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A B S T R A C T  

Electr onic health r ecor ds and other sources of observa tional da ta ar e incr easin gly used for drawin g causal infe re nc es . The estim ation of a causal 
effect using these data not mea n t for resea rch purposes is s ubje ct to c onfounding and irre g ularly- spac e d c ov ari ate-driven o bs erv at ion t ime s a ffect- 
ing the infe re nc e. A doubly-w ei gh ted es tim ator ac c ounting for these fea tur es has previously been pr oposed tha t r e lie s on the c orre ct spe c i fication 

of two n uisa nce models used for the wei gh ts. In this work, we propose a novel consis te n t m ultiply robus t es timator a nd de mons trate a nalytically 
and in c omprehensiv e simulation studies that it is more flexible and more efficie n t tha n the only alte rn ativ e estim a tor pr opos ed for the s ame 
s e tting. It is further applied to data from the Ad d He alth study in the United St ate s to estimate the causal effect of the ra p y coun s eling on alco ho l 
c ons umption in Ame rica n adolesce n ts. 

KEY W OR DS : average tr ea tme n t effect; confounding; efficiency; irregular visits; ro bustnes s to model misspec i fication. 
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1 I N T R O D U C T I O N 

he study of causes and effects is an es s e n tial compone n t of
e arning he althcare system s ( Krumho lz, 2014 ) . Estim ate d causal
ffects, in stead of as s oci ation s, should be us ed to inform tr ea t-
e n t de cisions . This m a n us cript propos e s a nove l , mult iply ro-

us t efficie n t es tim ator for the m argin al causal effe ct of a tr ea t-
e n t that may vary in time on a longitudinal outcome us-

ng o bs erv ational d ata. Randomize d c ontrolle d trials are the
old s ta nda rd for causal infe re nce. Ra ndomization of the treat-
e n t options makes patie n ts more comparable in terms of their

aseline cha racte ris tics. Ra ndomized s tudies also ofte n h av e
lear protocols for the timing of patie n ts’ visits ( ie, o bs erv a-
 ion t imes ) a t which pa tie n t health s ta tus is measur ed. It is not
lw ays pos sib le to conduct a r andomiz e d c ontrolle d trial de-
igned to answer a spec i fic causal question and r esear chers of-
en turn to o bs erv ational d ata ( Bl ack, 1996 ) . We herein focus
n the pa rticula r fea tur e s of e lectr onic health r e c ords ( EHRs )
ata. 
While EHRs ar e incr easingly av ail ab le for analysis, they are

ot c olle cte d for r esear ch purposes. The tr ea tme n ts meas ure d
n EHRs are not r andomiz e d to patients . This can lead to spuri-
us as s oci ation s in the data called confo un ding ( Gree nla nd a nd
orge ns te rn, 2001 ) . Thes e d a ta ar e also measur ed irr egularly

cr oss pa tie n ts. Each patie n t follows their pa t tern in how they
c c es s care, als o like ly to de pe nd on their cha racte ris tics. For ex-
mple, as in B ̊užková and Lumley ( 2005 ) , suppose an o bs erv a-
ional study in which we are int erest ed in the causal effect of air
ollution on forc e d expiratory v o lume ( FEV ) . We as sume the
e c eiv e d: April 26, 2023; Revised: May 29, 2024; Accepted: June 28, 2024 
The Author ( s ) 2024. P ublished b y Oxford Unive rsity Pre ss on be half of The In te rn ation a
 re ative Common s A ttribution Licen s e ( https://creativ ec ommons .org/lic ense s/by/4.0/ ) , wh

he original work is properly cited. 
ffect of air pollution on FEV is further me diate d b y as thma,
nd that both air pollution and asthm a affe ct the ch anc e for FEV
o be meas ure d. Or, as in our application in this ma n uscript,
 uppose w e aim to estim ate the m argin al causal effe ct of ther-
 p y on the average number of alco ho lic beverages consumed in
me rica n ado les ce n ts follow e d irre gularly ov e r time, whe re ob-
 erv ation depends on ado les c ents’ ch aracteristics . Statistically,
his cr ea t es a long-t e rm depe nde nce s tructure betw e en the out-
ome and the visit proces s es that can result in bi as ed e stima -
ors of causal or associational pa ra mete rs ( se e e g, Lin and Ying
001 ; McCulloch et al. 2016 and most re c ently Coulombe et al.
021 , 2022 ; Ya ng 2022 a nd P ulle n aye gum et al. 2023 in a c on-

ext of causal infe re nce ) . Whe n aiming for a causal effect, this
ias can be due to confounding by the visit process or, if the
isit ind icator s act as coll ider s ( ie, are affe cte d by the tr ea tme n t
rescribed and the study out come ) , t o collide r-s tra tifica tion bias
 Gree nla nd, 2003 ) . In the examples liste d abov e, the causal re la -
ion ship be tw e en air pollution a nd FEV measure me n ts or the r-
 p y a nd alco ho l con sumption is also likely c onfounde d. 
Under a s e t of caus al and modeling as sumption s, caus al effects

a n be infe rred b y es t imat ing the pa ra mete rs of a m argin al struc-
ural model ( MSM ) fitted on the da ta fr om a pseudo-population
hat is free of confounding a nd othe r types of spurious as-
 oci ation s, such as collide r-s tra tifica tion bias ( Robins et al.,
000 ) . Previous work has tackled this in s e ttings with cov ari ate-

