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ABSTRACT

Electronic health records and other sources of observational data are increasingly used for drawing causal inferences. The estimation of a causal
effect using these data not meant for research purposes is subject to confounding and irregularly-spaced covariate-driven observation times affect-
ing the inference. A doubly-weighted estimator accounting for these features has previously been proposed that relies on the correct specification
of two nuisance models used for the weights. In this work, we propose a novel consistent multiply robust estimator and demonstrate analytically
and in comprehensive simulation studies that it is more flexible and more efficient than the only alternative estimator proposed for the same
setting. It is further applied to data from the Add Health study in the United States to estimate the causal effect of therapy counseling on alcohol

consumption in American adolescents.
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1 INTRODUCTION

The study of causes and effects is an essential component of
learning healthcare systems (Krumholz, 2014). Estimated causal
effects, instead of associations, should be used to inform treat-
ment decisions. This manuscript proposes a novel, multiply ro-
bust efficient estimator for the marginal causal effect of a treat-
ment that may vary in time on a longitudinal outcome us-
ing observational data. Randomized controlled trials are the
gold standard for causal inference. Randomization of the treat-
ment options makes patients more comparable in terms of their
baseline characteristics. Randomized studies also often have
clear protocols for the timing of patients’ visits (ie, observa-
tion times) at which patient health status is measured. It is not
always possible to conduct a randomized controlled trial de-
signed to answer a specific causal question and researchers of-
ten turn to observational data (Black, 1996). We herein focus
on the particular features of electronic health records (EHRs)
data.

While EHRs are increasingly available for analysis, they are
not collected for research purposes. The treatments measured
in EHRs are not randomized to patients. This can lead to spuri-
ous associations in the data called confounding (Greenland and
Morgenstern, 2001). These data are also measured irregularly
across patients. Each patient follows their pattern in how they
access care, also likely to depend on their characteristics. For ex-
ample, as in Bizkov4 and Lumley (2005), suppose an observa-
tional study in which we are interested in the causal effect of air
pollution on forced expiratory volume (FEV). We assume the

effect of air pollution on FEV is further mediated by asthma,
and that both air pollution and asthma affect the chance for FEV
to be measured. Or, as in our application in this manuscript,
suppose we aim to estimate the marginal causal effect of ther-
apy on the average number of alcoholic beverages consumed in
American adolescents followed irregularly over time, where ob-
servation depends on adolescents’ characteristics. Statistically,
this creates a long-term dependence structure between the out-
come and the visit processes that can result in biased estima-
tors of causal or associational parameters (see eg, Lin and Ying
2001; McCulloch et al. 2016 and most recently Coulombe et al.
2021, 2022; Yang 2022 and Pullenayegum et al. 2023 in a con-
text of causal inference). When aiming for a causal effect, this
bias can be due to confounding by the visit process or, if the
visit indicators act as colliders (ie, are affected by the treatment
prescribed and the study outcome), to collider-stratification bias
(Greenland, 2003). In the examples listed above, the causal rela-
tionship between air pollution and FEV measurements or ther-
apy and alcohol consumption is also likely confounded.

Under a set of causal and modeling assumptions, causal effects
can be inferred by estimating the parameters of a marginal struc-
tural model (MSM) fitted on the data from a pseudo-population
that is free of confounding and other types of spurious as-
sociations, such as collider-stratification bias (Robins et al.,
2000). Previous work has tackled this in settings with covariate-
driven observation times and confounding, leading to the flex-
ible inverse probability of treatment and monitoring weighted
(FIPTM) estimator (Coulombe et al., 2021). For observation
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FIGURE 1 Causal diagram illustrating the assumed DGM. (A) Assumed causal diagram at time  in patient i, postulated to be common across
all patients. (B) Causal diagram for the Add Health study data at time f common across all adolescents.

