
Statistics and Its Interface Volume 18 (2025) 93–105

Variable selection for doubly robust causal
inference
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Confounding control is crucial and yet challenging for
causal inference based on observational studies. Under
the typical unconfoundness assumption, augmented inverse
probability weighting (AIPW) has been popular for esti-
mating the average causal effect (ACE) due to its double
robustness in the sense it relies on either the propensity
score model or the outcome mean model to be correctly
specified. To ensure the key assumption holds, the effort is
often made to collect a sufficiently rich set of pretreatment
variables, rendering variable selection imperative. It is well
known that variable selection for the propensity score tar-
geted for accurate prediction may produce a variable ACE
estimator by including the instrument variables. Thus, many
recent works recommend selecting all outcome predictors for
both confounding control and efficient estimation. This ar-
ticle shows that the AIPW estimator with variable selection
targeted for efficient estimation may lose the desirable dou-
ble robustness property. Instead, we propose controlling the
propensity score model for any covariate that is a predictor
of either the treatment or the outcome or both, which pre-
serves the double robustness of the AIPW estimator. Using
this principle, we propose a two-stage procedure with pe-
nalization for variable selection and the AIPW estimator
for estimation. We show the proposed procedure benefits
from the desirable double robustness property. We evaluate
the finite-sample performance of the AIPW estimator with
various variable selection criteria through simulation and an
application.

1. INTRODUCTION

1.1 Ignorability and the need for variable
selection

Unlike experimental studies, treatment assignments in
observational studies are not random. As a result, distribu-
tions of the covariates differ between treatment arms, and
direct comparisons between the treatment groups may be
biased. Most causal inference methods rely on the ignora-
bility assumption (also referred to as no unmeasured con-
founders), which indicates the treatment assignment can be
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ignored when conditioning the observed covariates. Under
the ignorability assumption, researchers have proposed var-
ious methods to estimate the average causal effect (ACE),
including regression imputation estimator, matching estima-
tor, inverse propensity score weighted (IPW) estimator, aug-
mented IPW (AIPW) estimator [e.g., 13]. Among them, the
AIPW estimator has been popular because it is locally ef-
ficient and doubly robust in the sense that its consistency
relies on either the correctly specified propensity score (PS)
model or the outcome mean (OM) model, but not necessar-
ily both [21, 23, 28, 17, 2].

In the past, it was desirable to include all possible pre-
treatment variables to avoid the risk of excluding related
variables and satisfy the ignorability assumption [17, 29].
With the advances in technology, a rich set of pretreatment
covariates can be collected. In these high-dimensional set-
tings, including all variables can be computationally unsta-
ble, burdensome, or sometimes impossible. Thus, variable
selection is indispensable for handling high-dimensional co-
variates.

1.2 Existing variable selection strategies

Typically, there are four main types of pretreatment vari-
ables: 1) instrumental variables, 2) confounders, 3) precision
variables, and 4) spurious variables. We refer to variables
that are only predictors of the treatment but not the out-
come as the instrumental variables, variables that are predic-
tors of both the treatment and outcome as the confounders,
variables that are only predictors of the outcome but not
the treatment as the precision variables, and others as the
spurious variables.

Lunceford and Davidian [17] show that containing the
precision variables in the PS model helps reduce standard
errors while maintaining consistency. Following this result,
many researchers suggest outcome predictor approaches,
which include the precision variables and the confounders
for the ACE estimation, since other variables, including the
instrumental variables, may inflate the variance of the ACE
estimators or introduce bias to the estimator [5, 20].

Shortreed and Ertefaie [29] suggest the outcome-adaptive
lasso and provide simulation studies showing that includ-
ing precision variables in the PS model increases efficiency.
Ertefaie et al. [7] propose a penalized objective function that
simultaneously considers the outcome and treatment assign-
ment models for variable selection. Tang et al. [30] propose
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the causal ball screening that targets confounders and other
outcome predictors as an adjustment set for the PS. Henckel
et al. [11] provide a pruning procedure determining the op-
timal adjustment set. They show the adjusted least-squares
treatment effect estimator based on the identified set has
the smallest asymptotic variance among consistent adjusted
least square estimators. Rotnitzky and Smucler [24] demon-
strate that Henkel’s results can also be extended to non-
parametric estimators. However, it is challenging to distin-
guish confounders from instrumental variables, and hence
the outcome predictor approach may exclude the true con-
founders from subsequent estimation. As a result, the omis-
sion of important confounders may lead to bias. To avoid
such bias, VanderWeele and Shpitser [33] suggest adjusting
for any covariates that are causes of either the treatment or
outcome because those variables constitute a sufficient set
adjusting for confounding. Belloni et al. [3] suggest a post-
double-selection method where they consider the union of
the covariates considered important in two equations from
a partially linear model and estimate the ACE using lin-
ear square regression. Wilson and Reich [35] estimate the
standard Bayesian regression model and then the posterior
distribution using a confounder-specific loss function. They
target the set of all confounders and the outcome-related
covariates, but instrumental variables are included to avoid
omitting confounder variables. Although the idea of using
the union of the selected variables has already been pro-
posed to avoid bias due to the exclusion of confounders,
we provide another reason for using the union approach in
terms of maintaining the double-robustness of the AIPW
estimator.

1.3 Contribution and outline

This article shows that the AIPW estimator with vari-
able selection targeted for efficient estimation (referred to
as the outcome predictor approach) may lose the desirable
double-robustness property. Generally, the outcome predic-
tor approach is shown to be efficient, provided the postu-
lated models are known or correctly specified. However, if
the PS model is correctly specified, and the OM model is
misspecified, the estimation of the PS model restricted to
the outcome predictors may not be consistent; see Exam-
ple 1. Thus, although the PS working model is correctly
specified, the PS model based on the wrong set from the OM
model is not consistent for the true PS model, and thus the
AIPW estimator becomes not consistent. Given the above
reasons, considering the selected instrumental variables in
subsequent estimation aids in protecting the AIPW estima-
tor’s double-robustness property.

Using this principle, we propose a two-stage procedure
with penalization for variable selection and the AIPW es-
timator for estimation. In the first stage, we select a set
of variables considered important predictors of either the
treatment or outcome using penalized estimating equations.

In this paper, we used the smoothly clipped absolute devia-
tion (SCAD) proposed by [8], but other penalized methods
also can be applied. After variable selection, we employ the
AIPW estimator to estimate the ACE with the nuisance
models refitted based on the selected variables. We show
the proposed procedure benefits from the desirable statis-
tical properties, including selection consistency and double
robustness.

The rest of the paper is organized as follows. Section 2
presents the basic setup. Section 3 illustrates the wishlist
consisting of various variable selection criteria. Section 4
presents the asymptotic properties of our procedure. In Sec-
tion 5, we compare our approach to common variable selec-
tion strategies for confounding control or efficient estima-
tion. The simulation suggests that the AIPW estimator is
still doubly robust with our variable selection procedure but
is not with other selection strategies. In Section 6, we ap-
ply our procedure to an application, maternal smoking on
birth weight data. We conclude the paper with a discussion
in Section 7.

2. BASIC SETUP

2.1 Potential outcomes framework

Following [19] and [26], we adopt the potential outcomes
framework. Denote X to be a vector of p-dimensional pre-
treatment covariates. Suppose that the treatment is a bi-
nary variable A ∈ {0, 1}, with 0 and 1 being labels for con-
trol and active treatments, respectively. Under the common
Stable Unit Treatment Value assumption [27], for each level
of the treatment a, we assume that there exists a poten-
tial outcome Y (a), representing the outcome had the unit,
possibly contrary to the fact, been given the treatment a.
We make the consistency assumption that links the observed
outcome with the potential outcomes, i.e., the observed out-
come Y is the potential outcome under the treatment regime
actually following Y (A). We focus on estimating the ACE,
τ = E{Y (1)−Y (0)}. The ACE is the target causal estimand
in many scientific applications, generating important pol-
icy implications. Our methodology also applies to a broader
class of causal estimands in [16].

The fundamental problem in estimating the ACE is that
one may observe at most one of Y (0) and Y (1) for each unit.
Throughout, we make the ignorability assumption widely
used in the causal inference literature.

