340 patients) or lobar resection (357 patients). For 
disease-free survival, the right censoring rate is 59.7% in the group with sublobar 
resection and 60.5% in the group with lobar resection. It concluded that sublobar 
resection was non-inferior to lobar resection with respect to disease-free survival. 
In addition, a post hoc analysis of the heterogeneity of treatment effects for disease-
free survival across patient subgroups based on the Cox proportional hazards model 
revealed that age and tumor size intended to post a negative effect and positive effect 
on lobar resection, respectively. NCDB is a clinical oncology database maintained 
by the American College of Surgeons, and it accounts for 72% of all newly diag-
nosed lung cancer cases in the United States. The NCDB analysis based on multi-
variate Cox proportional hazards model and propensity score-based methods reveals 
a significant advantage of lobectomy over limited resection, which contradicts the 
results of C140503. This contradictory result may be attributed to unobserved hidden 
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confounders in the NCDB database. It has been well-documented that surgeons and 
patients tend to opt for limited resection over lobectomy when the patient’s health 
status is poor, functional respiratory service is low, and there is a high burden of 
comorbidities (Zhang et al. 2019; Lee and Altorki 2023). Unfortunately, these hid-
den confounders were not captured in the NCDB database, which could potentially 
result in biased estimates of treatment effects.

Though NCDB provides abundant samples, it fails to give a valid result of causal 
effect due to unmeasured confounding. We intend to apply the proposed method to 
integrate the NCDB data to C140503. It is interesting to see whether the efficiency of 
the HTE estimate can be improved. We randomly selected a cohort of 3000 patients 
with stage 1A NSCLC from the NCDB database, ensuring that their tumor size was ≤
2 cm and they met all the eligibility criteria for C140503. We consider the covariates 
that appear in both C140503 and NCDB, including race (white and other), sex (male 
and female), age, tumor size, histologic type (squamous-cell carcinoma, adenocarci-
noma and other). The estimated covariate effects in HTE and unmeasured confounding 
are presented in Fig. 1 and 2 respectively. In Fig. 2, the result shows that the effect of 
unmeasured confounding exists, which is consistent with the previous findings. It also 
reveals that the hidden confounding is significantly related to the patient’s age under 
90% confidence level. In Fig. 1, it can be observed that compared with the C140503-
only method, the proposed integrative estimator yields shorter confidence intervals. In 

Fig. 1  The estimated covariate effects in HTE. Here hist_ade indicates a presence of histologic type - 
adenocarcinoma, hist_squ suggests a presence of the histologic type - squamous-cell carcinoma



 X. Ye et al.

particular, the estimated effects of sex ( �sex ) and presence of histologic type adenocarci-
noma ( �ade ) are shrunk to zero when integrating NCDB. Since the C140503-only esti-
mates �̂rct

sex
 , �̂rct

ade
 show that the upper tail of the 90% confidence interval of �̂rct

sex
 is closed 

to zero and �̂rct
ade

 is not sigificant, it is reasonable to see the shrinkage when synthesiz-
ing NCDB. These results indicate that integrating the NCDB data to C140503 does 
improve the efficiency, which convincingly demonstrates the practical effectiveness of 
the proposed method.

6  Conclusion

In this paper, we have developed an integrative method to give an improved estimate 
of HTE by synthesizing the evidence from RCTs and RWD, particularly in situations 
where the outcome of interest is subject to censoring and the number of covariates is 
diverging. It can be seen that the situations we consider are more complex and realistic, 
bringing more challenges. The proposed method can deal with cases where unmeasured 

Fig. 2  The estimated covariate effects in unmeasured confounding. Here hist_ade indicates a presence 
of histologic type - adenocarcinoma, hist_squ suggests a presence of the histologic type - squamous-cell 
carcinoma
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confounding is present in RWD. It can identify whether the unmeasured confounding 
effect exists in a fully data-driven manner, contributing to more efficient estimates and 
a deeper understanding of the data generation mechanism. We have rigorously estab-
lished the theoretical properties, showing that the proposed integrative method yields 
a more efficient HTE estimate, at least as good as those based on only the RCTs data. 
The proposed method is practically applicable. Based on the evidence from C140503, 
the randomized controlled trial, and NCDB database, the real-world data that might 
be subject to hidden confounding, we have applied the proposed method to improve 
the estimate of the HTE on survival for patients with clinical T1N0 NSCLC under-
going lobar resection. The results reported that integrating NCDB data into C140503 
enhanced the HTE estimation, convincingly indicating the practicality of the proposed 
method.