times occurring not at random, Pullenayegum et al. (2023) re-
cently proposed another estimator that uses random effects to
model the remaining dependence between the observation and
the outcome processes. Both methods above may suffer similar
issues: They were not developed to be the most eflicient esti-
mators in their semiparametric class, and they are not doubly
robust, but rather rely on model assumptions for the treatment
and the observation times. Yang et al. (2020) and Rytgaard et al.
(2023) also proposed semiparametric approaches for the time-
specific intervention effects. Their approaches were proposed
for the study of survival outcomes as opposed to continuous out-
comes. Yang (2022) and Rytgaard et al. (2022) proposed general
semiparametric frameworks for estimating intervention-specific
mean outcomes. Most of these approaches allow several lon-
gitudinal processes in the estimation (exposure, outcome, and
covariates) to be measured sporadically by jointly modeling all
their observation processes. They are highly flexible but the esti-
mands and estimation approaches used by these authors are dif-
ferent than ours. They focus on the mean outcome difference
over a pre-specified period of time, under a specific treatment
regime. We herein propose a straightforward, estimating equa-
tion approach for the average treatment effect estimated with
repeated measurements for which R code, available with the
manuscript, is straightforward to implement. We focus on the
situation when the observation times occur “at random” (as op-
posed to completely at random or not at random). The FIPTM
estimator can be used in that setting, but it relies on the correct
specification of the treatment and outcome observation models
asafunction of patient characteristics, and can be severely biased
when one or both models are not correctly specified. Secondly,
the FIPTM could be made more efficient by deriving the influ-
ence curve for the causal effect of interest (Tsiatis, 2006). To ad-
dress these issues, we propose the first multiply robust estimator
for the causal marginal effect of a binary treatment on a longi-
tudinal continuous outcome, that accounts for confounding and
irregular covariate-driven observation times of the outcome si-
multaneously. The notation, estimand, causal assumptions, and
proposed estimator are presented in Section 2. Simulation stud-
ies covering several different scenarios of data generating mech-
anism (DGM) are presented in Section 3. Our methodology is
applied to data from the Add Health study in Section 4 and we
conclude in Section S.

2 METHODS
2.1 Notation

We assume working with a random sample of size n from a larger
population, i denotes the patient indexand t € [0, 7] is the time
with 7 a maximum censoring time in the cohort. Let A;(t) rep-
resent the binary treatment taking values in {0, 1} and Y;(t) be
the continuous outcome for patient i at time t. We denote vec-
tors and matrices in bold. The type of DGM we focus on is pre-
sented in the left panel of Figure 1, in which K;(t) are poten-
tial confounders for the treatment-outcome relationship (Pearl,
2009), M; (¢ ) are potential mediators for the treatment effect on
the outcome, and P;(t) contains pure predictors of the outcome
that could also affect the observation of a patient outcome Y; (¢ ).
The set P;(t) is distinguished from K; (¢ ) as it could contain visit
predictors generated and measured after the treatment. Only the
outcome process is assumed to be measured sporadically (eg,
the weight is measured irregularly according to patient charac-
teristics such as a change in medication). All the other variables
necessary to the estimation of the marginal causal effect of treat-
ment are assumed to be available at all times during follow-up;
in EHRs, the drugs and comorbidities are often recorded any-
time there is a new diagnosis or a new prescription, so it is often
areasonable assumption. Let N;(t) be a counting process for ob-
servation times of the outcome Y;(t) between times 0 and t for
individual i. The indicator dN;(t) equals to 1 when there is an
observation of the outcome Y;(t ),and 0 otherwise. The set V;(t)
includes all the variables causing observation times (ie, causing
dN;(t)) and also includes all the confounders of the treatment-
outcome relationship. We must include K;(t) in the set V;(t)
for the proposed estimator to be consistent. In Figure 1, we have
Vi(t) = {Ai(t), Ki(t), Mi(t), Pi(t)}.

Patients are allowed to have different censoring times C;. De-
note &;(t) = 1{C; > t} an indicator of patient i still in the study
at time t. We assume that censoring times are non-informative,
an assumption denoted by Y;(¢) L C; | A;(t) (this is discussed
more in Section 2.5).

2.2 Causal estimand

The potential outcome framework (Neyman, 1923; Rubin,
1976) is used to define our estimand. Denote by Y;'(¢) and
Y(t) the potential outcomes of individual i at time ¢t if they
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TABLE 1 Causal assumptions required for the proposed estimator to be consistent.