driven o bs erv at ion t imes and confoundin g, lea din g to the flex-
b le invers e pro bability of tr ea tme n t a nd monitoring wei gh ted
 FI PTM ) est imator ( Coulombe et al., 2021 ) . For observation
l Biome tric Socie ty. Thi s i s a n Ope n Ac c ess a rticle dis tributed unde r the te rms of the 
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FIG URE 1 Caus al di agram i l lustrating the ass ume d DGM. ( A ) Ass ume d caus al di agram a t time t in pa tie n t i , pos tulat ed t o be common across 
all patie n ts. ( B ) Caus al di agra m for the Add Health s tudy da ta a t time t common acr os s all ado les ce n ts. 
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times occurring not at ra ndom, P ulle nayegum et al. ( 2023 ) re-
ce n tly proposed a nothe r es tima tor tha t uses random effects to
model the remaining depe nde nc e betw e en the observation and
the outc ome proc es s es. Both me thods above may suffer similar
iss ues: They w ere not dev elope d to be the mos t efficie n t es ti -
mators in their se mipa ra metric class, a nd they are not doubly
r obust, but ra ther r e ly on mode l as sumption s for the tr ea tme n t
and the o bs erv at ion t imes. Yang et al. ( 2020 ) and Rytgaard et al.
( 2023 ) als o propos ed s e mipa ra metric a pproaches for the time-
spec i fic in te rve n tion effects. Their a pproaches we r e pr oposed
for the study of survival outcomes as opposed to con tin uous out-
c omes . Yang ( 2022 ) and Rytgaard et al. ( 2022 ) proposed ge ne ral
se mipa ra metric fra me works for e st imat ing in te rve n tion-spec i fic
mean outc omes . Most of these approaches allow several lon-
gitudin al proc es s es in the est imat ion ( exposure , outcome , and
cov ari at es ) t o be measured sporadically by jointly modeling all
their o bs erv a tion pr oces s es. They are highly flexible but the esti-
ma nds a nd es t imat ion approaches used by these authors are dif-
fe re n t tha n our s. They foc us on the mean outcome d iffe re nce
over a pre-spec i fied period of time, under a spec i fic tr ea tment
r egime. We her ein pr opose a s trai gh tforwa rd, es tim ating e qua-
tion approach for the average tr ea tme n t effect es timated with
r epea te d meas ure me n ts for which R code, av ail ab le with the
ma n uscript, is s trai gh tforwa rd to imple me n t. We focus on the
situation when the o bs erv at ion t imes occur “at random” ( as op-
pose d to c ompletely at random or not at random ) . The FIPTM
es timator ca n be used in that s e t ting, but it r e lie s on the c orre ct
spec i fication of the treatme n t a nd outcome o bs erv ation models
as a function of patie n t cha racte ris tics, a nd ca n be seve rely bi as ed
when one or both models are not c orre ctly spe cifie d. Se c ondly,
the FIPTM could be made more efficie n t b y de riving the influ-
enc e curv e for the causal effect of in te res t ( Tsiatis, 2006 ) . To ad -
dre ss the se issue s, we propose the first multip ly ro bust estimator
for the causal m argin al effe ct of a bin ary tr ea tment on a longi-
tudin al c on tin uous outc ome, th at ac c ounts for c onfounding and
irre gular c ovar iate-dr ive n obse rvat ion t imes of the outcome si-
m ulta neously. The notation, es tima nd, caus al as sumption s, and
propose d estim ator are prese n ted in Sect ion 2 . Simulat ion stud-
ies c ov ering sev e ral diffe re n t sce na rios of data ge ne rating mech-
anism ( DGM ) ar e pr esented in Section 3 . Our me thodo lo gy is
app lied to d a ta fr om the Ad d He alth study in Section 4 and we

conclude in Section 5 . 
2 M ET H O D S  

2.1 N ot ation 

We ass ume w orking with a ra ndom sa mple of size n from a la rge r 
population, i denotes the patie n t index a nd t ∈ [0 , τ ] is the time
with τ a maximum cen s oring time in the co hort. Le t A i (t ) rep- 
rese n t the bina ry tr ea tme n t t aking value s in 

{ 0 , 1 

} and Y i (t ) be
the con tin uous outcome for patie n t i at time t . We de note v e c-
tors and m atric es in bold. The type of DGM we focus on is pre- 
se n ted in the left panel of Figure 1 , in which K i (t ) are poten- 
tial confounders for the tr ea tment-outcome r ela t ionship ( Pearl , 
2009 ) , M i (t ) are potential med iator s for the treatme n t effect on 

the outcome, and P i (t ) contains pure pred ictor s of the outcome 
th at c ould also affe ct the o bs erv a tion of a pa tie n t outcome Y i (t ) .
The s e t P i (t ) i s di stingui she d from K i (t ) as it c ould c ontain visit
pred ictor s ge ne rated a nd meas ure d after the tr ea tme n t. Only the 
outc ome proc es s is as s ume d to be meas ure d sporadically ( e g, 
the wei gh t is meas ure d irre gularly ac c ording to patie n t cha rac-
te ris tics such as a change in medication ) . All the other v ari ab les 
ne c es s ary to the est imat ion of the marginal causal effect of tr ea t-
me n t a re ass ume d to be av ail ab le at all times during follo w -up;
in EHRs, the drugs and comor bid ities a re ofte n re c orde d any- 
time there is a new diagnosis or a new prescription, so it is often 

a reas onab le as sumption . Le t N i (t ) be a c ounting proc es s for o b-
s erv at ion t imes of the outc ome Y i (t ) betw e e n times 0 a nd t for
individual i . The indicator d N i (t ) equals to 1 when there is an 

o bs erv ation of the outcome Y i (t ) , and 0 otherwise. The set V i (t ) 
includes all the v ari ab les causing o bs erv at ion t imes ( ie, causing 
dN i (t) ) and also includes all the confounders of the tr ea tme n t- 
outcome r ela tionship. We m us t include K i (t ) in the s e t V i (t ) 
for the proposed estimat or t o be consis te n t. In Fi gure 1 , we have
V i (t ) = { A i ( t ) , K i ( t ) , M i ( t ) , P i ( t ) } . 

Patie n ts a re allow e d to h av e diffe re n t ce n s oring times C i . De-
note ξi (t ) = 1 { C i > t} an indicator of patie n t i s ti l l in the study
at time t . We ass ume th at c en s oring times ar e non-informa tive, 
a n assumption de noted b y Y i (t ) ⊥ C i | A i (t ) ( thi s i s di s cus s ed
more in Section 2.5 ) . 