In this project, we focus on developing data integration methods utilizing Stute 
weights, given their widespread use and suitability under the censoring assumptions. 
However, we acknowledge the potential benefits of exploring more general doubly 
robust weighting approaches. Future work could extend our methods to incorporate 
IPCW and doubly robust techniques, potentially building on the frameworks estab-
lished by Lee et al. (2022) and Lee et al. (2024), initially designed for trial generali-
zation. Moreover, in the context of integrating RWD into RCTs, there are still many 
problems to be solved. For example, it is common to see that RCTs and RWD have 
different covariates. Merely taking into account the shared covariates may incur other 
problems. For instance, some critical covariates to describe heterogeneity in treatment 
may be excluded. Thus, it is important to develop an integrative approach that can deal 
with non-uniform covariates in RCTs and RWD. Moreover, RCTs with time-varying 
treatments are common. Integrative analysis of the continuous-time structural failure 
time model (Yang et  al. 2020a) combining the complementary features of RCT and 
RWD will be an important topic for future research.
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Appendix A: technical details for Section 3

Firstly, we rewrite the regression model with more concise notations. Let Yi = log(T̃i) − µ(Zi),

Ŷi = log(T̃i)− µ̂(Zi), Y = (Yi, i = 1, 2, ..., n), and Ŷ =
(

Ŷi, i = 1, 2, ..., n
)

. Denote that

Λ = diag {Ai − e(Zi), i = 1, 2, ..., n} , Λ̂ = diag {Ai − ê(Zi), i = 1, 2, ..., n} .

Let ρ(θ) =
∑p

j=1 ρ(|θj |;λ1) + ρ(∥θG∥;λ2). Then the loss function (4) can be written into

ℓλ1,λ2(θ, η̂|OB) =
∥∥∥W1/2

(
Ŷ − Λ̂Uθ

)∥∥∥2
2
+ ρ(θ).

Proof of Theorem 1

The proof follows the lines of Fan and Peng (2004). We aim to show that for any given ϵ, there is a

large enough constant M such that, for large n, we have

Pr

{
min

||∆θ||2=M
ℓλ1,λ2(θ

∗ +Rn∆θ, η̂|OB) > ℓλ1,λ2(θ
∗, η̂|OB)

}
≥ 1− ϵ,

∗Corresponding author: syang24@ncsu.edu
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where ∆θ ∈ R2p is an increment vector. This implies that with probability converging to 1, there is

a local minimum θ̂ such that ∥θ̂ − θ∗∥2 = Op(1)Rn. It can be seen that

ℓλ1,λ2(θ
∗ +Rn∆θ, η̂|OB)− ℓλ1,λ2(θ

∗, η̂|OB)

=
∥∥∥W1/2Λ̂U∆θ

∥∥∥2
2
R2

n + 2∆θUTΛ̂W
(
Λ̂Uθ∗ − Ŷ

)
Rn + {ρ(θ∗ +Rn∆θ)− ρ(θ∗)}

= (I) + (II) + (III).

We first deal with (I). It can be deduced that

(I) = R2
n

∥∥∥W1/2ΛU∆θ
∥∥∥2
2
+R2

n

∥∥∥W1/2(Λ− Λ̂)U∆θ
∥∥∥2
2
+ 2R2

n∆θTUTΛW(Λ̂− Λ)U∆θ

= (I.1) + (I.2) + (I.3).

For (I.1), by (B0) and (B1)(i), with propbability converging to 1, it holds that

(I.1) = ∆θTUTΛWΛU∆θR2
n ≥ c1M

2R2
n.

For (I.2), by (B1)(ii), with propbability converging to 1, it holds that

|(I.2)| = Op(1)R
2
e,n∆θTUTWU∆θR2

n = Op(1)R
2
e,nR

2
nM

2 = op(1)R
2
nM

2.

For (I.3), by (B1)(ii), with propbability converging to 1, it holds that

|(I.3)| = Op(1)2Re,n∆θTUTWU∆θR2
n = Op(1)Re,nR

2
nM

2 = op(1)R
2
nM

2.

Thus, (I) is dominated by (I.1).

Then we consider (II). It can be deduced that

(II) = 2Rn∆θUT
{
ΛWϵ+ ΛW(Λ̂− Λ)Uθ∗ − ΛW

(
Ŷ − Y

)}
+ 2Rn∆θUT

{(
Λ− Λ̂

)
Wϵ+

(
Λ− Λ̂

)
W

(
Λ̂− Λ

)
Uθ∗ −

(
Λ− Λ̂

)
W

(
Ŷ − Y

)}
.