Assumption

Definition

Outcome consistency
Positivity of treatment
Positivity of observation

No unmeasured confounder
Conditional exchangeability

V() = A(t)Y () + {1 — Ai(t)} Y2 (t)
0 <P{A() | K(H)} <1
0 < E[dN;(t) | Vi(1)]
{Y2(). v (1)} L A(t) | Ki(t)

{Y°(0), v ()} L A(t) | Ki(#) and {A,(1), YO (1), Y;' (1)} LdNi(t) | Vi(t)

received treatment option A;(t) = 1 or A;(t) = 0, respectively.
The treatment may be fixed at baseline or it could vary in time. In
what follows, we define A;() to be the treatment given at time ¢.
The causal marginal effect of the binary treatment on a continu-
ous outcome is defined as 8; = | [Y,1 (t) —Y° (t)] Our inter-
est lies in a cross-sectional effect B, that does not vary in time,
which can be estimated using an MSM with which we assume a
constant effect (see the Discussion section in which this assump-
tion is discussed).

Suppose a certain time discretization for which there can be
only one jump in the counting process N(t) (for instance, daily
visits at the doctor’s office). If we had access to all potential out-
comes under both treatments and at each time t for the time
granularity chosen above, for a random sample of participants of
size n, we could estimate B, using sample means. On the other
hand, by conducting a randomized controlled trial and randomly
allocating patients to one of the two treatment options, and ob-
serving patients at prespecified visit times, then patients allo-
cated to treatment 1 and treatment O should not differ before
receiving the treatment. Then,aMSM E[Y/(t) | A;(t) = a] =
£(t; Ba) = Bo + Pra, with B, = [Bo B1]" could be used to es-
timate B; without accounting for confounding. In observational
data from EHRs, unfortunately, we tend to observe the poten-
tial outcomes Y;'(t) in those who had greater chances of be-
ing treated with A;(t) = 1, and the potential outcomes Y.’ (¢) in
those who had greater chances of being treated with A;(t) = 0
(as a consequence, E [Yl“ (t) | A(t) = a] #[E [Y,“ (t)]) Inad-
dition, the potential outcomes for an individual i are only ob-
served at times t when dN;(t) = 1, which may depend on co-
variates. We do not have access to all potential outcomes and re-
quire causal assumptions to equate the estimand to functions of
Yi(t).

2.3 Causal assumptions

Five causal assumptions are required for consistent estimation
of the causal marginal effect of treatment (Table 1 correspond-
ing to assumptions 1-3b below). Modeling assumptions for the
MSM and the nuisance models are also required, the latter are
discussed in Section 2.5.

1. Outcome consistency, ie., Yi(t) = A;(t)Y'(t) + {1 —
A (E)}Y0(8).

2. (a) positivity of treatment, meaning that anyone should
have a chance of receiving any of the two treatment op-
tions, and (b) positivity of observation, such that patients
had a chance to have their outcome observed at any time
given their characteristics.

3. Conditional exchangeability, with includes (a) no unmea-
sured confounder in the observed set K;(t); and (b) in-
dependence of the observation indicators with other vari-
ables in the analysis conditional on the visit predictors
Vi(t).

These five assumptions must hold, both for the former FIPTM
estimator and for the novel proposed estimator to be consistent,
except for the inclusion of K;(¢) in the set V;(t) that is only re-
quired for the proposed estimator. The conditional exchange-
ability can be recovered by breaking the spurious associations
due to the treatment and observation mechanisms via inverse
weights (marginal approach), conditioning on the sets A; (¢ ) and
V;(t) (which includes K;(t)) in a regression model for the out-
come and using methods such as g-computation (Robins, 1986)
(standardization approach), or as we propose, using both ap-
proaches simultaneously to obtain a robust estimator. We review
the previously proposed FIPTM estimator.

2.4 Previous estimator

Using the marginal approach corresponds to using the FIPTM
estimator proposed in Coulombe et al. (2021). It consists of
a doubly-weighted least squares estimator that incorporates
inverse probability of treatment (IPT) weights (Horvitz and
Thompson, 1952; Rosenbaum and Rubin, 1983) and inverse in-
tensity of visit (IIV) weights (Lin et al,, 2004). The IPT weights
are functions of the confounders K;(t) and the IIV weights are
functions of the visit predictors V;(¢). The estimator is consis-
tent for 81 when both weights are correctly specified. A paramet-
ric model can be used for P{A;(t) = a | K;(t); ¥} to obtain the
IPT weights