Assumption 1 (Ignorability). {Y (0), Y (1)} ⊥⊥ A | X.

Assumption 2 (Overlap). There exist constants c1 and c2
such that 0 < c1 ≤ e(X) ≤ c2 < 1 almost surely, where
e(X) = P (A = 1|X) is the PS.

Assumption 1 holds when all confounders are identified
and measured. That is, this assumption requires X to in-
clude all factors related to both treatment and outcomes.
Assumption 1 indicates that treatment assignment is inde-
pendent of the potential outcomes givenX. This assumption
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is automatically guaranteed in the experimental study be-
cause the treatment is assigned to each unit at random. In
observational studies, researchers often collect a rich set of
pretreatment covariates to make this assumption plausible,
leading to possibly high-dimensional X.

Assumption 2 holds when there exists a sufficient over-
lap between the covariate distributions of the treatment and
control group. This means that the distributions of the treat-
ment and control groups need to be similar to each other.
When Assumption 2 is not satisfied at a specific value of X,
the unit at the value would be only treated or controlled.
This leads to the extrapolation of one of two potential out-
comes at that value and makes the inference about the ACE
inappropriate.

2.2 Doubly robust estimator of the ACE

It is well known that under Assumption 1 and Assump-
tion 2, the ACE can be identifiable and estimated through
the outcome regression or the augmented/inverse probabil-
ity weighting (AIPW/IPW) estimator. See [12] and [22] for
surveys of these estimators.

Define μa(X) = E{Y (a)|X} for a = 0, 1. Then, under
Assumption 1, μa(X) = E(Y |A = a,X). In practice, the
outcome distribution and the PS are often unknown and
therefore have to be modeled and estimated.

Assumption 3 (Outcome mean model). The parametric
model μa(X) = E(Y |A = a,X) is a correct specification for
μa(X), for a = 0, 1; i.e., μa(X) = μa(X;βa0), where βa0 is
the true OM model parameter for a = 0, 1.

Assumption 4 (Propensity score model). The paramet-
ric model e(X;α0) is a correct specification for e(X); i.e.,
e(X) = e(X;α0), where α0 is the true model parameter.

Under Assumption 3, let β̂a be a consistent estimator of
βa0. Under Assumption 4, let α̂ be a consistent estimator
of α0. The Augmented Inverse Propensity score Weighting
(AIPW) estimator is

τ̂n,AIPW =
1

n

n∑
i=1

[
AiYi

e(Xi; α̂)
+

{
1− Ai

e(Xi; α̂)

}
μ1(Xi; β̂1)

− (1−Ai)Yi

1− e(Xi; α̂)
−
{
1− (1−Ai)

1− e(Xi; α̂)

}
μ0(Xi; β̂0)

]
.

The AIPW estimator is doubly robust in the sense that it
is consistent if either Assumption 3 or 4 holds and locally
efficient if both assumptions hold [25].

Without loss of generality, we assume all covariates have
a mean of zero and a common standard deviation so that
we apply the penalty equally to all covariates. Define α∗ =
argminα∈RpE[{A−e(XTα)}2] and β∗

a = argminβ∈RpE[{Y −
μa(X

Tβa)}2], a = 0, 1. As is common in the empirical litera-
ture, we assume a generalized linear model for the OMmodel
in Assumption 3 and a logistic regression model for the

PS model in Assumption 4. If working models e(XTα) and
μa(X

Tβa) are correctly specified, we have e(X) = e(XTα∗)
and μa(X) = μa(X

Tβ∗
a), respectively. However, the work-

ing models may be misspecified. Mα denotes the set of true
important variables in the PS model, and Mβ denotes the
set of true important variables in the OM model. Define the
union set of true important variables in the PS and the OM
model as U , i.e., U = Mα ∪Mβ , and the intersection set of
true important variables in the PS and the OM model as I,
i.e., I = Mα ∩Mβ . We refer to true important sets as ora-
cle sets. We use the hat for the set consisting of the selected
variables by variable selection procedures. The set of vari-
ables selected from the PS model is denoted by M̂α, and the
set of variables selected from the OM model is denoted by
M̂β . Likewise, we define Û = M̂α∪M̂β and Î = M̂α∩M̂β .

3. VARIABLE SELECTION CRITERIA

3.1 Classification of pretreatment variables

In the presence of a considerable number of spurious co-
variates, including unnecessary covariates in the model can
lead to statistical inefficiency of the estimation or sometimes
be computationally infeasible. For this reason, variable se-
lection is essential to exclude unnecessary covariates. We
investigate the variable selection approaches for the AIPW
estimator of the ACE, given its desirable double robustness
property. As mentioned in the introduction, typically, there
are four main types of pretreatment variables: instrumental
variables (XI), confounder variables (XC), precision vari-
ables (XP ), and spurious variables (XS). Figure 1 displays
relationships of pretreatment variables.

Since the pretreatment variables play different roles in
the estimation, which variables to be selected depends on
the goal for variable selection. We categorize four goals for
variable selection: (1) variable selection for prediction mod-
eling; (2) variable selection for confounding control; (3) vari-
able selection for efficient estimation; and (4) variable selec-
tion for double robustness. We discuss them in the following
subsections.

Figure 1. A diagram of pretreatment covariate structure.
Abbreviations: XI , instrumental variables; XC , confounding
variables; XP , precision variables; XS , spurious variables.
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3.2 Variable selection for prediction
modeling

Traditionally, variable selection aims to gain prediction
accuracy. It is crucial to decide which variables to include
in models because the choice of variables strongly influences
the model’s performance. The exclusion of essential variables
from the models fails to identify a genuine relationship be-
tween outcomes, treatment, and covariates.

Backward elimination, forward selection, stepwise selec-
tion, p values, Akaike information criterion, Bayesian infor-
mation criterion, and Mallows’ Cp statistic are traditional
variable selection procedures [6]. These methods can be com-
putationally expensive and do not consider stochastic errors
caused in the stages of variable selections [8]. Tibshirani [31]
proposes the least absolute shrinkage and selection operator
(LASSO), which is the penalized least squares estimate with
the L1 penalty in the squares and likelihood settings. Zou
[41] demonstrate situations where the LASSO selection is in-
consistent and present an alternative method, the Adaptive
LASSO, where adaptive weights are employed to penalize
different coefficients in the l1 penalty. Fan and Li [8] show
that the LASSO shrinkage gives a biased estimator for the
large coefficients and propose the SCAD that takes advan-
tage of the oracle properties. The procedure has the oracle
properties if it identifies the right subset model and has the
optimal estimation rate. The change in estimate criterion
method attempts to obtain a low-bias estimator with a min-
imal covariate set. The method removes a covariate one at a
time from a covariate set and then compares the estimates
between the reduced set and the original set. If the change
in estimate is significant enough, the covariate is removed
from the adjustment set.

However, only focusing on the high prediction accuracy of
the PS model or the OM model is not practically helpful for
obtaining reasonable ACE estimates. If one cares about only
the PS predictor, the AIPW estimator may lose efficiency,
excluding XP . We will discuss this in Subsection 3.4. If one
cares about only the outcome predictor, the AIPW estima-
tor may no longer retain a double robustness property. We
will discuss this in Subsection 3.5.

3.3 Variable selection for confounding
control

The omission of XC that appears in both OM and PS
models makes the ACE inconsistent. Thus, all XC should
be measured and included for the unbiased ACE. However,
identifying all the confounders is not easy in practice. In
the real world, the relationship between covariates and the
treatment, as well as the relationship between covariates and
the outcome, are not fully known. For this reason, a richly
parameterized PS model is preferred to ensure the inclusion
of XC . In this process, too many covariates are involved in
the model, which leads to a complicated model to estimate.
An alternative approach is to adjust for covariates that are

common causes of exposure and outcome. However, if the
information on the common cause of treatment and out-
come is not clear, there might be a missed set of covariates
which is required to adjust for confounding [32]. Besides,
this approach does not take into account XP helpful for effi-
ciency. Thus, this variable selection approach is not suitable
for efficient and accurate estimation.