By (B0), we have |Rn∆θUTΛWϵ| = RnMp1/2n−1/2Op(1) = R2
nMOp(1). By (B0)and (B1), we

have |Rn∆θUTΛW
(
Λ̂− Λ

)
Uθ∗| = RnRe,n∥θ∗∥2MOp(1) = R2

nMOp(1). Similarly, we can deduced

that |Rn∆θUTΛW
(

Ŷ − Y
)
| = RnRµ,nMOp(1) = R2

nMOp(1),

|Rn∆θUT
(
Λ̂− Λ

)
Wϵ| = Op(1)RnMRe,n∥UTWϵ∥2 = Op(1)RnMRe,n

√
p

n
= op(1)R

2
nM,

|Rn∆θUT
(
Λ̂− Λ

)
W

(
Λ̂− Λ

)
Uθ∗| = Op(1)RnMR2

e,n∥θ∗∥2 = op(1)R
2
nM,
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|Rn∆θUT
(
Λ̂− Λ

)
W

(
Ŷ − Y

)
| = Op(1)RnRµ,nRe,nM∥W1/2U∥2 = op(1)R

2
nM.

Thus, (II) is dominated by (I.1) too.

Finally, we consider (III). It can be deduced that

(III) =
p∑

j=1

{
ρ(|θ∗j +Rn∆θj |;λ1)− ρ(|θ∗j |;λ1)

}
+

2p∑
j=p+1

{
ρ(|θ∗j +Rn∆θj |;λ1)− ρ(|θ∗j |;λ2)

}
= (III.1) + (III.2).

It can be seen that

(III.1) ≥
∑
j∈D1

ρ̇(|α∗
j |;λ1)(|α∗

j +Rn∆αj | − |α∗
j |) +

1

2

∑
j∈D1

ρ̈(|α∗
j |;λ1)(|α∗

j +Rn∆αj | − |α∗
j |)2(1 + o(1))

≥ −
∑
j∈D1

ρ̇(|α∗
j |;λ1)Rn|∆αj | −

1

2

∑
j∈D1

ρ̈(|α∗
j |;λ1)R

2
n|∆αj |2(1 + o(1))

≥ −max
j∈D1

{
ρ̇(|α∗

j |;λ1)
}√

d1nRnM − 1

2
max
j∈D1

{
ρ̈(|α∗

j |;λ1)
}
R2

nM
2(1 + o(1))

= −O(1)R2
nM − o(1)R2

nM
2.

The last equation holds by (B3)(i)(ii). Similarly, we can obtain that (III.2) ≥ −O(1)R2
nM −

o(1)R2
nM

2. Thus, (III) is dominated by (I.1) too.

Now we can see that all terms are dominated by (I.1), that is, for large enough constant M ,

min
||∆θ||2=M

ℓλ1,λ2(θ
∗ + Rn∆θ, η̂|OB) > ℓλ1,λ2(θ

∗, η̂|OB) holds with probability converging to 1. This

completes the proof.

Proof of Theorem 2

For 1 ≤ j ≤ p, if θj = 0, but θ̂j ̸= 0, then it holds that

0 = −UT
j Λ̂W

(
Ŷ − Λ̂Uθ̂

)
+ ρ̇(|θ̂j |) = (I) + (II).

It can be deduced that (I) = Op(Rn). By (B2)(ii), (II)/λ1 > 0 with probability converging to 1.

Thus (II) > Mλ1, where M > 0 is a constant. However, λ1/Rn → ∞, as n → ∞, which comes to

the contradictory. For p + 1 ≤ j ≤ 2p, if θj = 0, but θ̂j ̸= 0, then it can be similarly deduced the

contradictory since λ2/Rn → ∞, as n → ∞.

Proof of Theorem 3

Define the derivative for nuisance function

D∗[∆η] = ∂tEϕ
(

Z̃, T̃ ;θ∗
D, η

∗ + t∆η
) ∣∣∣

t=0
.

3



Let J∗ := ∂θDEϕ(Z̃, T̃ ;θD, η
∗) = E

{
(1− e∗(Z)2)UUT

}
. By Taylor expansion, we have

Eϕ
(

Z̃, T̃ ; θ̂D, η̂
)
− Eϕ

(
Z̃, T̃ ;θ∗

D, η
∗
)

= J∗

(
θ̂D − θ∗

D

)
+D∗[η̂ − η∗] + ∂2

t Eϕ
(

Z̃, T̃ ;θ∗
D + t

(
θ̂D − θ∗

D

)
, η∗ + t (η̂ − η∗)

) ∣∣∣
t=t̄

.