1{A(t) = a}/P{Ai(t) = a | Ki(t): ¥}, (1)

where P{A;(t) = 1| K;(t); ¥}, the propensity score, is the
probability of receiving the treatment 1 as a function of predic-
tors K;(t) and parameters ¥ (Rosenbaum and Rubin, 1983). A
logistic regression can be used to compute an estimated propen-
sity score. The IIV weights can be obtained by modeling the
mean visit indicator as a function of covariates V;(t). Since the
visit indicator is binary and visits are recurrent, one can use a
model for recurrent visits such as the Andersen and Gill (1982)
model (which corresponds to a proportional rate model) or a
logistic regression model. Both models rely on relatively similar
assumptions for the mean visit indicator when using the same
set of covariates, but the proportional rate model models the rate
and the logistic regression, the probability of visit. They lead to
similar estimates of the rate and probability of visit when the vis-
its are rare such that only one visit occurs over a time unit (eg, a
day), see e.g., Papoulis and Pillai (2002). The proportional rate
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TABLE 2 Multiple robustness of AAITW: AAIIW is consistent under Scenarios (a)-(d): v/ means correctly specified and X means no

requirement.

Scenario PlAi(t) = a | Ki(t); ¥) RalKi(t); ok} E[dN;(t) = 1| Vi(t); ¥] RalVi(t); oy}
(a) v X v X

(b) X v X v

(c) X v v X

(d) v X X v

model for the visits as a function of V;(t) is given by

E[AN(t) | Vi(t); ¥] = &(t) exp{y"Vi(t)}ro(t)dt.  (2)

The baseline rate of observation A (t) in (2) consists of the visit
rate when all variables V;(t) are set to their reference level. With
the FIPTM estimator, the baseline rate can be removed from the
IIV weights without affecting the marginal effect of treatment
estimate since this would still make the weights in (3) propor-
tional to the intensity of being observed as a function of V;(t).
The IIV weights can also be stabilized, in which case the base-
line rate cancels automatically in the weights and need not be es-
timated (Btizkova and Lumley, 2009). This leads to the follow-
ing intensity of visit weights (which we will take the inverse of),
from which p parameters can be estimated using the Andersen

and Gill (1982) model:

E[AN;(t) | Vi(t); ¥] = exp{y"Vi(t)}. (3)

In simulation studies, we assessed both the logistic regression
and the proportional rate model. Then, the FIPTM estimator
solves the following equations:

1{Ai(t)=a}

. T mﬁ(f) — (s ﬂa)de ,
"1 Jo E{dN;(t) | Vi(t); ¥} l
=0,a€ {0, 1}, 4)

where £, stands for the empirical mean. However, that estima-
tor requires both the treatment and the observation models to be
correctly specified, which is not easy in practice.

2.5 Novel estimator

We propose the augmented AAIIW estimator (which acronym
stands for doubly augmented and doubly inverse weighted) that is
more flexible and allows two out of four different models to be
misspecified while the estimator remains consistent. The estima-
tor is developed by finding the influence curve of the estimand
introduced in Section 2.4 (Hines et al., 2022). The novel esti-
mator is obtained by solving the following augmented versions

of (4):

' ni(t)
b [/o E(N,(0) | vi(t);?}dN"(t)]
TAM; (O E{n(t) | Ai(t) = a, Ki(t), Vi(t)}
b [/ E{dNi(£) | Vi(t); P} }
=0, (s)

where the nuisance terms can, for instance, be estimated using
parametric models, with

1{4;(t) = a} —Y(t)
P{Ai(t) = a | Ki(t); ¥}

_MA() =a) —PlA() = a | K(): $)
PlA(t) = a | Ki(t); ¥)