3.4 Variable selection for efficient estimation

One of the primary motivations for variable selection is
to gain efficiency in estimating the ACE. Lunceford and Da-
vidian [17] show that when including XP as well as XC into
the PS model, all weighted estimators for the ACE are con-
sistent, and the variance of the AIPW estimator based on
XP and XC has a smaller variance relative to the one based
only on XC . Brookhart et al. [5] suggest using only outcome
predictors for the PS model since XP reduces the variance
while XI and XS inflate the variance without changing bias.
Henckel et al. [11] introduce a new graphical criterion. Using
their Theorem 3.1, it is shown that the outcome predictor-
based asymptotic variance is smaller than the treatment
predictor-based asymptotic variance. Rotnitzky and Smu-
cler [24] extend the results to non-parametric causal graph-
ical models. In their settings, XC affects outcomes through
XP . They point out that the stronger association between
XC and the PS model and the weaker association between
XC and XP are, the less efficient it is to include XC . Tang
et al. [30] also show that adjusting for outcome predictors
improves efficiency, and adjusting for XI increases the vari-
ance. To show these results, they quantify the difference in
the asymptotic variance of the estimators based on the XP

and XI .
Many methods have been developed to obtain efficiency,

including outcome predictors and excluding XI . Shortreed
and Ertefaie [29] derive the outcome-adaptive lasso. Erte-
faie et al. [7] propose a penalized objective function, which
selects outcome predictors while excluding XI and XS .
Henckel et al. [11] establish a procedure to prune a valid
adjustment to get a valid subset with a smaller asymptotic
variance. Tang et al. [30] propose the causal ball screening
for selecting all outcome predictors from modern ultra-high
dimensional data sets and excluding XI and XS .

3.5 Variable selection for double robustness

As mentioned in the previous subsection, outcome pre-
dictor approaches make the ACE estimator more efficient
under the correct models. However, there is a lack of in-
formation on the relationship between covariates or on both
model specifications in the real world. The insufficient infor-
mation makes it difficult to obtain the correct models and
to identify relevant covariates that increase the efficiency of
the ACE estimator. In this case, a robust estimation can
be more reliable, although a bit of efficiency is sacrificed. In
particular, this is obvious when one does not have complete
knowledge of the OM model and uses the AIPW estimator
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for the ACE estimation. Suppose linear models are assumed
for the non-linear OM models. Then, no variables may be
selected, or some variables that are not associated with the
true outcomes may be chosen for the OM model. In this
case, including XI can be helpful in terms of robustness. To
illustrate, consider the following example.

Example 1. Let X = (X1, X2, X3) be the vector of pretreat-
ment covariates. Assume the true OM model is non-linear,
e.g., μa(X) = 0.1X2

1 +X2
2 +2X2; the true PS model follows

a logistic model, e.g., logit{e(X)} = 1 + X1 + X3. Then,
Mβ = {X1, X2} and Mα = {X1, X3}. Thus, X1 ∈ XC ,
X2 ∈ XP , and X3 ∈ XI . Assume treatment assignment fol-
lows a correct logistic regression model, and the OM model
may be misspecified as linear. In this case, since X1 is non-
linearly related to the OM models, X1 is unlikely to be se-
lected for the OM model in most cases. Consequently, we
have M̂β = {X2} and M̂α = {X1, X3}.

In Example 1, a linear model is assumed for the non-
linear OM model, whereas the PS model is correctly speci-
fied. That is, Assumption 3 is not satisfied and μ(X,β∗

a) �=
μ(X) = E(Y |X). On the other hand, Assumption 4 is satis-
fied and e(X,α∗) = e(X) = E(A|X). Generally, the AIPW
estimator should be consistent with the ACE by its doubly
robust property because Assumption 4 is satisfied. However,
in Example 1, we cannot obtain the consistent PS model
with the outcome predictor approach because XC = {X1}
is likely to be dropped due to its weak linear relationship and
M̂β = {X2} is not involved with the PS model. Thus, both
the PS and OM models using a set based on the outcome
predictors are not consistent. As a result, the AIPW estima-
tor loses its doubly robust property, and it is no longer con-
sistent for ACE. However, if Û = M̂α∪M̂β = {X1, X2, X3}
is used to estimate the PS model, we can obtain the consis-
tent PS model, and the AIPW estimator is consistent with
ACE. Although XI = X1 may reduce efficiency, it is neces-
sary to get a consistent AIPW estimator. Therefore, we sug-
gest using Û to retain the double robustness of the AIPW
estimator. In the simulation study, we will show that the
AIPW estimator based on Î or M̂β is not doubly robust
when the PS model is correctly specified, but the OM model
is misspecified.

3.6 Proposed procedure for variable
selection and estimation

The proposed method has three steps: we separately se-
lect important variables for the OM model in Step 1 and the
PS model in Step 2. In Step 3, we estimate the ACE using a
doubly robust estimator based on the union set of selected
covariates in Step 1 and Step 2. In Step 1 and Step 2, we
employ a penalized estimating equation for determining im-
portant covariates. The SCAD is used here. We specify qλ(x)
to be a folded concave SCAD penalty function [9, 37]. The

SCAD penalty is defined by

(1) qλ(|θ|) = λ

{
I(|θ| < λ) +

(aλ− |θ|)+
(a− 1)λ

I(|θ| ≥ λ)

}
for a > 0, where (·)+ is the truncated linear function; i.e.,
if x ≥ 0, (x)+ = x, and if x < 0, (x)+ = 0. We use a = 3.7
following the suggestion of [8].

In Step 1, we run the SCAD for each of the OM mod-
els separately. For β1, we conduct the SCAD only using the
observations (Yi, Xi) with Ai = 1. Likewise, the observa-
tions (Yi, Xi) with Ai = 0 are used for β0. The penalized
estimating functions for βa, a = 0, 1, are defined as

(2) U1(β1) =
1

n1

n∑
i=1

Ai{Yi − μ1(X
T
i β1)}Xi

− qλβ1
(|β1|) · sign(β1),

(3) U2(β0) =
1

n0

n∑
i=1

(1−Ai){Yi − μ0(X
T
i β0)}Xi

− qλβ0
(|β0|) · sign(β0),

where n1 =
∑n

i=1 I(Ai = 1) and n0 =
∑n

i=1 I(Ai = 0).
qλβa

(|βa|) is defined in Eq. (1).
In Step 2, we implement the SCAD for the PS model.

The corresponding penalized estimating function for α is

(4) U3(α) =
1

n

n∑
i=1

{Ai − e(Xi;α)}Xi − qλα(|α|) · sign(α).

Let (α̃, β̃0, β̃1) denote the solution for the penalized joint

estimating equation U = 0. In this procedure, M̂α is the
set of variables that correspond to the nonzero coefficients
in the PS model, and M̂β is the set of variables that corre-
spond to the nonzero coefficients in the OMmodel. Likewise,
Û = M̂α ∪ M̂β and Î = M̂α ∩ M̂β . Fan and Li [8] show
that the SCAD estimators perform the oracle procedure in
variable selection, which means they behave as if the cor-
rect submodels were known. Thus, the set Û includes the
true important variables in either the PS model or the OM
model with probability approaching one.

In Step 3, we re-estimated the coefficients using the vari-
ables in the set Û and then derive the AIPW estimator of
the ACE. At this time, we use estimating functions without
penalty. Under Assumption 3, for the OM model, let

(5) Sa(X,Y ;βa) =
∂μa(X;βa)

∂βa
{Y − μa(X;βa)}

be the estimating function for β∗
a for a = 0, 1. Under As-

sumption 4, for the PS model, let

(6) S(A,X;α) =
A− e(X;α)

e(X;α){1− e(X;α)}
∂e(X;α)

∂α

Variable selection for doubly robust causal inference 97

FKE50xoF2uRpHUL+cyZbVvU1hKlMmJEsXH5CtldHDIImtU7u7PyNirDrVfWTahWDujynxhd9KEIrmuV2HlkaBkNa8Ae4mMdCeR6U+E+vGCM=

FKE50xoF2uRpHUL+cyZbVvU1hKlMmJEsXH5CtldHDIImtU7u7PyNirDrVfWTahWDujynxhd9KEIrmuV2HlkaBkNa8Ae4mMdCeR6U+E+vGCM=



be the estimating function for α∗. ÛC is defined as the com-
plement of Û . We use the estimating equations (Eq. 5 and 6)
restricted to the parameter space {βa : βa,ÛC = 0} and

{α : αÛC = 0}, respectively. Let (α̂, β̂0, β̂1) denote the solu-
tion for Eq. (5) and (6). To summarize, our two-stage pro-
cedure for variable selection and estimation is as follows.