For any measurable function f , we use the notation Ẽnf(Z̃, T̃ ) =
∑n

i=1wif(Z̃i, T̃i) for empirical ex-

pectation under Stute’s measure. Similarly, we use the notation G̃nf(Z̃, T̃ ) =
√
n(
∑n

i=1wif(Z̃i, T̃i)−

Ef(Z̃, T̃ )) for empirical process under Stute’s measure. For our model, we have

Ẽnϕ
(

Z̃, T̃ ; θ̂G , η̂
)
+ ∂θDρ

(
θ̂D

)
= 0,

where Ẽnϕ(Z̃, T̃ ;θD, η) = −UTΛWY + UTΛWΛUθD. By this equation and the result of Taylor

expansion, it holds that

√
nqTJ∗

(
θ̂D − θ∗

D

)
=

√
nqTẼnϕ

(
Z̃, T̃ ;θ∗

D, η
∗
)
−
√
nqTD∗ [η̂ − η∗]

−
√
nqT∂2

t Eϕ
(

Z̃, T̃ ;θ∗
D + t

(
θ̂D − θ∗

D

)
, η∗ + t (η̂ − η∗)

) ∣∣∣
t=t̄

+ qTG̃n

{
ϕ
(

Z̃, T̃ ; θ̂D, η̂
)
− ϕ

(
Z̃, T̃ ;θ∗

D, η
∗
)}

+
√
nqT∂θDρ

(
θ̂D

)
= (I) + (II) + (III) + (IV),

where t̄ ∈ (0, 1).

First, we consider (I). It can be deduced that D∗[η̂ − η∗] = 0. Then by (B0) and σ2
∗ defined in

the conditions, we have (I) →d N(0, σ2
∗). Then for (II), it can be deduced that

∥∂2
t Eϕ

(
Z̃, T̃ ;θ∗

D + t
(
θ̂D − θ∗

D

)
, η∗ + t (η̂ − η∗)

)
|t=t̄∥2 = O(1)R2

n.

Then by (B3)(iv), we have |(II)| ≤
√
nR2

nO(1) = o(1). For (IV), we have

|(IV)| ≤
√
n∥∂θDρ(θ

∗
D)∥2 +

√
n∥∂θDρ(θ̂D)− ∂θDρ(θ

∗
D)∥2

≤

√
nd1n

(
max
j∈D1

{
ρ̇(|θ∗j |;λ1)

})2

+ nd2n

(
max
j∈D2

{
ρ̇(|θ∗j |;λ2)

})2

+Op(1)
√
nmax {λ1, λ2}Rn

By (B3)(iii)(iv), it follows that |(IV)| = o(1). Now we consider (III). Define class

F2 = {ϕj (·;θD, η̂)− ϕj (·;θ∗
D, η

∗) : j ∈ D, ∥θD − θ∗
D∥2 ≤ cRn} ,

4



where c is some positve constant. Then we can see that

|(III)| ≤
√

dn sup
f∈F2

|G̃nf |.

By (B3)(v), we have supf∈F2
∥f∥2F 0,2 ≤ O(1)Rb

n. Consider that

sup
f∈F2

|f | ≤ sup
f∈F1,η̂

|f |+ sup
f∈F1,η∗

|f | ≤ F1,η̂ + F1,η∗ ,

the function F2 := F1,η̂ +F1,η∗ can be the envelop for F2. Since F2 ⊂ F1,η̂ −F1,η∗ , by (B4), it holds

that

sup
Q

logN(ξ∥F2∥Q,2,F2, ∥ · ∥Q,2)

≤ sup
Q

logN

(
ξ

2
∥F1,η̂∥Q,2,F1,η̂, ∥ · ∥Q,2

)
+ sup

Q
logN

(
ξ

2
∥F1,η∗∥Q,2,F1,η∗ , ∥ · ∥Q,2

)
≤ 2v log

2c6
ξ

.

Under the condition (B0), (B3)(v), and by Lemma 6.2 in Chernozhukov et al (2018), with prob-

ability converging to 1, for q > 2, it holds that supf∈F2
|G̃nf | ≤ O

(
R

b/2
n + n−1/2+1/q

)
. Thus by

(B3)(v), we have (III) ≤
√
dnO(R

b/2
n + n−1/2+1/q) = o(1).

Finally, combining the analysis of (I) to (IV), we have
√
nqTJ∗(θ̂D − θ∗

D) →d N(0, σ2
∗). This

completes the proof.

Proof of Theorem 5

For abuse of notation, here we still use X to denote (A− e(Z))X. Let

Vrct = E
(
SXD1XT

D1

)
,

Vint =
[
EXD1XT

D1
−
{
E(1− S)XD1XT

D2

}{
E(1− S)XD2XT

D2

}−1 {E(1− S)XD2XT
D1

}]
.