2.2 Cau s a l est iman d 

The pote n tial outcome fra mework ( Neyma n, 1923 ; Rubin, 
1976 ) is used to define our es tima nd. De note b y Y 

1 
i (t ) a nd 

 

0 
i (t ) the pote n tial outcomes of individual i at time t if they 
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TABLE 1 Causal assumptions r equir ed for the proposed estimator to be consis te n t. 

Assumption Definition 

Outc ome c onsis te ncy Y i (t ) = A i ( t ) Y 1 i ( t ) + 

{
1 − A i (t ) 

}
Y 0 i (t ) 

Positivity of tr ea tme n t 0 < P { A i (t ) | K i (t ) } < 1 
Positivity of o bs erv ation 0 < E [dN i (t) | V i (t)] 
No unmeas ure d c onfounder 

{
Y 0 i (t ) , Y 1 i (t ) 

} ⊥ A i (t ) | K i (t ) 
Condition al exch ang e ability 

{
Y 0 i (t ) , Y 1 i (t ) 

} ⊥ A i (t ) | K i (t ) and { A i ( t ) , Y 0 i ( t ) , Y 1 i ( t ) }⊥ dN i ( t) | V i (t) 
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e c eiv e d treatme n t option A i (t ) = 1 or A i (t ) = 0 , respe ctiv ely.
he tr ea tme n t m ay be fixe d at baseline or it c ould vary in time. In
h at follows, w e define A i (t ) to be the tr ea tme n t give n at time t .
 he causal mar ginal effect of the binary tr ea tment on a continu-
us outcome is defined as β1 = E 

[
Y 

1 
i (t ) − Y 

0 
i (t ) 

]
. Our in te r-

 st lie s in a cross - se ction al effe ct β1 that does not vary in time,
hich can be estim ate d using an MSM with which w e ass ume a

ons ta n t effect ( see the Dis cus sion s ection in which this assump-
ion is d isc ussed ) . 

Suppose a certain time dis cre t izat ion for which the re ca n be
nly one jump in the c ounting proc ess N(t ) ( for ins ta nce, daily
isits at the doctor’s office ) . If we had ac c ess to all pote n tial out-
omes under both tr ea tments and at each time t for the time
ra n ula rity chose n above, for a ra ndom sa mple of pa rticipa n ts of
ize n , we could estimate β1 using s amp le mean s. On the other
a nd, b y conducting a r andomiz ed contro lled tri al and randomly
lloca ting pa tie n ts to one of the two tr ea tme n t options, a nd ob-
e rving patie n ts at prespec i fied visit times, then patie n ts allo-
at ed t o treatme n t 1 a nd tr ea tme n t 0 should not differ before
e c eiving the treatme n t. The n, a MSM E [ Y 

a 
i (t ) | A i (t ) = a ] =

i (t; βa ) = β0 + β1 a , with βa = [ β0 β1 ] T could be used to es-
imate β1 without a ccountin g for confoundin g. In o bs erv ational
a ta fr om EHRs, unfortuna t ely, we t end t o o bs e rve the pote n-

ial outcomes Y 

1 
i (t ) in those who had gr ea te r cha nces of be-

ng tr ea ted with A i (t ) = 1 , a nd the pote n tial outcomes Y 

0 
i (t ) in

hose who had gr ea te r cha nces of being tr ea ted with A i (t ) = 0
 as a con s eque nce, E 

[
Y 

a 
i (t ) | A i (t ) = a 

] � = E 

[
Y 

a 
i (t ) 

]
) . In ad -

ition, the pote n tial outcomes for an individual i are only ob-
erv e d at times t when dN i (t) = 1 , which may depend on co-
 ari ates. We do not have access to all pote n tial outcomes a nd re-
uire causal assumptions to equate the es tima nd to functions of
 i (t ) . 

2.3 Cau s a l ass u mpt ion s 
ive causal assumptions ar e r equir ed for consis te n t es t imat ion
f the causal m argin al effe ct of tr ea tme n t ( Table 1 correspond -

ng to as sumption s 1–3b be low ) . Mode ling as sumption s for the
SM a nd the n uisa nce models are also r equir ed, the la t te r a re

 isc ussed in Section 2.5 . 

1. Outc ome c onsis te ncy, i.e., Y i (t ) = A i ( t ) Y 

1 
i ( t ) + { 1 −

A i ( t ) } Y 

0 
i ( t ) . 

2. ( a ) positivity of tr ea tme n t, mea ning that a nyone should
h av e a ch anc e of re c eiving any of the tw o tr ea tme n t op-
t ions, and ( b ) posit ivity of observation, s uch th at patie n ts
had a chance to have their outcome o bs erved at any time
given their cha racte ris tics. 
d  
3. Condition al exch ang e ability, with includes ( a ) no unme a-
s ure d c onfounder in the o bs erv e d s e t K i (t ) ; and ( b ) in-
depe nde nce of the o bs erv a tion indica tors with other vari-
ables in the analysis conditional on the visit pred ictor s
V i (t ) . 

These five assumptions m us t hold, both for the former FIPTM
s timator a nd for the nov el propose d estim at or t o be consist ent,
xcept for the inclusion of K i (t ) in the s e t V i (t ) that is only re-
uired for the proposed estimator. The conditional exchange-
bility can be re c ov ere d by breaking the spurious as s oci ation s
ue to the tr ea tme n t a nd o bs erv ation me ch anism s vi a invers e
ei gh ts ( ma rginal a pproa ch ) , conditionin g on the s e ts A i (t ) and
 i (t ) ( which includes K i (t ) ) in a r egr e ssion mode l for the out-

ome and using methods such as g- computation ( Rob ins, 1986 )
 s ta nda r diza tion appr oach ) , or as we propose, using both ap-
roache s simult aneously to obtain a robust estimator. We review

he previously proposed FIPTM estimator. 