• Step 1: Under Assumption 3, use the penalization
method to select important variables in the OM model
using the SCAD, i.e., M̂β = {j : β̃a,j �= 0}, where β̃a,j

is the solution for Eq. (2) and (3), for a = 0, 1.
• Step 2: Under Assumption 4, use the penalization
method to select important variables in the PS model
using the SCAD, i.e., M̂α = {j : α̃j �= 0}, where α̃j is
the solution for Eq. (4).

• Step 3: Let the set of variables for estimation be Û =
M̂α ∪ M̂β . The proposed estimator is

τ̂(α̂, β̂0, β̂1)(7)

=
1

n

n∑
i=1

[
AiYi

e(Xi; α̂)
+

{
1− Ai

e(Xi; α̂)

}
μ1(Xi; β̂1)

− (1−Ai)Yi

1− e(Xi; α̂)
−

{
1− (1−Ai)Yi

1− e(Xi; α̂)

}
μ0(Xi; β̂0)

]
,

where α̂ and β̂a are obtained by fitting the OM and PS
models for α and β with Xi ∈ Û , i = 1, . . . , n.

In Steps 1 and 2, the choice of the regularization param-
eter λ is crucial because it controls the model’s sparsity 
level. In many research, λ is chosen by cross-validation. 
However, according to [18], λ chosen from cross-validation 
selects too many noise variables in a high-dimensional set-
ting. We modify the R function cv.ncvreg in the ncvreg 
package so that cross-validation selects the regularization 
parameter (λa, λb) from a pre-range of λ. In this way,  
we can prevent over-selecting. cv.ncvreg solves the es-
timating function using a coordinate descent algorithm. 
The coordinate descent algorithms minimize the target 
function with respect to a single parameter at a time, 
with other components of the variable vector X being 
fixed at their current values. If specifying (λa, λb) is diffi-
cult, another approach for resolving the overselecting prob-
lem is to utilize other variable selection methods, such 
as the Adaptive LASSO [41]. See Section S3 in the sup-
plementary material https://link.intlpress.com/suppfile/sii/
SII-18-1-a7-CHO-supplement.pdf.

4. ASYMPTOTIC RESULTS FOR VARIABLE
SELECTION AND ESTIMATION

Under certain regularity conditions given in [8], α̃ and
β̃a satisfy the selection consistency and the oracle prop-
erties under penalized likelihood for both linear regression
and logistic regression. Hence, we can obtain ‖α̃ − α∗‖2 =

Op{(p/n)1/2} and ‖β̃a − β∗
a‖2 = Op{(p/n)1/2}, for a = 1, 2.

Now we focus on the asymptotic behavior of the AIPW esti-
mator based on (α̂, β̂0, β̂1), which are obtained by fitting the
OM and PS models. We consider an influence function to
study the asymptotic properties of the proposed estimator.
Under mild regularity conditions [e.g., 21],

τ̂(α∗, β∗
0 , β

∗
1)− τ =

1

n

n∑
i=1

ψ(Ai, Xi, Yi) + op(1),

where ψ(A,X, Y ) is the influence function of τ̂ with E(ψ) =
0 and E(ψ2) < ∞ [4].

Let

Σα = E
{
S⊗2(A,X;α)

}
= E

[
1

e(X;α∗){1− e(X;α∗)}

{
∂e(X;α∗)

∂α

}⊗2
]

be the Fisher information matrix for α in the PS model. For
simplicity, denote

e∗i = e(Xi;α
∗),

ė∗i = ∂e(Xi;α
∗)/∂αT ,

S∗
i = S(Ai, Xi;α

∗),

μ∗
ai = μa(Xi;β

∗
a),

μ̇∗
ai = ∂μa(Xi;β

∗
a)/∂β

T
a ,

S∗
ai = Sa(Ai, Xi, Yi;β

∗
a),

Ṡ∗
ai = ∂Sa(Ai, Xi, Yi;β

∗
a)/∂β

T
a ,

for a = 0, 1. Under Assumption 3 or Assumption 4, the in-
fluence function for τ̂(α̂, β̂0, β̂1) can be written as following:

ψ(Ai, Xi, Yi)

=
AiYi

e∗i
+

(
1− Ai

e∗i

)
μ∗
1i −

(1−Ai)Yi

1− e∗i
−
(
1− 1−Ai

1− e∗i

)
μ∗
0i

+ E

[{
A(Y − μ∗

1)

(e∗)2
+

(1−A)(Y − μ∗
0)

(1− e∗)2

}
ė∗
]
Σ−1

α S∗
i

− E

{(
1− A

e∗

)
μ̇∗
1

}{
E(Ṡ∗

1 )
}−1

S∗
1i

+ E

{(
1− 1−A

1− e∗

)
μ̇∗
0

}{
E(Ṡ∗

0 )
}−1

S∗
0i − τ.

(8)

The regularity condition for the SCAD and the details of Eq.
(8) are presented in the supplementary material. Note that
if e∗ and μ∗

a is correctly specified, e∗ = e(X;α∗) = e(X)
and μ∗

a = μa(X;β∗
a) = μa(X), for a = 1, 2. Hence, if e∗

or μ∗
a is the correct model, the right-hand side of Eq. (8)

is zero, as shown in the supplementary material. It follows
that E(ψ) = 0 and E(ψψT ) < ∞. Thus, we have

τ̂(α̂, β̂0, β̂1)− τ =
1

n

n∑
i=1

ψ(Ai, Xi, Yi) + op(1),
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As a result,
√
n{τ̂(α̂, β̂0, β̂1)− τ} is also asymptotically nor-

mal.

Theorem 1. Under Assumptions 1–4 and the regularity
conditions specified in the supplementary material, if either
e(XTα) or m(XTβ) is correctly specified,

√
n{τ̂(α̂, β̂0, β̂1)− τ} → N{0, E(ψψT )},(9)

in distribution, as n → ∞, where ψ is defined in Eq. (8).

Additionally, when the propensity score and the regres-
sion function are correctly specified, τ̂ achieves the semi-
parametric efficiency bound [10].

Theorem 2 (Double robustness of the proposed estimator).
Under Assumptions 1–2, if either Assumption 3 or Assump-
tion 4 holds, not necessarily both, τ̂(α̂, β̂0, β̂1) in Equation
(7) is consistent with τ .

The proof is given in the supplementary material.
There are two approaches to estimating the asymptotic

variance: (a) conducting the bootstrap and (b) using the
point estimation for the asymptotic variance, replacing ψ
with ψ̂ in (9). For the former, since τ̂ is asymptotically
linear and normal, we can estimate the valid variance es-
timator of τ̂ by bootstrapping original observations. For the
latter, we use ψ̂ as an estimator for ψ in Eq. (8), substi-

tuting (α̂, β̂0, β̂1) for (α
∗, β∗

0 , β
∗
1). Then, we can estimate the

asymptotic variance of τ̂n(α̂, β̂0, β̂1), V {τ̂n(α̂, β̂0, β̂1)}, by

V̂ {τ̂n(α̂, β̂0, β̂1)} =
1

n
Ê(ψ̂ψ̂T ) =

1

n2

n∑
i=1

ψ̂ψ̂T .

Considering the long time it takes to conduct bootstrap, we
use the latter in Sections 5 and 6.

5. SIMULATION STUDY

In this section, we conduct a simulation study to eval-
uate the finite sample performances of the doubly robust
ACE estimator with different variable selection strategies.
Additionally, the simulation study is done under model mis-
specification to manifest the robustness of the proposed es-
timator.