When there is no censoring, let q ∈ Rd1n , it can be seen that as n → ∞,

Var(
√
nqTα̂rct

D1
) → 1

rS
qT

{
E
(
XD1XT

D1
|S = 1

)}−1 qT = qTV−1
rctqT,

Var(
√
nqTα̂D1) → qTV−1

intq
T.
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It can be deduced that

Vrct − Vint

= E(1− S)XD1XT
D1

−
{
E(1− S)XD1XT

D2

}{
E(1− S)XD2XT

D2

}−1 {E(1− S)XD2XT
D1

}
.

By the theory of projection, Vrct − Vint ≥ 0, where the equality holds if and only if there exists a

d2n × d1n constant matrix Q, such that when S = 0, it holds that XD1 = QTXD2 .

As a result,

Var(
√
nqTα̂D1)

−1 − Var(
√
nqTα̂rct

D1
)−1 ≥ 0, (1)

where the equality holds if and only if there exists a d2n × d1n constant matrix Q, such that when

S = 0, it holds that XD1 = QTXD2 . Specially, when D1 ⊂ D2, the equality holds. When XD1 ⊥

XD2 |S = 0 or D2 = ∅, under (B1)(i), it holds that Vrct−Vint = E(1−S)XD1XT
D1

> 0, which means

the inequality in (1) strictly holds.

Additional assumptions for Theorem 4

We need some conditions similar to (B0)-(B4) to derive the asymptotic properties of the RCT-only

estimator. Denote that the true parameters for HTE be α∗, and true nuisance functions be η∗. We

first introduce some notations. Following the notations in Stute (1996), let Gr be the probability

distribution function (p.d.f) of C conditional on S = 1, with τGr = inf {x : Gr(x) = 1}, Fr be the

p.d.f of T̃ conditional on S = 1, with τFr = inf {x : Fr(x) = 1}, and Hr be the p.d.f of T conditional

on S = 1, with τHr = inf {x : Hr(x) = 1}. Let F 0
r be the p.d.f of (X̃, T̃ ) conditional on S = 1 with

X̃ = (X, A). Define

F̃ 0
r (x, t) =

 F 0
r (x, t), t < τHr ,

F 0
r (x, τHr−) + F 0

r (x, τHr)I(τHr ∈ Hr), t ≥ τHr ,

with Hr denoting the set of atoms of Hr, possibly empty. Define the score function

φj(X̃, T̃ ;α∗, η∗) = {A− e∗(X, 1)}Xj

[
log T̃ − µ∗(X, 1)− {A− e∗(X, 1)}XTα∗

]
, j = 1, 2, ..., p.

It can be seen that Eφ(X̃, T̃ ;α∗, η∗) = 0. Define H̃1
r (x, y) = Pr(X̃ ≤ x, T ≤ y, δ = 1|S = 1),

H̃0
r (y) = Pr(T ≤ y, δ = 0|S = 1), and

γr0(y) = exp

{∫ y−

0

H̃0
r (dv)

1−Hr(v)

}
,

γr1j(y) =
1

1−Hr(y)

∫
1{y<v}φj(z, v;α∗, η∗)γr0(v)H̃

1
r (dz, dv), j = 1, 2, ..., p,

6



γr2j(y) =

∫ ∫
1{v<y,v<w}φj(z, w;α∗, η∗)γr0(v)

{1−Hr(v)}2
H̃0

r (dv)H̃
1
r (dz, dw), j = 1, 2, ..., p.

Let γr1(y) = {γr1j(y), j = 1, 2, ..., p}, and γr2(y) = {γr2j(y), j = 1, 2, ..., p}.

(C0) For j = 1, 2, ..., 2p,

(i) Pr(T̃ ≤ C|X, S = 1, A, T̃ ) = Pr(T̃ ≤ C|S = 1, T̃ ).

(ii) The p.d.f. Fr and Gr have no jump in common, and τFr < τGr.

(iii) E
{
φj(Z̃, T ;α∗, η∗)γr0(T )δ|S = 1

}2
< ∞.

(iv) Let gr(y) =
∫ y−
0 {1−Hr(w)}−1 {1−Gr(w)}−1Gr(dw). It holds that∫

|φj(z, w;α∗, η∗)|
√
gr(w)F̃

0
r (dz, dw) < ∞.

(C1) (i) The eigenvalues of E
[
{A− e(X, 1)}2 XXT|S = 1

]
are larger than a positive constant cr1.

(ii) The eigenvalues of E
(
XXT|S = 1

)
are smaller than a positive constant cr2.

(C2) Let Re,n be the convergence rate of ∥ê − e∗∥∞, Rµ,n be the convergence rate of ∥µ̂ − µ∗∥∞.