2.4 Pr evious estim ator 
sing the m argin al approach c orresponds to using the FIPTM

stima tor pr oposed in Coulombe e t al. ( 2021 ) . It con sists of
 doubly-wei gh ted leas t squa re s e stim ator th at inc orporates
nvers e pro bability of tr ea tme n t ( IPT ) wei gh ts ( Horvitz a nd

homps on, 1952 ; Ros enb a um and Rubin, 1983 ) and inverse in-
ensity of visit ( IIV ) weights ( Lin et al., 2004 ) . The IPT wei gh ts
re functions of the confounders K i (t ) and the IIV weights are
unctions of the visit pred ictor s V i (t ) . The estimator is consis-
e n t for β1 when both weights are c orre ctly spe c i fied. A pa ra met-
ic model can be used for P { A i (t ) = a | K i (t ) ; ψ } to obtain the
PT wei gh ts 

1 { A i (t ) = a } / P { A i (t ) = a | K i (t ) ; ψ } , ( 1 )

here P { A i (t ) = 1 | K i (t ) ; ψ } , the propen sity s core, is the
r obability of r e c eiving the tr ea tme n t 1 as a function of predic-

ors K i (t ) and parameters ψ ( Rosenb a um and Rubin, 1983 ) . A
og i stic r egr ession can be used to compute an estim ate d propen-
ity score. The IIV wei gh ts ca n be obtained b y modeling the

ean visit indicator as a function of cov ari ates V i (t ) . Since the
i sit indicator i s bina ry a nd visits a r e r ecurr e n t, one ca n use a
odel for r ecurr e n t visits such as the Ande rse n a nd Gi l l ( 1982 )
ode l ( which corre sponds to a proportional rate model ) or a

og i stic r egr e ssion mode l. Both mode ls re ly on re lative ly similar
s sumption s for the mean visit indicator when using the same
 e t of cov ari a tes, but the pr oportional ra te mode l mode ls the rate
nd the log i stic r egr ession, the pr oba bility of visit. T hey lead to
imila r es timates of the rate and probability of visit when the vis-
ts a re ra re s uch th at only one visit occ ur s over a time unit ( eg, a
 ay ) , s ee e.g., Papoulis and Pi l lai ( 2002 ) . The pr oportional ra te



4 � Biometrics , 2024, Vol. 80, No. 3 

TA BLE 2 Mult ip le ro bustnes s of A AIIW: A AIIW i s consi s te n t unde r Sce na rios ( a ) –( d ) : � means correctly spec i fied and X means no 

r equir e me n t. 

Scenario P { A i (t ) = a | K i (t ) ; ψ } μa { K i (t ) ; αK } E [ dN i (t) = 1 | V i (t) ; γ] μa { V i (t ) ; αV } 
( a ) � X � X 

( b ) X � X � 

( c ) X � � X 

( d ) � X X � 
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model for the visits as a function of V i (t ) is given by 

E [d N i (t ) | V i (t ) ; γ] = ξi ( t ) exp { γT V i ( t ) } λ0 ( t )d t . ( 2 )

The baseline rate of o bs erv ation λ0 (t ) in ( 2 ) consists of the visit
rate when all v ari ab les V i (t ) are s e t to their refe re nc e lev el. With
the FI PTM est ima tor, the baseline ra te can be r emov e d from the
IIV wei gh ts without affecting the marginal effect of tr ea tme n t
estim ate sinc e this w ould sti l l m ake the w ei gh ts in ( 3 ) propor-
tional to the in te nsity of being observ e d as a function of V i (t ) .
The IIV wei gh ts ca n also be s tab ili zed, in which cas e the bas e-
line rate canc els autom atically in the wei gh ts a nd ne e d not be es-
tim ate d ( B ̊užková and Lumley, 2009 ) . This leads to the follo w -
ing in te nsity of visit wei gh ts ( which we wi l l take the inverse of ) ,
from which γ pa ra mete rs ca n be es tim ate d using the Ande rse n
and Gi l l ( 1982 ) model: 

E [d N i (t ) | V i (t ) ; γ] = exp { γT V i (t ) } . ( 3 )

In simulation studies, we as s es s ed both the log i stic r egr ession
and the proportional rate model. Then, the FIPTM estimator
s o lves the following equations: 

E n 

⎡ 

⎣ 

∫ τ

0 

1 { A i (t )= a } 
P { A i (t )= a | K i (t ) ;̂ ψ } Y i (t ) − ζi (t; βa ) 

E { d N i (t ) | V i (t ) ;̂ γ} d N i (t ) 

⎤ 

⎦ 

= 0 , a ∈ { 0 , 1 } , ( 4 )

whe re E n s ta nds for the e mpirical mea n. How ev er, th at estim a-
tor r equir es both the tr ea tme n t a nd the o bs erv ation models to be
c orre ctly spe cifie d, which is not easy in practice. 

2.5 N ovel estim ator 
We propose the augme n ted AAIIW es tima tor ( which acr onym
s ta nds for doub l y a ugmen ted an d do u bly in verse wei ght ed ) that is
more flexible and allows two out of four different models to be
misspec i fied while the estima tor r emain s con sis te n t. The es tima-
tor is dev elope d by finding the influenc e curv e of the es tima nd
introduc e d in Se ct ion 2.4 ( Hines et al ., 2022 ) . The nove l e s ti -
m ator is obtaine d by s o lving the fo llowing augme n te d v ersions
of ( 4 ) : 

E n 

[∫ τ

0 

ηi (t ) 
E { d N i (t ) | V i (t ) ;̂ γ} d N i (t ) 

]

−E n 

[∫ τ

0 

d M i (t ) E { ηi (t ) | A i (t ) = a, K i (t ) , V i (t ) } 
E { d N i (t ) | V i (t ) ;̂ γ} 

]
= 0 , ( 5 )
whe re the n uisa nce te rms ca n, for ins ta nce, be es tim ate d using
pa ra metric models, with 

ηi (t ) = 

1 { A i (t ) = a } 
P { A i (t ) = a | K i (t ) ;̂ ψ } Y i (t ) 

− 1 { A i (t ) = a } − P { A i (t ) = a | K i (t ) ;̂ ψ } 
P { A i (t ) = a | K i (t ) ;̂ ψ } μa { K i (t ) ;̂ αK } 