5.1 Simulation setup

We generate the dataset with size n = 5000. The covari-
ate Xi = (1, X1,i, . . . , Xp−1,i)

T is p-dimensional, where p
is set to be 50. The first component is one, and the oth-
ers are independently generated from the standard normal
with mean 0 and variance 1. Table 1 summarizes the struc-
ture of pretreatment variables for four scenarios. In all sce-
narios, the last p − 6 coefficients were set to 0 in the PS
and OM models, representing p− 6 spurious covariates, and
XC = {X3,i, X4,i}. In Scenarios 1 and 4, XI = {X1,i, X2,i}.
In Scenarios 1 and 3, XP = {X5,i, X6,i}.

We generate a binary treatment, Ai, from a Bernoulli
distribution with the PS. For the PS model, we consider
both a linear model (PSM I) and a non-linear model (PSM
II):

• PSM I: logit(ei) = αT
1 Xi,

• PSM II: logit(ei) = 3.5+αT
2 log(X2

i )− cos(X3,i+X4,i),

where α1 and α2 are (p − 1)-dimensional vectors of coeffi-
cients in the PS model. The true values of α1 and α2 are
defined differently depending on the scenario structure:

• Scenario 1: α1 = (0, 1, 1, 1, 1, 0, . . . , 0)T and α2 =
(0, 3, 3, 3, 3, 0, . . . , 0)T ,

• Scenario 2: α1 = (0, 0, 0, 1, 1, 0, . . . , 0)T and α2 =
(0, 0, 0, 3, 3, 0, . . . , 0)T ,

• Scenario 3: α1 = (0, 0, 0, 1, 1, 0, . . . , 0)T and α2 =
(0, 0, 0, 3, 3, 0, . . . , 0)T ,

• Scenario 4: α1 = (0, 1, 1, 1, 1, 0, . . . , 0)T and α2 =
(0, 3, 3, 3, 3, 0, . . . , 0)T .

For generating continuous outcome variable, Yi, we consider
both linear (OM I) and non-linear OM models (OM II):

• OM I: Yi = βT
a Xi + εi, εi ∼ N (0, 1), where a = 0, 1,

• OM II:
Y0 = 1 + exp(sin(βT

0 Xi))− 2 cos(β0,4X3,i + β0,5X4,i) +
β0,6X5,i − β0,7X6,i + ε0,i, ε0,i ∼ N (0, 1),
Y1 = 1 + exp(2 sin(βT

1 Xi))− cos(β1,4X3,i + β1,5X4,i) +
β1,6X5,i − β1,7X6,i + ε1,i, ε1,i ∼ N (0, 1),

where β0 and β1 are (p − 1)-dimensional vectors of coef-
ficients in the OM model, and βa,j is the j-th coefficient
of βa (a = 0, 1). The true values of β0 and β1 are defined
differently depending on the scenario structure:

• Scenario 1: β0 = (1, 0, 0, 1, 1, 1, 1, . . . , 0)T and β1 =
(1, 0, 0, 2, 2, 2, 2, . . . , 0)T ,

• Scenario 2: β0 = (1, 0, 0, 1, 1, 0, 0, . . . , 0)T and β1 =
(1, 0, 0, 2, 2, 0, 0, . . . , 0)T ,

• Scenario 3: β0 = (1, 0, 0, 1, 1, 1, 1, . . . , 0)T and β1 =
(1, 0, 0, 2, 2, 2, 2, . . . , 0)T ,

• Scenario 4: β0 = (1, 0, 0, 1, 1, 0, 0, . . . , 0)T and β1 =
(1, 0, 0, 2, 2, 0, 0, . . . , 0)T .

Using the different α and β for each Scenario is to make the
true important covariates different according to Scenarios.
For example, in Scenario 1, X1,i, X2,i, X3,i, and X4,i are im-
portant covariates in the PS models and X3,i, X4,i, X5,i, and
X6,i are in the OM models. In doing so, we can perform the

Table 1. The pretreatment variables in four scenarios

XI XC XP

Scenario 1 X1,i, X2,i X3,i, X4,i X5,i, X6,i

Scenario 2 X3,i, X4,i

Scenario 3 X3,i, X4,i X5,i, X6,i

Scenario 4 X1,i, X2,i X3,i, X4,i
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simulations using different combinations of XI , XC , and XP

as in Table 1. Under the above data-generating mechanisms,
the true ACE is zero for OM I. For OM II, the true ACE is
1.6031 in Scenarios 1 and 3 and 1.4280 in Scenarios 2 and
4.

For each scenario specified in Table 1, we consider four
settings:

• Setting (a): a linear PS model (PSM I) + a linear OM
model (OM I),

• Setting (b): a non-linear PS model (PSM II) + a linear
OM model (OM I),

• Setting (c): a linear PS model (PSM I) + a non-linear
OM model (OM II),

• Setting (d): a non-linear PS model (PSM II) + a non-
linear OM model (OM II).

Although in case the data are generated from the non-
linear PS or OM models, we estimate the coefficients based
on a linear model. Thus, the PS model in Setting (b), the
OM model in Setting (c), and both the PS and OM model in
Setting (d) are misspecified. In the variable selection steps,
the regularization parameter is chosen by cross-validation.
To avoid over-selecting, we select λ from λmin to λmax. We
set λmin = 0.1, 0.3, and 0.02 for the linear OM model, the
non-linear OM model, and the PS model, respectively. We
set λmax to be the default value provided by the package
ncvreg, which is the largest eigenvalue of the design matrix.
In this simulation, we use the same set for the PS model and
the OM model in the AIPW estimation. Our proposed esti-
mator is the AIPW estimator using the PS and OM models
adjusted by Û . We compare the performance of our sug-
gested estimator with the AIPW estimator using the PS and
OM models adjusted by Î and M̂β . Also, our suggested es-
timator is compared with oracle sets, U , I and Mβ , which
are the sets consisting of covariates used in the true models.
We consider the following estimators:

• TRUE: E(Y1 − Y0),
• O-UNI: the AIPW estimator based on U for comparison
purpose,

• O-INT: the AIPW estimator based on I for comparison
purpose,

• O-OUT: the AIPW estimator based on Mβ for compar-
ison purpose,

• UNI: the AIPW estimator based on Û selected by the
SCAD (the proposed approach),

• INT: the AIPW estimator based on Î selected by the
SCAD (the confounder-only approach),

• OUT: the AIPW estimator based on M̂β selected by the
SCAD (the outcome predictor approach).

Each simulation is based on 2000 Monte Carlo runs. We
compute the proportion of over-selecting, under-selecting,
average false negatives (the average number of not selected
covariates that have true nonzero coefficients), and the aver-
age false positives (the average number of selected covariates

that have true zero coefficients) for each simulation. We es-
timate the ACE and obtain the coverage rates of the 95%
confidence interval.

5.2 Simulation results

Table 2 summarizes the selection performance of the pro-
posed penalization procedure for all scenarios in terms of
the proportion of over-selecting (Over), under-selecting (Un-
der), average false negative (FN), and average false posi-
tives (FP). The under-selecting proportions for the proposed
method are all zeros under the true model specification, im-
plying that most of the true nonzero coefficients are selected
by Steps I and II in the proposed procedure.

Figure 2 displays the distribution of the ACE estimates
for all scenarios. UNI and OUTmaintain the efficiency as much
as their oracle estimators, while INT is more variable than
its oracle estimator under the misspecification. All methods
are more unstable when the OM model is misspecified than
when it is correct. O-UNI and UNI have more considerable
variability than O-OUT and OUT in Setting (a) and (c) of
Scenarios 1 and 4, where XI exists, and the PS model is
linear. However, UNI has the advantage that when XI are
not useful for estimation, it does not use those variables
for the AIPW estimator. In the setting (b), where the PS

model is misspecified, most of XI are dropped from Û , and
UNI keeps efficiency as much as OUT. INT is more variable
under Setting (c) in Scenarios 1 and 3 since the XP are not
considered. This phenomenon is consistent with the findings
in the previous research that including XI inflates standard
errors while including XP reduces standard errors [29, 30,
24].

In Setting (a)–(c), O-UNI and UNI are doubly robust in
the sense that it is unbiased, provided that either the OM
model or the PS model is correctly specified. Contrarily, INT
and OUT show large biases compared to O-INT and O-OUT in
Setting (c). Theoretically, INT and OUT should be unbiased as
in O-INT and O-OUT since the PS model is correct. However,
INT and OUT are no longer unbiased because they do not
consider XI necessary to maintain the double robustness
of the AIPW estimator. These results show why we need
to consider not only XC and XP but XI as well for the
estimation when the OM model may be misspecified. When
both models are unknown, as in Setting (d), there is not
much difference among UNI, INT, and OUT in terms of bias
and efficiency because most of the variables are not selected
in the models.