Define rate Rn1 = max
{
Rµ,n, Re,n∥θ∗∥2,

√
p/n

}
. Let D1 =

{
j|α∗

j ̸= 0
}

with element number

d1n. Define ρ̇(x;λ) = ∂ρ(x;λ)/∂x, ρ̈(x;λ) = ∂2ρ(x;λ)/∂x2, for x > 0.

(i)
√
d1nmax

{
|ρ̇(|α∗

j |;λ1)|, j = 1, 2, ..., p
}
= Op(n

−1/2
1 ).

(ii) √
n1λ1Rn1 = o(1).

(iii) E|φj(X̃, T̃ ;α, η) − φj(X̃, T̃ ;α∗, η∗)|2 ≤ (∥α−α∗∥2 ∧ ∥η − η∗∥∞)br cr3, where cr3 is some

positive constant. In addition,
√
d1nR

br/2
n1 = o(1),

√
d1nn

−1/2+1/q
1 = o(1), q > 2.

(C3) Let Θr = {α : ∥α−α∗∥2 ≤ Rn1cr4}, where cr4 is some positive constant. Define class

Fr1,η = {φj(·;α, η) : j ∈ D1,α ∈ Θr} ,

with measurable envelop Fr1,η. It satisfies ∥Fr1,η∥F 0
r ,q

≤ cr5 where cr5 is some positive constant.

It holds that for all 0 < ξ ≤ 1,

sup
Q

logN(ξ∥Fr1,η∥Q,2,Fr1,η, ∥ · ∥Q,2) ≤ v log
cr6
ξ
,

where cr6 is some positive constant.
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Additional simulation experiments

1. Weaker signal of the coefficients: let Signal = 1, and the other model settings remain the

same as in Section 4 in the paper. The simulation results based on 500 replicates are shown

in Table 1 and Table 2. The proposed method is still eective. Compared with the results of

Signal = 2, it can be observed that when the signal of parameters get stronger, for all methods,

RMSE, TIR, FDR improve.

2. Logistic distribution of the error term: let the error term follow the Logistic distribution

instead of the Normal distribution, i.e., the survival time follows the log-Logistic distribution.

We consider the case where the dimension of covariates is p = 20; the censoring rate is CR= 40%

and Signal = 2 for the proposed model and outcome adjusted model. The other model settings

remain the same asin Section 4 of the paper. The simulation results based on 500 replicates

are shown in Table 3. It can be seen that the proposed method still performs well and is more

efficient than the outcome-adjusted method. Compared with the log-Normal distribution, all

the methods lose some efficiency, i.e., higher RMSE.

3. Severe censoring: Let the censoring rate be CR= 60%. We consider the case where the

dimension of covariates is p = 20 and Signal = 2 for the proposed model and outcome-adjusted

model. The other model settings remain the same as in Section 4 of the paper. The simulation

results based on 500 replicates are shown in Table 4. It can be seen that the proposed method

still works well and is more ecient than the outcome-adjusted method.
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Table 1: The RMSE (×102) of the HTE estimation when Signal = 1 over 500 experiment replicates

Methods
with unmeasured confounding no unmeasured confounding

p=20 p=50 p=20 p=50

CR=20% CR=40% CR=20% CR=40% CR=20% CR=40% CR=20% CR=40%

RL.or 6.54 7.52 4.15 4.97 4.59 5.37 2.96 3.42
RL.RCTor 10.10 11.87 6.22 7.45 10.10 11.87 6.22 7.45
RL.NAIor 35.75 35.96 22.54 22.72
RL.cv 7.06 9.05 5.41 9.32 4.91 5.68 3.08 3.53
RL.bic 10.56 16.94 12.60 17.55 4.68 5.47 2.99 3.46
RL.RCT 11.08 14.29 7.03 9.52 11.08 14.29 7.03 9.52
RL.NAI 37.05 37.78 23.92 24.45

OA.or 7.30 8.41 4.70 5.67 5.60 6.70 3.68 4.48
OA.RCTor 12.43 14.60 8.70 10.18 12.43 14.60 8.70 10.18
OA.cv 7.69 9.67 6.27 9.44 5.73 6.85 3.73 4.56
OA.bic 11.94 17.22 13.25 16.93 5.63 6.73 3.70 4.50
OA.RCT 12.65 15.09 8.92 10.68 12.65 15.09 8.92 10.68

GM0.or 8.71 10.18 5.82 6.96 6.46 7.50 4.18 4.98
GM0.RCTor 13.97 16.39 9.64 11.47 13.97 16.39 9.62 11.48
GM0.cv 9.29 11.64 7.04 9.99 7.03 8.37 4.54 5.47
GM0.biv 10.01 14.90 10.48 14.61 6.65 7.90 4.30 5.12
GM0.RCT 14.33 17.55 10.61 13.99 14.33 17.55 10.56 14.00