−ζi (t;βa ) , 

with d M i (t ) = d N i (t ) − ξi ( t ) exp { ̂  γT V i ( t ) } ̂  λ0 ( t )d t the 
martingale residual for the o bs erv a tion pr oc ess . The c on- 
dition al outc ome mean models in the augme n t ed t erms 
are μa 

{
K i (t ) ; αK 

} = E [ Y i (t ) | A i (t ) = a, K i (t ) ; αK ] 
and μa 

{
V i (t ) ; αV 

} = E [ Y i (t ) | A i (t ) = a, V i (t ) ; αV ] . 
The la t te r model a rises whe n t aking the expect ation 

E [ Y i (t ) | A i (t ) = a, V i (t ) ] in the term E { ηi (t ) | A i (t ) = 

a, K i (t ) , V i (t ) } in equation ( 5 ) . For the novel estimator, if 
using the proportional rate model for visits, then the baseline 
rate λ0 (t ) in ( 2 ) m us t be es tim ate d before calculating the IIV 

wei gh ts, which was not the case with the FI PTM est imator. 
The IIV wei gh ts in the equations for the AAIIW are the inverse 
of E [dN i (t) | V i (t) ;̂ γ] = ̂

 λ0 (t ) exp { ̂  γT V i (t ) } . One can use
the Breslow’s estimator ( Cox, 1972 ) ( which we use in our 
sim ulation s tudies ) 

̂ λ0 ( t ) = 

∑ n 
i =1 1 { d N i ( t ) = 1 } ∑ n 

i =1 1 { d N i ( t ) = 1 } exp 

{̂
 γT V i (t ) 

} . 

Table 2 shows the c ombin ations of c orre ctly spe c i fied models 
lea din g to a consis te n t AAIIW es timator. At leas t one of the two
mode ls re lat ed t o confounde rs a nd one of the two models re- 
lat ed t o the o bs erv a tion pr ed ictor s m us t be c orre ctly spe c i fied.
The es tima nd has a n efficie n t influe nce function if it is path- 
wise diffe re n t iable, i .e., if the univariate submodels are smooth 

in the pa ra mete rs, for the pos tul ated models ( s e e e g, Hines et al.,
2022 ) . We herein ass ume th at the causal m argin al effe ct of treat- 
me n t is pa th wise differ enti ab le. The deriv at ion of the est imator
using the theory of influence functions and a proof of multiple 
ro bustnes s are in Web Appendices A and B , respe ctiv ely. The 
link betw e en the the ory of influenc e functions and the the ory 
on model -assis ted es t imat ion for our proposed estimator is in 

Web Appendix C . The c orre ct spe cification for pa ra metric mod - 
el s i s elaborated in Web Appendix D . 

We show in Web Appendix E that the AAI IW asymptot ic va ri - 
a nce, de rived as the v ari ance of its influence function ( Tsiatis, 
2006 ) , is sm aller th an th at of the FIPTM when all n uisa nce mod - 
els are c orre ctly spe c i fie d for both estim ators . In practic e, the
AAIIW can be obtained by est imat ing the nuisance models pa- 
ra mete rs using e.g., log i stic r egr essions for the tr ea tme n t a nd visit 
models or a proportional rate model for the visits with coxph 
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https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae065#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae065#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae065#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae065#supplementary-data


Biometrics , 2024, Vol. 80, No. 3 � 5 

TA BLE 3 Est ima tors compar ed in simulation studies. 

Estimator P { A i (t ) = a | K i (t ) ; ψ } μa { K i (t ) ; αK } E [ d N i (t ) = 1 | V i (t ) ; γ] μa { V i (t ) ; αV } 
OLS 
IPT c � 

IPT nc † 
DW c � � 

DW iptc � † 
DW iivc † � 

DW nc † † 
AAIIW c � � � � 

AAIIW s.a � † � † 
AAIIW s.b † � † � 

AAIIW s.c † � � † 
AAIIW s.d � † † � 

OLS is a n ordina ry leas t squa re s e st imator, I PT is an I PT-wei gh ted es timator, DW is the ( doubly-wei gh ted ) FIPTM es tima tor fr om Coulombe et al . ( 2021 ) and AAI IW is the novel 
propose d estim ator. A � means c orre ctly spe c i fied a nd a † symbol mea n s it is us ed as a nuis ance model in the estimator but it is wrongly spec i fied. 
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n R and two linear models for the outcome conditional on A i (t )
nd K i (t ) or V i (t ) . The e stimate s can be plugged into the es-
 imat ing equat ions of the AAIIW. Root s o lv ers ( s uch as uni-
oot in R ) can be used to estimate β0 and that estimate be
lugged into the se c ond e quation, s o lv e d for β1 . 
In Web Appendix F , we propose to relax the assumption that

en s oring occ ur s at random and to us e invers e pro bability of cen-
oring wei gh ts ( IPCW ) ( Ro bin s a nd Finkels t ein, 2000 ) t o ad-
r ess informa tive cen s oring. We further outline a multiply robust
 pproach conside ring ce n s oring pred ictor s. The sce na rio with
nform ativ e c en s oring i s al s o as s es s ed in simul ation s. 

3 S I M U L AT I O N  ST U DY  

n sim ulation s tudies, w e c ompare d four diffe re n t es timators de-
ailed in Table 3 . 