Table 3 displays the coverage rates for all scenarios. The
results show that our coverage rates are close to the nominal
coverage if either the OM or PS model is correctly specified.
In contrast, the coverage rates for other approaches fail to
reach the nominal coverage rate if the OM model is misspec-
ified.

100 E. Cho and S. Yang

FKE50xoF2uRpHUL+cyZbVvU1hKlMmJEsXH5CtldHDIImtU7u7PyNirDrVfWTahWDujynxhd9KEIrmuV2HlkaBkNa8Ae4mMdCeR6U+E+vGCM=

FKE50xoF2uRpHUL+cyZbVvU1hKlMmJEsXH5CtldHDIImtU7u7PyNirDrVfWTahWDujynxhd9KEIrmuV2HlkaBkNa8Ae4mMdCeR6U+E+vGCM=



Table 2. Simulation results for the selection performance for the proposed penalization procedure

β∗ α∗

Over
(×102)

Under
(×102)

FN FP
Over
(×102)

Under
(×102)

FN FP

Scenario 1

(a) OM I and PSM I 0.05 0 0 0.0005 10.4 0 0 0.1145
(b) OM I and PSM II 4.25 0 0 0.0475 12.3 100 4 0.14
(c) OM II and PSM I 0 100 2 0 10.4 0 0 0.1145
(d) OM II and PSM II 0.05 100 2 0.0005 12.3 100 4 0.14

Scenario 2

(a) OM I and PSM I 0 0 0 0 16.95 0 0 0.2355
(b) OM I and PSM II 0 0 0 0 29.7 99.8 2 0.5075
(c) OM II and PSM I 0 100 2 0 16.95 0 0 0.2355
(d) OM II and PSM II 0 100 2 0 29.7 99.8 2 0.5075

Scenario 3

(a) OM I and PSM I 0 0 0 0 16.95 0 0 0.2355
(b) OM I and PSM II 0 0 0 0 29.7 99.8 2 0.5075
(c) OM II and PSM I 0 99.65 2 0 16.95 0 0 0.2355
(d) OM II and PSM II 0 100 2 0 29.7 99.8 2 0.5075

Scenario 4

(a) OM I and PSM I 0.05 0 0 0.0005 10.4 0 0 0.1145
(b) OM I and PSM II 3.75 0 0 0.042 12.3 100 4 0.14
(c) OM II and PSM I 0 100 2 0 10.4 0 0 0.1145
(d) OM II and PSM II 0 100 2 0 12.3 100 4 0.14

Note: XI exists in Scenarios 1 and 4, XC exists in all Scenarios, and XP exists in Scenarios 1 and 3. Under OM I (II), the OM model is
correctly specified (misspecified), and under PSM I (II), the PS model is correctly specified (misspecified). The results include the proportion
of over-selecting, under-selecting, average false negatives, and average false positives for each setting.

6. AN APPLICATION

Low birth weight infants undergo severe health and devel-
opmental difficulties, which incurs enormous societal costs.
Thus, considerable attention has been focused on finding
the causal determinant of an infant’s birth weight. Mater-
nal smoking is a significant risk factor for low birth weight
infants [14, 34]. Many studies were carried out to determine
the relationship between maternal smoking during preg-
nancy and low birth weight infants. Almond et al. [1] im-
plement a program evaluation approach. Lee et al. [15] ob-
tain a uniformly valid confidence band to show how smoking
changes across different age groups of mothers.

The data is available on the STATA website.1 The sample
size for the data is 4262. The outcome of interest Y is infant
birth weight measured in grams. The treatment variable A
is a binary variable equal to 1 if the mother smokes and 0
otherwise. We are interested in getting the ACE of mater-
nal smoking during pregnancy on infant birth weight using
the proposed method. We consider 17 covariates for analy-
sis. The included covariates are an indicator of being mar-
ried (mmarried), an indicator of Hispanic (mhisp, fhisp),
an indicator of foreign (foreign), an indicator of alcohol
consumed during pregnancy (alcohol), an indicator of new-
borns died in previous births (deadkids), age (mage, fage),

1http://www.stata-press.com/data/r13/cattaneo2.dta

education attainment (medu, fedu), the number of prenatal
care visits (nprenatal), months since last birth (monthslb),
the order of birth of the infant (order), race (mrace,
frace), trimester of first prenatal care visit (prenatal),
and the month of birth (birthmonth). Additionally, we add
quadratic terms of the five continuous variables and 26 in-
teraction terms significant in either the PS model or the OM
model. Therefore, the total number of covariates is 48.

Figure 3 displays the standardized mean difference for
the covariates without an asterisk and the raw difference in
means for the covariate with an asterisk. Note that the dis-
tribution of covariates is not balanced, which indicates the
simple difference between the two treatment groups can in-
troduce bias for the ACE. To estimate the ACE with our es-
timator, we assume the PS model to be a logistic regression
model and the OM model to be a linear regression model.
We estimate the standard errors using the asymptotic vari-
ance of Eq. (8).

Table 4 summarizes the selection results. There are 15
instrumental variables, 21 confounding variables, and four
instrumental variables, which is similar to Scenario 1 in Sec-
tion 5.

Table 5 displays the point estimates, the standard errors,
and the 95% Wald confidence intervals. The result shows a
similar pattern to Setting (c) in Scenario 1. UNI has a larger
standard error than INT and OUT. Also, the estimate of UNI
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Figure 2. Estimation results under four Scenarios. XI exists in Scenarios 1 and 4, XC exists in all Scenarios, and XP exists in
Scenarios 1 and 3. The OM model is correctly specified (misspecified) in Settings (a) and (b) (Settings (c) and (d)), and the

PS model is correctly specified (misspecified) in Settings (a) and (c) (Setting (b) and (d)).

is different from INT and OUT. As seen by the simulation in
Section 5, INT and OUT may be biased due to the use of a
wrong set, while the proposed method may correct the bias
by its doubly robust property. With the proposed estimator,
maternal smoking reduces birth weight by 218.67g on aver-
age, which is a smaller decrease than those with INT and
OUT. All 95% confidence intervals do not include 0, which
means it is significant at the 0.05 level that maternal smok-
ing has a negative effect on birth weight.

7. CONCLUDING REMARKS

We establish the two-stage procedure to estimate the
ACE with variable selection and the AIPW estimator. We
compare the robustness of the AIPW estimator coupled with
the union, intersection, and outcome predictor strategies us-
ing extensive simulation. Our method is most robust, re-
maining consistent if either the OM model or the PS model
is correctly specified. Other methods fail to be doubly ro-
bust under the misspecification of the OM model. When the
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Table 3. Simulation results for coverage rates

O-UNI O-INT O-OUT UNI INT OUT

Scenario 1

(a) OM I and PSM I 0.939 0.944 0.942 0.938 0.946 0.942
(b) OM I and PSM II 0.954 0.945 0.952 0.953 0.960 0.952
(c) OM II and PSM I 0.950 0.950 0.945 0.950 0.929 0.873
(d) OM II and PSM II 0.791 0.918 0.788 0.788 0.922 0.786

Scenario 2

(a) OM I and PSM I 0.955 0.955 0.955 0.955 0.955 0.955
(b) OM I and PSM II 0.947 0.947 0.947 0.947 0.967 0.947
(c) OM II and PSM I 0.949 0.949 0.949 0.948 0.000 0.000
(d) OM II and PSM II 0.042 0.042 0.042 0.041 0.039 0.039

Scenario 3

(a) OM I and PSM I 0.947 0.951 0.947 0.946 0.953 0.947
(b) OM I and PSM II 0.950 0.954 0.950 0.949 0.962 0.950
(c) OM II and PSM I 0.948 0.953 0.948 0.949 0.916 0.805
(d) OM II and PSM II 0.004 0.393 0.004 0.004 0.391 0.004

Scenario 4

(a) OM I and PSM I 0.941 0.945 0.945 0.941 0.945 0.945
(b) OM I and PSM II 0.945 0.945 0.945 0.945 0.962 0.945
(c) OM II and PSM I 0.940 0.952 0.952 0.941 0.008 0.008
(d) OM II and PSM II 0.622 0.621 0.621 0.627 0.623 0.623

Note: XI exists in Scenarios 1 and 4, XC exists in all Scenarios, and XP exists in Scenarios 1 and 3. Under OM I (II), the OM model is
correctly specified (misspecified), and under PSM I (II), the PS model is correctly specified (misspecified).