74‘1(“ ﬂa)7
with  dM;(t) = dNi(t) — &(t) exp(P"Vi(t)JAo(t)dt  the

martingale residual for the observation process. The con-
ditional outcome mean models in the augmented terms
are pa (Ki(t): o} = E[Yi(t) [ Ai(t) = a, Ki(t): o]
and ma {Vi(t): v} = E[Yi(t) | Ai(t) = a, Vi(t): oy ).
The latter model arises when taking the expectation
E[Yi(t) | Ai(t) = a,Vi(t)] in the term E{n;(t) | Ai(t) =
a,K;(t), Vi(t)} in equation (5). For the novel estimator, if
using the proportional rate model for visits, then the baseline
rate Ao(t) in (2) must be estimated before calculating the ITV
weights, which was not the case with the FIPTM estimator.
The IIV weights in the equations for the AAIIW are the inverse
of E[dN;(t) | Vi(t); ¥] =/):0(t) exp{y"Vi(t)}. One can use
the Breslow’s estimator (Cox, 1972) (which we use in our
simulation studies)

ni(t) =

wafKi(t); ok}

i HdNi(t) = 1
Y HdNi(t) = 1exp {PTVi(H)}

Table 2 shows the combinations of correctly specified models
leading to a consistent AAITW estimator. At least one of the two
models related to confounders and one of the two models re-
lated to the observation predictors must be correctly specified.
The estimand has an efficient influence function if it is path-
wise differentiable, i.e., if the univariate submodels are smooth
in the parameters, for the postulated models (see eg, Hines et al.,
2022). We herein assume that the causal marginal effect of treat-
ment is pathwise differentiable. The derivation of the estimator
using the theory of influence functions and a proof of multiple
robustness are in Web Appendices A and B, respectively. The
link between the theory of influence functions and the theory
on model-assisted estimation for our proposed estimator is in
Web Appendix C. The correct specification for parametric mod-
els is elaborated in Web Appendix D.

We show in Web Appendix E that the AAITW asymptotic vari-
ance, derived as the variance of its influence function (Tsiatis,
2006), is smaller than that of the FIPTM when all nuisance mod-
els are correctly specified for both estimators. In practice, the
AAIIW can be obtained by estimating the nuisance models pa-
rameters using e.g., logistic regressions for the treatment and visit
models or a proportional rate model for the visits with coxph

’Xo(t) =
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TABLE 3 Estimators compared in simulation studies.
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P{A;(t) = a | Ki(t); ¥)

Estimator

a{K;(£); o)

E[dN;(t) = 1| Vi(t); ] walVi(t); av)

OLS
IPT,
IPT,.
DW,
DWW,
Dwiivc
DW,,.
AAIIW,
AATIW;,
AAIIW;,
AAIIW;
AAIIW, 4

N S S

RN

R R EN

WA S

OLS is an ordinary least squares estimator, IPT is an IPT-weighted estimator, DW is the (doubly-weighted) FIPTM estimator from Coulombe et al. (2021) and AAIIW is the novel

proposed estimator. A v’ means correctly specified and a f symbol means it is used as a nuisance model in the estimator but it is wrongly specified.

in R and two linear models for the outcome conditional on A;(t)
and K;(t) or V;(t). The estimates can be plugged into the es-
timating equations of the AAIIW. Root solvers (such as uni-
root in R) can be used to estimate By and that estimate be
plugged into the second equation, solved for ;.

In Web Appendix F, we propose to relax the assumption that
censoring occurs at random and to use inverse probability of cen-
soring weights (IPCW) (Robins and Finkelstein, 2000) to ad-
dress informative censoring. We further outline a multiply robust
approach considering censoring predictors. The scenario with
informative censoring is also assessed in simulations.

3 SIMULATION STUDY

In simulation studies, we compared four different estimators de-
tailed in Table 3.

The DGM was strongly inspired by similar simulation stud-
ies presented in Btzkova and Lumley (2009), Coulombe et al.
(2021, 2022) and is detailed more thoroughly in Web Appen
dix G. The DGM included a set of confounders at baseline re-
peated through follow-up, a time-varying binary treatment, a set
of observation predictors that varied in time, and irregular obser-
vation of the outcome. The causal effect of treatment was con-
stant, i.e., we correctly specified the MSM in our simulations.
The main results for 1000 simulations using a nonhomogeneous
Poisson rate to simulate the observation times of the outcome
and a sample of size 1000 are presented in the following Sec-
tion 3.1. In another set of simulations, we replaced the non-
homogeneous Poisson rate with a nonhomogeneous Bernoulli
probability for the observation indicator and used a logistic re-
gression instead of the Andersen and Gill model to fit the prob-
ability of observation at each time point. These results are pre-
sented in Web Appendix H (Web Figures 2 and 3), along with
the results under a sample of size 250 instead of 1000 (Web Fig
ure 1) and all Monte Carlo biases and mean square errors (We
b Table 1). In both settings using either the Poisson rate of the
Bernoulli probability, we tested four different sets of y parame-
ters in the observation model, including one set of zeros (which
we call “set 1” in the results), corresponding to uninformative ob-
servation. In another sensitivity analysis, we assessed the perfor-
mance of the proposed estimator under informative censoring