The DGM was str ongly inspir ed by simila r sim ulation s tud -
e s pre se n ted in B ̊užková a nd Lumley ( 2009 ) , Coulombe et al.
 2021 , 2022 ) and is detailed more thoroughly in Web Appen
ix G . The DGM included a s e t of confounders at baseline re-
ea ted thr ough follo w -up, a time-va rying bina ry tr ea tme n t, a s e t
f o bs erv a tion pr ed ictor s th at varie d in time, and irre gul ar o bs er-
ation of the outcome. The causal effect of tr ea tme n t was con-
 ta n t, i.e., w e c orre ctly spe cifie d the MSM in our simulations.
he m ain res ults for 1000 simul ation s using a nonhomo geneous
ois s on rate to simulate the o bs erv at ion t imes of the outcome
nd a s amp le of size 1000 are prese n ted in the following Sec-
ion 3.1 . In a nothe r s e t of simul ation s, we rep l ac e d the non-
omo geneous Pois s on rate with a nonhomo ge neous Be rnoulli
robability for the observation indicator and used a log i stic re-
res sion in stead of the Ande rse n a nd Gi l l model to fit the prob-
bility of o bs erv a tion a t each time point. These r esults ar e pr e-
e n ted in Web Appendix H ( Web Figures 2 and 3 ) , along with
he results under a s amp le of size 250 instead of 1000 ( Web Fig
re 1 ) and all Monte Carlo bi as es and mean squar e err ors ( We
 Table 1 ) . In both s e ttin gs usin g either the Pois s on rate of the
ernoul li probabi lity, we t est ed four diffe re n t s e ts of γ pa ra me-

ers in the o bs erv at ion model , including one s e t of zeros ( which
e call “s e t 1” in the r esults ) , corr esponding to uninform ativ e ob-
 erv ation . In another s en sitivity an alysis, w e as s es s ed the perfor-
 anc e of the propose d estim ator under inform ativ e c en s oring
hat depends on the visit pred ictor s V i (t ) . We compared IPC-
ei gh ted a nd more n aiv e estim ators th at do not addres s cen s or-

ng. The simul ation s e tup is des cribed in Web Appe ndix G a nd
he results from that a nalysis ( e mp irical b ias a nd mea n squa red
 rror ) a re shown in Web Table 2 ( Web Appe ndix H ) a nd briefly
 isc ussed in Section 3.1 . 

3.1 Results 
he distributions of 1000 e stimate s obt ained with each e stima -

or using a s amp le of size 1000 patients ar e pr esented in Figure 2 .
 thorough d isc ussion of the results is given in Web Appendix H
ith more details on the pe rforma nce of each of the more naive

stim ators . 
The results a re ge ne rally as expe cte d . The AAI IW est imator is

mp irically unb i as ed in all s c en arios ( 1 ) –( 4 ) for the o bs erv ation
roc ess, whenev er using one of the four c ombin ations of cor-
e ctly spe c i fied models show n in Table 2 or w he n all four mod -
ls are c orre ctly spe c i fied. It exhibits small v ari ance when the
w o c ondition al outc ome mea n models a r e corr ectly spec i fied
 sc en ario b from Table 2 ) or, as expe cte d when all four models
r e corr ectly spec i fied. Results for the second s e t of simul ation s
sing the Bernoulli probability to simulate the o bs erv ation s, and

hose for a sample of size 250 are in Web Appendix H . As ex-
e cte d , the est ima tors ar e mor e v ari ab le when using a s amp le size
f 250, although the same pa t te rns in the compa rison of es tima-

ors are o bs erv e d ( Web Figure 1 ) . Similar results are o bs erv e d
hen using the Bernoulli probability instead of the Poisson rate

or the simulation of observa tion indica tors ( Web Figur es 3 and
 ) . The simul ation s using the Bernoul li probabi l ity d id not re-
uire the use of Breslow’s estimator for the baseline rate, which
ay partly exp l ain the smaller v ari ances o bs erv e d ov erall ( e g,

ompa re Fi gure 1 and Web Figure 2 ) . 
Results for the DGM with informative cen s oring that de-

ended on the pred ictor s of visit were also as expected ( Web Ta-
le 2, Web Appendix H ) . The inform ativ e c en s oring did affect

he emp irical b i as in s ome of the s c en arios t est ed. Adjustment
ia IPCW brought the es timates close r to the true causal effect,
ith a maximum bias that we n t from 0.31 to 0.14 after adjust-
e n t , for the AAII W estimator. The AAII W estim ator c ouple d
ith IPCW pe rformed pa rticula rly well whe n the tw o outc ome
 ondition al mean models w ere c orre ctly spe c i fied, or when the
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FIGUR E 2 R esults of the sim ulation s tudies with a sa mple size of 1000 using a nonhomogeneous Poisson rate to simulate the o bs erv ation 

ind icator s and the Andersen and Gi l l model with Breslow estimator to estimate the IIV wei gh ts. Each boxplot r epr ese n ts the distribution of 
1000 e stimate s for the corre sponding e stim ator. The dashe d line r epr ese n ts the gold s ta nda rd , i .e., the true value for the m argin al effe ct of 
expos ure th at e quals to 1. Diffe re n t s tre ngth s of the visit proces s on cov ari a tes ar e r epr ese n ted with sc en arios ( A ) γ = (0 , 0 , 0 , 0 , 0 , −5) ( ie, 
no bias due to the visit process expe cte d ) ; ( B ) γ = (0 . 5 , 0 . 3 , −0 . 5 , −2 , 0 , −3) ; ( C ) γ = (0 . 5 , −0 . 5 , −0 . 2 , −1 , 1 , −3) ; and ( D ) 
γ = (−1 , −0 . 8 , 0 . 1 , 0 . 3 , −1 , −3) . OLS, ordinary least squares; IPT, inverse probability of tr ea tme n t wei gh ts; a nd DW, doubly-wei gh ted 

estimator which corresponds to the FIPTM from Coulombe et al. ( 2021 ) ; AAIIW: The novel doubly augme n ted, doubly wei gh ted es timator. 
The subscripts c , nc , iptc , and iivc , respe ctiv ely mean all c orre ct, all not c orre ct, only IPT c orre ct, and only IIV c orre ct in the n uisa nc e models . 
The subscripts s.a to s.d refer to sc en arios ( A ) –( D ) in Table 2 of the ma n uscript. 
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TABLE 4 Comp le t e out come data ( t op ) a nd irregula rly obse rv e d outc ome da ta ( bot tom ) estima tes ( 95% boots tra p pe rce n tiles CI ) of the 
m argin al effe ct of c oun s eling on the ave rage n umbe r of alco ho lic bev erages c ons ume d, Ad d He alth study, United St ate s, 1996–2008. 