Figure 3. Balance check: standardized mean difference for
covariates of birth weight data. The dashed vertical lines are

drawn at 0.1 SMD.

instrumental variables are selected for estimation, our pro-
cedure may be more variable than other approaches. How-
ever, the inefficiency is offset by including precision vari-
ables. Thus, when there are precision variables, the AIPW
estimator based on the proposed variable selection strategy
is less variable than that based on the intersection strat-
egy. Our simulation results also imply that all strategies are
badly biased in the case when the OM model and the PS
model are misspecified. Thus, we still need a correct specifi-
cation of either the PS or OM model for consistent estima-

Table 4. Selection result for birth weight data

Selected variables

XI

mhisp,medu,fage,frace,birthmonth,mage,fedu,

nprenatal:monthslb, nprenatal:order,alcohol:medu,

mmarried:foreign,mmarried:mage,foreign:nprenatal,

alcohol:fedu, medu:fedu

XC

mmarried,mage,fedu,nprenatal,order,mrace,prenatal,

age,nprenatal,mmarried:mrace,alcohol:mage,

alcohol:nprenatal,deadkids:medu,monthslb:prenatal,

fhisp:order,foreign:mage,foreign:mrace,

mhisp:order,mmarried:fhisp,deadkids:prenatal,

frace:birthmonth

XP fhisp,foreign,deadkids:order,deadkids:birthmonth

p = 48, |U | = 40, |I| = 21, |Mβ | = 25

Table 5. Point estimate, standard error, and 95% Wald
confidence interval for birth weight data

Est SE CI

UNI −218.67 50.54 (−317.73, −119.62)
INT −229.38 28.19 (−284.62, −174.13)
OUT −229.94 27.31 (−283.46, −176.43)

tion of our procedure. Although we employ the SCAD for
penalization, our method is flexible in the sense that other
penalization methods, such as LASSO or Minimax concave
penalty, can be used to select variables at the first stage. In
particular, when there is a high correlation among variables,
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introducing the L2-penalty may improve the performance of
Steps 1 and 2. Elastic net proposed by [42] outperforms the
LASSO, and the SCAD-L2 performs better in terms of min-
imizing prediction error and maintaining variable selection
precision than the SCAD [40].

There are several directions for future work: (i) we will ex-
tend the results to the causal analysis of longitudinal obser-
vational studies [36] and survival outcomes [38]; and (ii) we
will develop variable selection procedures when confounders
are subject to missingness [39], which is common-place in
practice.
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Supporting Information
The online supporting information includes technical details and proofs.
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Supporting Information for “Variable Selection for Doubly Robust
Causal Inference” by Cho and Yang

The supporting information provides technical details. Section S1 lists the regularity conditions.
Section S2 provides proof of the double robustness of the proposed estimator.

S1 Regularity conditions
Assumption S1 Following Fan and Li (2001), we assume that the following regularity conditions
hold the selection consistency and the oracle property.

i) lim inf
n→∞

lim inf
θ→0+

p′λn > 0.

ii) The observation Vi are independent and identically distributed with probability density f(V, β)
with respect to some measure µ. In this paper, The observation Vi is (Yi, Xi) or (Ai, Xi).
The parameter of interest β in f(V, β) is α in the PS model or β in the OM model. λn is a
regularization parameter indexed by the sample size of n. The probability density has common
support, and the model is identifiable. Furthermore, the first and second logarithmic derivatives
of f satisfying the equations

Eβ

[
∂ log f(V, β)

∂βj

]
= 0 for j = 1, ..., p

and

Ijk(β) = Eβ

[
∂

∂βj
log f(V, β)

∂

∂βk
log f(V, β)

]
= Eβ

[
− ∂2

∂βj∂βk
log f(V, β)

]

iii) The Fisher information matrix I(β) = E

{[
∂
∂β log f(V, β)

][
∂
∂β log f(V, β)

]T}
is finite and pos-

itive definite at β = β0.

iv) There exists an open subset ω of Ω that contains the true parameter point β0 such that for
almost all V the density f(V, β) admits all third derivatives (∂(V, β))/(∂βj∂βk∂βl) for all β ∈ ω.
Furthermore, there exist function Mjkl such that∣∣∣∣ ∂3

∂βj∂βk∂βl
log f(V, β)

∣∣∣∣ ≤Mjkl(V ) for all β ∈ ω

where mjkl = Eβ0 [Mjkl(V )] <∞ for j, k, l.

v) λn → 0,
√
nλn →∞ as n→∞

S2 Double robustness
By the Taylor expansion following Yang and Ding (2020), we obtain

τ̂(α̂, β̂0, β̂1)− τ = τ̂(α∗, β∗0 , β
∗
1)− τ

+ n−1
∑

E

[{
A(Y − µ∗1)

(e∗)2
+

(1−A)(Y − µ∗0)
(1− e∗)2

}
ė∗
]
Σ−1α S∗i

− n−1
∑

E

{(
1− A

e∗

)
µ̇∗1

}{
E(Ṡ∗1)

}−1
S∗1i

+ n−1
∑

E

{(
1− 1−A

1− e∗

)
µ̇∗0

}{
E(Ṡ∗0)

}−1
S∗0i.

(S1)
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We can define the summand of the right-hand side of (S1) as the influence function ψ(Ai, Xi, Yi).
Then, we have

τ̂(α̂, β̂0, β̂1)− τ = n−1
∑

ψ(Ai, Xi, Yi) + op(1),

where

ψ(Ai, Xi, Yi) =
AiYi
e∗i

+

(
1− Ai

e∗i

)
µ∗1i −

(1−Ai)Yi
1− e∗i

−
(

1− 1−Ai
1− e∗i

)
µ∗0i − τ

+ E

[{
A(Y − µ∗1)

(e∗)2
+

(1−A)(Y − µ∗0)
(1− e∗)2

}
ė∗
]
Σ−1α S∗i (S2)

− E
{(

1− A

e∗

)
µ̇∗1

}{
E(Ṡ∗1)

}−1
S∗1i (S3)

+ E

{(
1− 1−A

1− e∗

)
µ̇∗0

}{
E(Ṡ∗0)

}−1
S∗0i. (S4)

In order for
√
n(τ̂(α̂, β̂0, β̂1) − τ) to be asymptotically normal and for τ̂(α̂, β̂0, β̂1) to be consistent

for τ , it is suffice to show E(ψ)=0. Note that by Assumptions 3 and 4, if the PS model is correctly
specified, but the OM model is misspecified, then e(X,α∗) = e(X) = E(A|X) and µa(X,β

∗
a) 6=

µa(X), for a = 1, 2. If the OM model is correctly specified, but the PS model is misspecified, then
e(X,α∗) 6= e(X) = E(A|X) and µa(X,β

∗
a) = µa(X), for a = 1, 2. In addition, by Assumption 1,

µa(X) = E(Y |A = a,X) = E(Y (a)|X). Following Tsiatis (2007) and Glynn and Quinn (2010),

E

{
AY

e∗
+

(
1− A

e∗

)
µ∗1 −

(1−A)Y

1− e∗
−
(

1− 1−A
1− e∗

)
µ∗0i

}
(S5)

can be written as

E [Y (1)− Y (0)]

+E

[
(A− e∗)[E{Y (1)|A,X} − µ∗]

e∗

]
+ E

[
(A− e∗)[E{Y (0)|A,X} − µ∗]

1− e∗

]
.

