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SUMMARY

In recent years, real-world external controls have grown in popularity as a tool to

empower randomized placebo-controlled trials, particularly in rare diseases or cases where

balanced randomization is unethical or impractical. However, as external controls are not

always comparable to the trials, direct borrowing without scrutinymay heavily bias the treat-

ment effect estimator. Our paper proposes a data-adaptive integrative framework capable

of preventing unknown biases of the external controls. The adaptive nature is achieved by

dynamically sorting out a comparable subset of external controls via bias penalization. Our

proposed method can simultaneously achieve (a) the semiparametric efficiency bound when

the external controls are comparable and (b) selective borrowing that mitigates the impact of

the existence of incomparable external controls. Furthermore, we establish statistical guar-

antees, including consistency, asymptotic distribution and inference, providing Type-I error

control and good power. Extensive simulations and two real-data applications show that

the proposed method leads to improved performance over the trial-only estimator across

various bias-generating scenarios.

Some key words: Adaptive lasso; Calibration weighting; Dynamic borrowing; Study heterogeneity.

1. Introduction

Randomized controlled trials have been considered the gold standard of clinical research

to provide confirmatory evidence on the safety and efficacy of treatments. However, ran-

domized placebo-controlled trials are expensive, require lengthy recruitment periods and

may not always be ethical, feasible or practical in rare or life-threatening diseases. In

response, quality patient-level real-world data from disease registries and electronic health

records have become increasingly available and can generate fit-for-purpose real-world evi-

dence to facilitate healthcare and regulatory decision-making (FDA, 2021). Studies using
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2 C. Gao et al.

real-world data may have advantages over randomized placebo-controlled trials, includ-

ing longer observation windows, larger and more heterogeneous patient populations, and

reduced burden on investigators and patients (Visvanathan et al., 2017; Colnet et al., 2020).

There is interest in novel clinical trial designs that leverage external controls from real-world

data to improve the efficiency of randomized placebo-controlled trials while maintaining

robust evidence on the safety and efficacy of treatments (Silverman, 2018; FDA, 2019;

Ghadessi et al., 2020). The focus of this paper is on hybrid control arm designs using

real-world data, where the concurrent control arm is augmented with real-world external

controls to form a hybrid comparator group.

The concept of hybrid controls dates back to Pocock (1976), who combined the trial data

and historical controls by adjusting for data-source-level differences. Since then, numerous

methods for using external controls have been developed. However, regulatory approvals

of external control arm designs as confirmatory trials are rare and limited to ultra-rare

diseases, pediatric trials or oncology trials (FDA, 2014, 2016; Odogwu et al., 2018). Con-

cerns regarding the validity and comparability of the external controls have limited their use

in a broader context. Guidance documents from regulatory agencies, including the recent

FDA draft guidance (FDA, 2023), note several potential issues with the external controls,

including selection bias, lack of concurrency, differences in the definitions of covariates,

treatments or outcomes, and unmeasured confounding (FDA, 2001, 2019, 2023). Without

proper scrutiny, each of these concerns may lead to biased treatment effect estimates and

misleading conclusions.

Selection bias is a type of data heterogeneity often encountered in nonrandomized stud-

ies. In the context of external control augmentation, it arises when the real-world baseline

subjects’ characteristics differ from those in the trial data. Multiple methods are available to

adjust for selection bias by balancing the baseline covariates’ distributions across the differ-

ent data sources. For example, matching and subclassification approaches select a subset of

comparable external controls to construct the hybrid control arm (Stuart, 2010). Matching

on the propensity score or the probability of trial inclusion can balance numerous baseline

covariates simultaneously (Rosenbaum&Rubin, 1983).Weighting approaches that reweight

external controls using the probability of trial inclusion or other balancing scores have also

been proposed, e.g., empirical likelihood (Qin et al., 2015), entropy balancing (Lee et al.,

2022b; Wu & Yang, 2022b; Chu et al., 2023), constrained maximum likelihood (Chatterjee

et al., 2016;Zhang et al., 2020) and Bayesian power priors (Neuenschwander et al., 2010; van

Rosmalen et al., 2018). Furthermore, matching or weighting can be combined with outcome

modelling to enhance robustness against model misspecification in addressing selection bias

of external controls (Li et al., 2023).