GM1.or 7.91 9.26 5.29 6.34 6.11 7.22 3.97 4.77
GM1.RCTor 13.17 15.34 9.12 10.49 13.18 15.29 9.12 10.49
GM1.cv 8.53 10.69 6.22 9.20 6.53 7.85 4.26 5.17
GM1.bic 9.03 13.42 9.33 14.27 6.34 7.42 4.07 4.85
GM1.RCT 13.48 16.11 9.74 12.28 13.49 16.05 9.72 12.23

Meta.or 7.44 8.72 5.00 5.98 5.92 6.93 3.84 4.58
Meta.RCTor 12.64 14.70 8.80 10.17 12.65 14.68 8.79 10.17
Meta.cv 7.81 9.76 5.82 8.33 6.21 7.38 4.06 4.89
Meta.bic 8.35 12.39 8.65 12.72 6.07 7.13 3.92 4.66
Meta.RCT 12.89 15.46 9.49 12.05 12.90 15.44 9.48 12.04

GM01.or 8.55 10.37 5.93 7.39 6.60 8.21 4.29 5.51
GM01.RCTor 15.10 19.23 10.56 13.53 15.09 19.26 10.53 13.52
GM01.cv 9.55 12.21 7.03 9.87 8.06 10.63 5.45 8.35
GM01.bic 9.10 11.50 6.51 8.72 7.64 9.86 5.00 7.18
GM01.RCT 15.39 19.71 10.74 14.14 15.39 19.73 10.71 14.11

Some results are marked in bold to make it clear for readers to compare different methods. The results that behave
the best, except for the Oracle estimates (i.e., the smallest RMSE), are marked with underlines.
In the table, CR represents cencoring rate. Among these methods, those with names starting with “RL" indicate
the proposed model. RL.cv and RL.bic represent the proposed estimates under CV and BIC criteria, respectively.
RL.RCT represents the estimate merely based on RCT data. RL.NAI is the naive estimate that completely ignores
unmeasured confounding effect. RL.or, RL.RCTor, and RL.NAIor are the oracle estimates of the integrative, RCT-
only, and naive analysis, respectively. Other methods with names starting with “OA”, “GM0”, “GM1”, “Meta” and
“GM01” are introduced in detail in Section 4.
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Table 2: The averaged TIR(/%) and FDR(/%) when Signal = 1 over 500 experiment replicates.

Index Methods
with unmeasured confounding no unmeasured confounding

p=20 p=50 p=20 p=50

CR=20% CR=40% CR=20% CR=40% CR=20% CR=40% CR=20% CR=40%

TIR

RL.cv 100 100 100 100 93.00 92.80 94.00 90.80
RL.bic 100 100 100 99.00 97.40 96.40 95.40 94.40

OA.cv 100 100 100 100 96.40 93.20 95.60 94.00
OA.bic 100 100 100 99.00 98.00 97.60 97.60 95.80

GM0.cv 100 100 100 99.73 83.60 81.20 81.61 77.95
GM0.biv 100 100 100 99.47 89.20 88.20 92.41 88.98

GM1.cv 100 100 100 100 85.20 80.60 82.53 77.95
GM1.bic 100 100 100 100 91.00 86.20 88.97 86.35

Meta.cv 100 100 100 100 73.20 67.40 70.57 63.78
Meta.bic 100 100 100 100 83.40 77.20 82.76 78.74

GM01.cv 100 100 100 100 17.20 6.20 9.20 0.26
GM01.bic 100 100 100 100 32.40 14.20 19.77 3.15

FDR

RL.cv 2.49 5.62 6.59 11.87 1.62 1.58 1.60 1.58
RL.bic 1.25 2.87 3.06 3.98 0.35 0.28 0.36 0.52
RL.RCT 6.39 11.16 8.38 15.55 6.39 11.16 8.38 15.55
RL.NAI 5.29 5.65 4.41 4.61

OA.cv 2.16 4.96 5.19 8.40 0.94 1.20 1.00 1.65
OA.bic 1.34 2.11 1.60 2.41 0.13 0.13 0.35 0.31
OA.RCT 2.88 5.10 3.82 7.72 2.88 5.10 3.82 7.72

GM0.cv 5.04 8.56 8.33 15.75 3.76 4.90 4.62 7.29
GM0.biv 2.32 3.47 4.04 6.57 0.90 1.32 0.63 1.69
GM0.RCT 2.88 5.02 2.57 6.15 2.88 5.02 2.54 6.09

GM1.cv 3.86 8.11 7.35 15.23 3.00 4.28 4.47 6.29
GM1.bic 2.08 3.35 3.96 6.22 0.90 0.80 0.89 1.25
GM1.RCT 2.88 4.17 2.23 4.48 2.90 4.24 2.34 4.82