(S6)

It is well known that Eq. (S5) is doubly robust because if either the PS model or the OM model is
specified correctly, then Eq. (S6) are τ . The rest of the part is to show Eq. (S2) - (S4) are zero if
either the PS model or the OM model is correct. Using the law of iterated conditional expectations,
we obtain

E(S∗) = E

{
A− e∗

e∗(1− e∗)
∂e∗

∂α

}
= E

[
E

{
A− e∗

e∗(1− e∗)
ė∗i

∣∣∣X}]
= E

[{
E(A|X)− e∗

e∗(1− e∗)

}
ė∗i

]
,

(S7)

E(S∗a) = E

{
∂µ∗a
∂βa

(Y − µ∗a)
}

= E
[
E
{
µ̇∗ai (Y − µ∗a)

∣∣X}]
= E [µ̇∗ai {E(Y |X)− µ∗a}] ,
for a = 1, 2,

(S8)
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E

[{
A(Y − µ∗1)

(e∗)2
+

(1−A)(Y − µ∗0)
(1− e∗)2

}
ė∗
]

= E

[[{
A(Y − µ∗1)

(e∗)2
+

(1−A)(Y − µ∗0)
(1− e∗)2

}
ė∗
∣∣∣∣A,X]]

= E

[
A

(e∗)2
{E(Y |A = 1, X)− µ∗1} ė∗

]
+ E

[
(1−A)

(e∗)2
{E(Y |A = 0, X)− µ∗0} ė∗

]
,

(S9)

E

{(
1− A

e∗

)
µ̇∗1

}
= E

[
E

{(
1− A

e∗

)
µ̇∗1

∣∣∣X}]
= E

{(
1− E(A|X)

e∗

)
µ̇∗1

}
,

(S10)

and

E

{(
1− 1−A

1− e∗

)
µ̇∗0

}
= E

[
E

{(
1− 1−A

1− e∗

)
µ̇∗0

∣∣∣X]}
= E

{(
1− 1− E(A|X)

1− e∗

)
µ̇∗0

}
.

(S11)

If the OM model is correctly specified, but the PS model is misspecified, then Eq. (S8) and (S9)
are zero, but Eq. (S7), (S10), and (S11) are not. In this case, E(ψ) of UNI, INT, and OUT are all
zero, and τ̂(α̂, β̂0, β̂1) is consistent for τ . If the PS model is correctly specified, but the OM model
is misspecified, Eq. (S8) and (S9) do not disappear as expected, and Eq. (S7), (S10), and (S11) are
also always not zero. Since OUT and INT do not consider the instrumental variables and cannot fit
the PS model well, only E(ψ) of UNI is zero. Therefore τ̂(α̂, β̂0, β̂1) is doubly robust only for UNI.

S3 Over-selection problem
As mentioned in subsection 3.6, when using the default range provided by the ncvreg package, the
cross-validation overselects variables. Table 1 presents the selection performance when the default
range is used.

S3



Table 1: Simulation results for the selection performance for the proposed penalization procedure
with the default value

β∗ α∗

Over
(×102)

Under
(×102)

FN FP Over
(×102)

Under
(×102)

FN FP
Scenario 1

(a) OM I and PSM I 55.0 0.0 0.00 2.65 31.7 0.0 0.00 1.33
(b) OM I and PSM II 53.6 0.0 0.00 2.63 36.1 99.8 3.73 1.41
(c) OM II and PSM I 67.3 0.0 0.00 3.45 31.7 0.0 0.00 1.33
(d) OM II and PSM II 89.8 11.7 0.17 6.05 36.1 99.8 3.73 1.41

Scenario 2
(a) OM I and PSM I 53.1 0.0 0.00 2.79 33.7 0.0 0.00 1.46
(b) OM I and PSM II 54.5 0.0 0.00 2.68 38.7 98.7 1.88 1.49
(c) OM II and PSM I 96.9 4.1 0.05 9.37 33.7 0.0 0.00 1.46
(d) OM II and PSM II 91.3 0.0 0.00 6.07 38.7 98.7 1.88 1.49

Scenario 3
(a) OM I and PSM I 53.3 0.0 0.00 2.78 33.7 0.0 0.00 1.46
(b) OM I and PSM II 54.2 0.0 0.00 2.62 38.7 98.7 1.88 1.49
(c) OM II and PSM I 62.2 0.0 0.00 3.33 33.7 0.0 0.00 1.46
(d) OM II and PSM II 93.0 5.4 0.07 6.34 38.7 98.7 1.88 1.49

Scenario 4
(a) OM I and PSM I 56.1 0.0 0.00 2.78 31.7 0.0 0.00 1.33
(b) OM I and PSM II 54.5 0.0 0.00 2.70 36.1 99.8 3.73 1.41
(c) OM II and PSM I 70.5 84.6 1.37 4.02 31.7 0.0 0.00 1.33
(d) OM II and PSM II 68.8 0.0 0.00 3.83 36.1 99.8 3.73 1.41

Note: XI exists in Scenarios 1 and 4, XC exists in all Scenarios, and XP exists in Scenarios 1 and 3. Under OM
I (II), the OM model is correctly specified (misspecified), and under PSM I (II), the PS model is correctly specified
(misspecified). The results include the proportion of over-selecting, under-selecting, average false negatives, and the
average false positives for each setting.

If specifying (λa, λb) is difficult, then other strategies, such as the Adaptive LASSO can be used
to avoid over-selection. Table 2 presents the selection performance of the Adaptive LASSO. The
Adaptive LASSO resolves the over-selection problem of β and improves the over-selection problem
of α in the linear PS model.
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Table 2: Simulation results for the selection performance for the proposed penalization procedure
with the default value

β∗ α∗

Over
(×102)

Under
(×102)

FN FP Over
(×102)

Under
(×102)

FN FP
Scenario 1

(a) OM I and PSM I 0 0 0.00 0.00 0 0 0.00 0.00
(b) OM I and PSM II 0 0 0.00 0.00 87.5 99.6 3.36 3.63
(c) OM II and PSM I 0 0.6 0.01 0.00 0 0 0.00 0.00
(d) OM II and PSM II 0 100 2.00 0.00 87.5 99.6 3.36 3.63

Scenario 2
(a) OM I and PSM I 0 0 0.00 0.00 0 0 0.00 0.00
(b) OM I and PSM II 0 0 0.00 0.00 94.4 97.8 1.75 4.17
(c) OM II and PSM I 0 98.2 1.94 0.00 0 0 0.00 0.00
(d) OM II and PSM II 0.7 0 0.00 0.01 94.4 97.8 1.75 4.17

Scenario 3
(a) OM I and PSM I 0 0 0.00 0.00 0 0 0.00 0.00
(b) OM I and PSM II 0 0 0.00 0.00 94.4 97.8 1.75 4.17
(c) OM II and PSM I 0 0 0.00 0.00 0 0 0.00 0.00
(d) OM II and PSM II 0 99.2 1.97 0.00 94.4 97.8 1.75 4.17

Scenario 4
(a) OM I and PSM I 0 0 0.00 0.00 0 0 0.00 0.00
(b) OM I and PSM II 0 0 0.00 0.00 87.5 99.6 3.36 3.63
(c) OM II and PSM I 0 100 2.00 0.00 0 0 0.00 0.00
(d) OM II and PSM II 0.5 0 0.00 0.02 87.5 99.6 3.36 3.63

Note: XI exists in Scenarios 1 and 4, XC exists in all Scenarios, and XP exists in Scenarios 1 and 3. Under OM
I (II), the OM model is correctly specified (misspecified), and under PSM I (II), the PS model is correctly specified
(misspecified). The results include the proportion of over-selecting, under-selecting, average false negatives, and the
average false positives for each setting.

Figure 1 displays the distribution of the ACE estimates when using the Adaptive LASSO with
the default range of λ provided by R package glmnet. The results are similar to that in the main text
when using the SCAD with a prespecified range of λ for cross-validation. In setting (c) in Scenarios
2 and 4, INT and OUT is not doubly-robust, while UNI is doubly-robust.
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Figure 1: Estimation results under four Scenarios. XI exists in Scenarios 1 and 4, XC exists in all
Scenarios, and XP exists in Scenarios 1 and 3. The OM model is correctly specified (misspecified)
in Settings (a) and (b) (Settings (c) and (d)), and the PS model is correctly specified (misspecified)
in Settings (a) and (c) (Setting (b) and (d)).
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