Complete data estimates 

OLS IPT 

φ AIPW 

φ

0.60 ( 0.41, 0.77 ) 0.31 ( 0.16, 0.49 ) 0.35 ( 0.20, 0.53 ) 
Irregul arly o bs erv e d outc ome estim ates 

OLS IPT 

φ IIV 

† IIV 

‡ 

0.86 ( 0.58, 1.10 ) 0.57 ( 0.35, 0.81 ) 0.68 ( -0.32, 1.87 ) 1.10 ( 0.62, 1.34 ) 
FIPTM 

φ, † FIPTM 

φ, ‡ AAIIW 

φ, † AAIIW 

φ, ‡ 

0.36 ( −0.63, 1.55 ) 0.72 ( 0.34, 1.03 ) 0.40 ( −1.36, 2.53 ) 0.39 ( −0.13, 1.34 ) 
Acronyms: CI, c onfidenc e interval; IPT, inv ers e pro bability of tr ea tme n t; AIPW, augme n te d inv ers e pro bability of tr ea tme n t wei gh ted; IIV, inve rse in te nsit y of visit ; FIPTM, the 
flexib le invers e pro bability of tr ea tme n t a nd monitoring; AAIIW, the doubly augme n te d, doubly inv erse w ei gh ted. φ . Note we do not know the true data ge ne rating me ch anism for 
the tr ea tme n t me ch a nism in the a pp lication . † . This estimator us es a c orre ctly spe cifie d ge ne rating me ch anism for outc ome mis singnes s. ‡ . This estimator uses a wrongly spec i fied 
ge ne rating me ch anism for outc ome mis singnes s. 
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utcome model conditional on the confounders and the IIV
ei gh ts we r e corr ectly spec i fied ( bias smalle r tha n 0.02 in all

c en arios ) . 

4 M OT I VAT I N  G  E X A M P L E  

e applied the proposed AAI IW est imator a nd diffe re n t more
 aiv e c omparat ors t o longitudinal da ta fr om the Ad d He alth
tudy in the Unit ed Stat es ( Ha rris a nd Udry, 2022 ) . More de-
ails on that study and the analysis are av ail ab le in Web Appen
ix I . We h av e ac c es s to d a ta fr om the first four waves of the
d d He alth study, corre sponding to the years 1994–1995, 1996,
001–2002, and 2008–2009, respe ctiv ely. Various types of infor-
ation, including de mogra phics a nd health s tatus va riables we re

 olle cte d via que stionnaire s fil led by the American ado les cents
n this study. Our goal was to estimate the marginal causal effect
f coun s eling on alco ho l con sumption bas ed on the question In

he past y e ar, hav e y ou receiv e d psy c ho logica l or emotion a l co unsel-
ng? . The ass ume d D GM is shown in Fig ure 1 . Two challenges we

a n t ed t o consider in the analysis are the irregular observation
f the outcome and, because the study is observat ional , the po-

e n tial confounding of the psy chother apy–alco ho l con sumption
 ela tionship. We sele cte d sev e ral pote n tial confounde rs for that
 ela tionship ( Web Appe ndix I ) . The a nalysis d atas e t c ontaine d
 everal mis sing v alues. We us ed multip le imputation s by ch aine d
quations ( Rubin, 1988 ) five times, to impute mis sing v alues in
ov ari at es. The out come was defined using the question T h i n k
f all the times you had a dri n k duri ng the past 12 months. How
any dri n ks d i d yo u usua lly h av e e ach ti m e? . It con sists of a s elf-

s s es s ed n umbe r of drinks the ado les ce n t would consume, on
verag e, e ach time they con sumed alco ho l, ran gin g from 0 to 90.
n this application, the outcome was assessed at each of the four
aves for everyone ( ie, it contained no missing value ) . To as-
 es s the adv a n tage of our approach, we simul ated mis singnes s in
he outcome and as s es s ed the diffe re n t es timators in that s e tting,
nowing the true underlying mis singnes s me ch anism . As suming
hat all pote n tial confounde rs as well as the mediator ( de pre ssive

ood ) and the exposure ( coun s e ling ) a ffect the chance of ob-
 erving the alco ho l con sumption out come, the out come o bs er-
ation ( ie, the opposite of missingness ) was simulated using a
re-spec i fied, inve n ted model ( W eb Appendix I ) . W e conducted

he analysis usin g ea ch of the five imputed d atas e ts one by one.
e used Rubin’s rule ( Rubin, 1976 ) to combine the final es-
ima tes fr om all the estima tors compar ed, and 500 bootstrap
 amp les to obtain c onfidenc e intervals ( CI ) . We fit a propensity
core model and two diffe re n t proportional rate models for the
 bs erv ation of the outc ome, one c orre ctly spe cifie d and one that
as not c orre ctly spe c i fied ( as a function of the sinus of age and
e pre ssive mood only ) . 
An ordina ry leas t squa re s e s timator, a n IIV-wei gh ted es timator

h at ac c ounts for the o bs erv a tion pr oc ess ( w e t est e d the tw o s e ts
f the IIV wei gh ts ) , a doubly-wei gh ted es tima tor corr espond-

ng to the FI PTM est im ator ( inc orporat ing the I PT wei gh ts
ased on our assumptions on the pote n tial confounde rs, a nd IIV
ei gh ts—we tes te d the tw o s e ts of IIV wei gh ts ) , a nd the AAIIW

stimator in which we incorporated the IPT wei gh ts a nd the two
iffe re n t s e ts of the IIV wei gh ts we re compa red. We also added a
omp le te d ata analysis in which an OLS, a n IPT-wei gh ted a nd a n
ugme n te d inv ers e pro bability of tr ea tme n t wei gh ted ( AIPW )
stim ators w ere c ompute d on the d atas e t with no mis sing d ata
or the outcome. 

Some diffe re nc es w ere found across the tw o expos ure groups
n the first imputed d atas e t, which indicates pote n tial confound -
ng ( Web Appendix J, Web Table 3 ) . In the outcome observation

odel, we also found modest differences in female sex and smok-
ng status betw e en those for whom the alcohol c ons umption was
 bs erv e d and the others ( Web Appendix J , Web Table 4 ) . After
IV wei gh ting, mos t diffe re nces va nished ( Web Table 4 ) . 