that depends on the visit predictors V;(t). We compared IPC-
weighted and more naive estimators that do not address censor-
ing. The simulation setup is described in Web Appendix G and
the results from that analysis (empirical bias and mean squared
error) are shown in Web Table 2 (Web Appendix H) and briefly
discussed in Section 3.1.

3.1 Results

The distributions of 1000 estimates obtained with each estima-
tor using a sample of size 1000 patients are presented in Figure 2.
A thorough discussion of the results is given in Web Appendix H
with more details on the performance of each of the more naive
estimators.

The results are generally as expected. The AAIIW estimator is
empirically unbiased in all scenarios (1)—(4) for the observation
process, whenever using one of the four combinations of cor-
rectly specified models shown in Table 2 or when all four mod-
els are correctly specified. It exhibits small variance when the
two conditional outcome mean models are correctly specified
(scenario b from Table 2) or, as expected when all four models
are correctly specified. Results for the second set of simulations
using the Bernoulli probability to simulate the observations, and
those for a sample of size 250 are in Web Appendix H. As ex-
pected, the estimators are more variable when using a sample size
0f 250, although the same patterns in the comparison of estima-
tors are observed (Web Figure 1). Similar results are observed
when using the Bernoulli probability instead of the Poisson rate
for the simulation of observation indicators (Web Figures 3 and
3). The simulations using the Bernoulli probability did not re-
quire the use of Breslow’s estimator for the baseline rate, which
may partly explain the smaller variances observed overall (eg,
compare Figure 1 and Web Figure 2).

Results for the DGM with informative censoring that de-
pended on the predictors of visit were also as expected (Web Ta-
ble 2, Web Appendix H). The informative censoring did affect
the empirical bias in some of the scenarios tested. Adjustment
via IPCW brought the estimates closer to the true causal effect,
with a maximum bias that went from 0.31 to 0.14 after adjust-
ment, for the AAIIW estimator. The AAIIW estimator coupled
with IPCW performed particularly well when the two outcome
conditional mean models were correctly specified, or when the
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FIGURE 2 Results of the simulation studies with a sample size of 1000 using a nonhomogeneous Poisson rate to simulate the observation
indicators and the Andersen and Gill model with Breslow estimator to estimate the ITV weights. Each boxplot represents the distribution of
1000 estimates for the corresponding estimator. The dashed line represents the gold standard, i.e., the true value for the marginal effect of
exposure that equals to 1. Different strengths of the visit process on covariates are represented with scenarios (A) y = (0, 0, 0, 0, 0, —S5) (ie,
no bias due to the visit process expected); (B) ¥ = (0.5, 0.3, —0.5, =2, 0, —3); (C) ¥ = (0.5, —0.5, —0.2, —1, 1, —3); and (D)

y = (—1,—0.8,0.1,0.3, —1, —3). OLS, ordinary least squares; IPT, inverse probability of treatment weights; and DW, doubly-weighted
estimator which corresponds to the FIPTM from Coulombe et al. (2021); AAIIW: The novel doubly augmented, doubly weighted estimator.
The subscripts ¢, nc, iptc, and iivc, respectively mean all correct, all not correct, only IPT correct, and only IIV correct in the nuisance models.
The subscripts s.a to s.d refer to scenarios (A)—(D) in Table 2 of the manuscript.
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TABLE 4 Complete outcome data (top) and irregularly observed outcome data (bottom) estimates (95% bootstrap percentiles CI) of the
marginal effect of counseling on the average number of alcoholic beverages consumed, Add Health study, United States, 1996-2008.

Complete data estimates

OLS IPT?
0.60 (0.41,0.77) 0.31 (0.16,0.49)

AIPW?
0.35(0.20,0.53)

Irregularly observed outcome estimates

OLS IPT?