Meta.cv 7.72 13.72 13.18 25.33 5.71 7.80 8.08 11.38
Meta.bic 3.87 5.95 7.02 11.14 1.64 2.01 1.39 2.71
Meta.RCT 5.51 8.38 4.61 9.92 5.48 8.42 4.64 10.18

GM01.cv 7.84 16.61 20.29 41.2 6.53 15.23 15.73 36.5
GM01.bic 4.36 9.37 11.26 24.60 4.10 9.11 9.46 24.07
GM01.RCT 5.34 9.01 3.81 9.09 5.49 8.81 3.74 8.56

In the table, CR represents the cencoring rate. TIR is the rate of correctly identifying the real case where unmeasured
confounding effect exists or not. FDR is the false discovery rate of the HTE estimates. Among these methods, those
with names starting with “RL" indicate the proposed model. RL.cv and RL.bic represent the proposed estimates
under CV and BIC criteria, respectively. RL.RCT represents the estimate merely based on RCT data. RL.NAI
is the naive estimate that completely ignores unmeasured confounding effect. Other methods with names starting
with “OA”, “GM0”, “GM1”, “Meta” and “GM01” are introduced in detail in Section 4.
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Table 3: Simulation results of the proposed method (RL) and the outcome-adjusted method (OA)
when the survival time follows log-Logistic distribution, CR=40%, p = 20.

Index Method β∗ ̸= 0 β∗ = 0 Index Method β∗ ̸= 0 β∗ = 0

RMSE×102

RL.or 14.81 10.41

FDR/%

RL.cv 5.24 1.65
RL.RCTor 22.56 22.56 RL.bic 3.43 0.37
RL.NAIor 71.86 - RL.RCT 8.90 8.90
RL.cv 17.74 11.09 RL.NAI 6.69 -

RL.bic 27.01 10.55 OA.cv 4.02 1.39
RL.RCT 25.27 25.27 OA.bic 1.95 0.33
RL.NAI 75.16 - OA.RCT 4.51 4.50

OA.or 16.29 13.19

TIR/%

RL.cv 100.00 91.00
OA.RCTor 28.91 28.91 RL.bic 100.00 93.40

OA.cv 18.03 13.43 OA.cv 100.00 93.81
OA.bic 28.97 13.24 OA.bic 100.00 95.58
OA.RCT 29.63 29.63

In the table, the results are based on 500 replicates. CR represents the cencoring rate. β∗ ̸= 0 means there is
unmeasured confounding effect, otherwise, there is no unmeasured confounding effect. TIR is the rate of correctly
identifying the real case where unmeasured confounding effect exists or not. FDR is the false discovery rate of the HTE
estimates. RL.cv and RL.bic represent the proposed estimates under the CV and BIC criteria, respectively. RL.RCT
represents the estimate merely based on RCT data. RL.NAI is the naive estimate that completely ignores unmeasured
confounding effect.
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Table 4: Simulation results of the proposed method (RL) and the outcome-adjusted method (OA)
when CR=60%, p = 20.

Index Method β∗ ̸= 0 β∗ = 0 Index Method β∗ ̸= 0 β∗ = 0

RMSE×102

RL.or 14.81 9.13

FDR/%

RL.cv 3.60 1.49
RL.RCTor 24.20 24.20 RL.bic 2.28 0.44
RL.NAIor 71.46 - RL.RCT 9.75 9.75
RL.cv 16.80 9.74 RL.NAI 6.31 -

RL.bic 20.77 9.33 OA.cv 1.31 0.53
RL.RCT 27.71 27.71 OA.bic 0.54 0.19
RL.NAI 74.23 - OA.RCT 3.45 3.45

OA.or 17.08 14.27

TIR/%

RL.cv 100.00 94.80
OA.RCTor 32.36 32.36 RL.bic 100.00 95.20

OA.cv 17.56 14.38 OA.cv 100.00 97.74
OA.bic 18.69 14.31 OA.bic 100.00 98.02
OA.RCT 32.95 32.95

In the table, the results are based on 500 replicates. CR represents the cencoring rate. β∗ ̸= 0 means there is
unmeasured confounding effect, otherwise, there is no unmeasured confounding effect. TIR is the rate of correctly
identifying the real case where unmeasured confounding effect exists or not. FDR is the false discovery rate of the HTE
estimates. RL.cv and RL.bic represent the proposed estimates under the CV and BIC criteria, respectively. RL.RCT
represents the estimate merely based on RCT data. RL.NAI is the naive estimate that completely ignores unmeasured
confounding effect.
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