Both the adjus tme n t for confounding a nd the one for outcome
is singnes s bring the e stimate s for the m argin al effe ct of expo-

 ure to c oun s eling tow a rd the n ull. The es tim ator th at le d to the
lose st e stimate s to the comp le te d ata a nalysis ( poin t es timate
.35 with the AIPW, Table 4 ) is the AAI IW est im ator, which le d

o poin t es timates of 0.40 and 0.39 when using the c orre ct or
he wrong IIV wei gh ts, respe ctiv ely. The FI PTM est im ator le d
o point e stimate s of 0.36 and 0.72, respe ctiv ely ( Table 4 ) , with
he estimator using the wrong IIV wei gh ts leading to the estimate
urther away from the gold s ta nda rd poin t es tima te. Our r esults
ndica te tha t in a s e tting in which we would not know the true
 bs erv ation me ch anis m, the AAIIW e stimator might sti l l lead to
 n es timate of the causal effect closer to the comp le te d ata a nal -
sis, while the FIPTM is more at risk of being bi as ed if its in-
 erse w eights ar e wr ongly spec i fied. Our pr oposed appr oach al-
ows a djustin g for previous ( o bs erv e d ) treatme n ts or outcomes
s pote n tial confounde r s or visit pred ictor s, but it cannot address
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s e ttings in which a previous outcome ( that is not o bs erved ) af-
fects the o bs erv a tion of any futur e outcome. In this application,
we did not include previous outcomes in the adjus tme n t s e t for
tha t r eason, even if pr evious outc ome values w ere av ail ab le. The
proposed AAI IW est imator can be used to estimate a time-fixed
averag e tre atme n t effect. In this application, it is pos sib le that the
causal effect of the ra p y on alco ho l con sumption changes in time,
with e.g., a gr ea te r be nefit of the ra p y at the beginning of follo w -
up, but we e s timated a n “ave raged” ove r all times tr ea tme n t ef-
fect, β1 . The true tr ea tme n t effect could vary in time. A lengthier
d isc ussion on the study results is given in Web Appendix J . 

5 D I S  C U S S  I O N 

This work proposed the firs t m ultip ly ro bus t es timator for the
causal m argin al effe ct of tr ea tme n t a ddressin g confoundin g and
irre gular visits, th at is consis te n t whe n only two out of four n ui -
sance models, one r ela t ed t o confounde rs a nd one to visit pre-
d ictor s, ar e corr ectly spec i fied . In addit ion to being more robust
than the FIPTM, the AAIIW estimator i s al so the most efficient
estimator in its s emiparame tric cl as s. In simul ation studies, it
w as demon strat ed t o be robus t a nd e mpirically as efficie n t as the
FIPTM when the two wei gh t models a r e corr ectly spec i fied but
it could be much more efficient in some other sc en arios . 

In an application to the Ad d He alth study in the United St ate s,
we found a diffe re nce betwee n more naive es timators a nd the
multip ly ro bust AAI IW est imator in the est imat ion of the causal
m argin al effe ct of the ra p y coun s eling on alco ho l con sumption,
and the proposed estim ator le d to the e stimate s th at w ere the
closest to a gold s ta nda rd found with the complete dataset. It is
pos sib le, how ev er, th at unmeas ure d c onfounding rem ains . Sen-
sitivity analyses can be used to assess the effect of unmeasured
confounding or visit pred ictor s tha t wer e not accounted prop-
erly in the estimator ( see eg, McCulloch and Neuhaus 2020 for
diagnostics on visit irregularity when visit times may depend on
the outcome values, or Va nde rWeele a nd Arah 2011 for se nsitiv-
ity analyses that address unmeas ure d c onfounding ) . 

The consis te ncy of our proposed estima tor r e lie s on spec i fic
c ombin ations of c orre ctly spe c i fied n uisa nce models listed in Ta-
ble 2 and some classical causal assumptions me n tioned in Sec-
tion 2 , includ ing cond ition al exch ang e a bility. S ee Web Appendi
x K for some re c ommendations on the ide n t ificat ion of adjust-
me n t s e ts. The propos ed approach als o re lie s on the ass ume d
MS M. We as s ume in this w ork th at the outc ome is r ela t ed t o the
tr ea tme n t at time t by a constant parameter ( causal effect ) β1 .
Thus, our working model, the ass ume d MSM, is only c orre ctly
spec i fied i f the tr ea tme n t causal effe ct is c ons ta n t, i.e., if it is the
sa me for a ny time t . If it is not, the n the es tim ate d effe ct c orre-
sponds to the closest time-fixed effect to the true , time- varying
causal effect and acts as a summary of the true causal r ela tionship
if all n uisa nce models ar e corr ectly spec i fied ( Ne u geb a ue r a nd
va n de r Laa n, 2007 ) . Furthe r more, i f the working MSM model
is not c orre ctly spe cifie d, causal in te rpr eta tion is more d iffic ult,
as the estim ate d effe ct is av erage d ov e r all time poin ts a nd does
not r epr ese n t the causal effect of tr ea tme n t at time t . That ef-
fect ca n ins tead be in te rpreted as the averag e tre atme n t effect
ove r the e n tire follo w -up period, if one follow e d a c ons ta n t tr ea t-
me n t course ( A i (t ) = 1 for all t , or A i (t ) = 0 for all t) , but it
be c omes h a rde r to in te rpre t if one fo llo ws a tre atme n t course
with tr ea tme n t switches . In s uch s e ttings, nonpa ra me tric MS M
s uch as propose d in Ne u geb a ue r a nd va n de r Laa n ( 2007 ) could
be preferable to estimate causal curves as a function of time, or 
the tr ea tme n t a nd the visit proces s es could be modeled jointly 
to ackno wledg e the lack of g e ne rali zab ility of the effect at one 
time, to other times when there is no visit ( see eg, Ro bin s e t al. 
2008 ; Ne u geb a uer et al. 2017 , who d isc ussed ide n t ificat ion of
optimal tr ea tme n t a nd visit s trategies unde r join t models for the 
tw o proc es s es ) . 
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