0.86 (0.58,1.10) 0.57 (0.35,0.81)
FIPTM?-f FIPTM?
0.36 (—0.63, 1.55) 0.72 (0.34,1.03)

v’ vt
0.68 (-0.32, 1.87) 1.10 (0.62, 1.34)
AAIIW?- AAITW?
0.40 (—1.36,2.53) 0.39 (—0.13,1.34)

Acronyms: CI, confidence interval; IPT, inverse probability of treatment; AIPW, augmented inverse probability of treatment weighted; IIV, inverse intensity of visit; FIPTM, the
flexible inverse probability of treatment and monitoring; AAIIW, the doubly augmented, doubly inverse weighted. ?. Note we do not know the true data generating mechanism for

the treatment mechanism in the application. T, This estimator uses a correctly specified generating mechanism for outcome missingness. f, This estimator uses a wrongly specified

generating mechanism for outcome missingness.

outcome model conditional on the confounders and the IIV
weights were correctly specified (bias smaller than 0.02 in all
scenarios).

4 MOTIVATING EXAMPLE

We applied the proposed AAIIW estimator and different more
naive comparators to longitudinal data from the Add Health
study in the United States (Harris and Udry, 2022). More de-
tails on that study and the analysis are available in Web Appen
dix I. We have access to data from the first four waves of the
Add Health study, corresponding to the years 1994-1995, 1996,
2001-2002, and 2008-2009, respectively. Various types of infor-
mation, including demographics and health status variables were
collected via questionnaires filled by the American adolescents
in this study. Our goal was to estimate the marginal causal effect
of counseling on alcohol consumption based on the question In
the past yeat, have you received psychological or emotional counsel-
ing?. The assumed DGM is shown in Figure 1. Two challenges we
wanted to consider in the analysis are the irregular observation
of the outcome and, because the study is observational, the po-
tential confounding of the psychotherapy-alcohol consumption
relationship. We selected several potential confounders for that
relationship (Web Appendix I). The analysis dataset contained
several missing values. We used multiple imputations by chained
equations (Rubin, 1988) five times, to impute missing values in
covariates. The outcome was defined using the question Think
of all the times you had a drink during the past 12 months. How
many drinks did you usually have each time?. It consists of a self-
assessed number of drinks the adolescent would consume, on
average, each time they consumed alcohol, ranging from 0 to 90.
In this application, the outcome was assessed at each of the four
waves for everyone (ie, it contained no missing value). To as-
sess the advantage of our approach, we simulated missingness in
the outcome and assessed the different estimators in that setting,
knowing the true underlying missingness mechanism. Assuming
that all potential confounders as well as the mediator (depressive
mood) and the exposure (counseling) affect the chance of ob-
serving the alcohol consumption outcome, the outcome obser-
vation (ie, the opposite of missingness) was simulated using a
pre-specified, invented model (Web Appendix I). We conducted
the analysis using each of the five imputed datasets one by one.

We used Rubin’s rule (Rubin, 1976) to combine the final es-
timates from all the estimators compared, and 500 bootstrap
samples to obtain confidence intervals (CI). We fit a propensity
score model and two different proportional rate models for the
observation of the outcome, one correctly specified and one that
was not correctly specified (as a function of the sinus of age and
depressive mood only).

An ordinaryleast squares estimator, an IIV-weighted estimator
that accounts for the observation process (we tested the two sets
of the ITV weights), a doubly-weighted estimator correspond-
ing to the FIPTM estimator (incorporating the IPT weights
based on our assumptions on the potential confounders, and IIV
weights—we tested the two sets of IIV weights), and the AAITW
estimator in which we incorporated the IPT weights and the two
different sets of the IIV weights were compared. We also added a
complete data analysis in which an OLS, an IPT-weighted and an
augmented inverse probability of treatment weighted (AIPW)
estimators were computed on the dataset with no missing data
for the outcome.

Some differences were found across the two exposure groups
in the first imputed dataset, which indicates potential confound-
ing (Web Appendix J, Web Table 3). In the outcome observation
model, we also found modest differences in female sex and smok-
ing status between those for whom the alcohol consumption was
observed and the others (Web Appendix J, Web Table 4). After
11V weighting, most differences vanished (Web Table 4).

Both the adjustment for confounding and the one for outcome
missingness bring the estimates for the marginal effect of expo-
sure to counseling toward the null. The estimator that led to the
closest estimates to the complete data analysis (point estimate
0.35 with the AIPW, Table 4) is the AAIIW estimator, which led
to point estimates of 0.40 and 0.39 when using the correct or
the wrong IIV weights, respectively. The FIPTM estimator led
to point estimates of 0.36 and 0.72, respectively (Table 4), with
the estimator using the wrong ITV weights leading to the estimate
further away from the gold standard point estimate. Our results
indicate that in a setting in which we would not know the true
observation mechanism, the AATITW estimator might still lead to
an estimate of the causal effect closer to the complete data anal-
ysis, while the FIPTM is more at risk of being biased if its in-
verse weights are wrongly specified. Our proposed approach al-
lows adjusting for previous (observed) treatments or outcomes
as potential confounders or visit predictors, but it cannot address
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settings in which a previous outcome (that is not observed) af-
fects the observation of any future outcome. In this application,
we did not include previous outcomes in the adjustment set for
that reason, even if previous outcome values were available. The
proposed AAIIW estimator can be used to estimate a time-fixed
average treatment effect. In this application, it is possible that the
causal effect of therapy on alcohol consumption changes in time,
with e.g,, a greater benefit of therapy at the beginning of follow-
up, but we estimated an “averaged” over all times treatment ef-
tect, B;. The true treatment effect could vary in time. A lengthier
discussion on the study results is given in Web Appendix J.

S DISCUSSION

This work proposed the first multiply robust estimator for the
causal marginal effect of treatment addressing confounding and
irregular visits, that is consistent when only two out of four nui-
sance models, one related to confounders and one to visit pre-
dictors, are correctly specified. In addition to being more robust
than the FIPTM, the AAIIW estimator is also the most efficient
estimator in its semiparametric class. In simulation studies, it
was demonstrated to be robust and empirically as efficient as the
FIPTM when the two weight models are correctly specified but
it could be much more efficient in some other scenarios.

In an application to the Add Health study in the United States,
we found a difference between more naive estimators and the
multiply robust AAITW estimator in the estimation of the causal
marginal effect of therapy counseling on alcohol consumption,
and the proposed estimator led to the estimates that were the
closest to a gold standard found with the complete dataset. It is
possible, however, that unmeasured confounding remains. Sen-
sitivity analyses can be used to assess the effect of unmeasured
confounding or visit predictors that were not accounted prop-
erly in the estimator (see eg, McCulloch and Neuhaus 2020 for
diagnostics on visit irregularity when visit times may depend on
the outcome values, or VanderWeele and Arah 2011 for sensitiv-
ity analyses that address unmeasured confounding).

The consistency of our proposed estimator relies on specific
combinations of correctly specified nuisance models listed in Ta-
ble 2 and some classical causal assumptions mentioned in Sec-
tion 2, including conditional exchangeability. See Web Appendi
x K for some recommendations on the identification of adjust-
ment sets. The proposed approach also relies on the assumed
MSM. We assume in this work that the outcome is related to the
treatment at time ¢ by a constant parameter (causal effect) ;.
Thus, our working model, the assumed MSM, is only correctly
specified if the treatment causal effect is constant, i.e., if it is the
same for any time ¢. If it is not, then the estimated effect corre-
sponds to the closest time-fixed effect to the true, time-varying
causal effect and acts as a summary of the true causal relationship
if all nuisance models are correctly specified (Neugebauer and
van der Laan, 2007). Furthermore, if the working MSM model
is not correctly specified, causal interpretation is more difficult,
as the estimated effect is averaged over all time points and does
not represent the causal effect of treatment at time t. That ef-
fect can instead be interpreted as the average treatment effect
over the entire follow-up period, if one followed a constant treat-
ment course (A;(t) = 1 for all t, or A;(t) = 0 for all ), but it

becomes harder to interpret if one follows a treatment course
with treatment switches. In such settings, nonparametric MSM
such as proposed in Neugebauer and van der Laan (2007) could
be preferable to estimate causal curves as a function of time, or
the treatment and the visit processes could be modeled jointly
to acknowledge the lack of generalizability of the effect at one
time, to other times when there is no visit (see eg, Robins et al.
2008; Neugebauer et al. 2017, who discussed identification of
optimal treatment and visit strategies under joint models for the
two processes).
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