Differences in the outcomes may still exist between the concurrent controls and the exter-

nal controls after matching or weighting due to differences in study settings, time frame,

data quality or the definition of covariates or outcomes (Phelan et al., 2017). Methods

were proposed to adaptively select the degree of borrowing or adjust the outcomes for

external controls based on observed outcome differences with concurrent controls. Some

researchers suggested first testing the heterogeneity in control outcomes before deciding

whether to incorporate external subjects into the hybrid control arm (Viele et al., 2014; Li

et al., 2023). More dynamic borrowing approaches were also proposed, including match-

ing and bias adjustment (Stuart & Rubin, 2008), power priors (Ibrahim & Chen, 2000;

Neuenschwander et al., 2009), Bayesian hierarchical models including meta-analytic pre-

dictive priors (Neuenschwander et al., 2010; Schoenfeld et al., 2019) and commensurate
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Data-adaptive borrowing in randomized controlled trials 3

priors (Hobbs et al., 2011). While these existing methods seem appealing, simulation stud-

ies could not identify a single approach that could perform well across all scenarios where

hidden biases exist (Shan et al., 2022). The surveyed Bayesian methods often have inflated

Type-I errors, while frequentist methods suffer lower powerwhen hidden biases exist. Nearly

all methods performed poorly in the presence of unmeasured confounding and could not

simultaneously minimize bias and gain power. Furthermore, many existing methods rely

on parametric assumptions that are sensitive to model misspecification and cannot capture

complex relationships that are prevalent in practice.

In this paper, we propose an approach to achieve an efficient estimation of treatment

effects that is robust to various potential discrepancies thatmay arise in the external controls.

When handling the selection bias of external controls, our proposal is based on calibration

weighting (Lee et al., 2022b) so that the covariate distribution of external controls matches

with that of the trial subjects. Furthermore, leveraging semiparametric theory, we develop

an integrative augmented calibration weighting estimator, motivated by the efficient influ-

ence function (Bickel et al., 1998; Tsiatis, 2006), which is semiparametrically efficient and

doubly robust against model misspecification. Despite the potential to view the selection

bias problem as a generalizability or transportability issue (Lee et al., 2022b), our frame-

work fundamentally diverges from theirs as our context encompasses the outcomes from

both the trial data and external controls, while Lee et al. (2022b) solely considered the trial

outcomes.

To deal with potential outcome heterogeneity, we develop a selective borrowing frame-

work to determine an optimal subset from the external controls for integration. Specifically,

we introduce a bias parameter for each external subject entailing his or her comparability

with the concurrent control. To prevent bias in the integrative estimator, the goal is to select

the comparable external controls with zero bias and exclude any others with nonzero bias.

Thus, this formulation recasts the selective borrowing strategy as amodel selection problem,

which can be solved by penalized estimation (e.g., the adaptive lasso penalty; Zou, 2006).

Subsequent to the selection process, comparable external controls are utilized to construct

the integrative estimator. Prior works such as those by Chen et al. (2021), Liu et al. (2021)

and Zhai & Han (2022) although able to identify biases, exclude the entire external sample

when confronted with incomparability. Moreover, compared to these existing selective bor-

rowing approaches, our method leverages off-the-shelf machine learning models to achieve

semiparametric efficiency and does not require stringent parametric assumptions on the

distribution of outcomes.

2. Methodology

2.1. Notation, assumptions and objectives

Let R represent a randomized placebo-controlled trial and E represent an external con-

trol source, which contain NR and NE subjects, respectively. The total sample size is N =

NR+NE . An extension tomultiple external control groups is discussed in the Supplementary

Material. A total of Nt and Nc subjects receive the active treatment and control treatment

inR, while we assume that all NE subjects in E receive the control. Each observation i ∈ R

comprises the outcomes Yi, the treatment assignment Ai and a set of baseline covariates

Xi. Similarly, each observation i ∈ E comprises Yi, Ai and Xi. Let Ri represent a data

source indicator, which is 1 for all subjects i ∈ R and 0 for all subjects i ∈ E . To sum

up, an independent and identically distributed sample {Vi : i ∈ R ∪ E} is observed, where
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V = (X ,A,Y ,R). LetY (a) denote the potential outcomes under treatment a (Rubin, 1974).

The causal estimand of interest is defined as the average treatment effect among the trial

population, τ = µ1 − µ0, where µa = E{Y (a) | R = 1} for a = 0, 1. The clinical trials for

treatment effect estimation satisfy the following assumption.

Assumption 1 (Consistency, randomization and positivity). Suppose that

(i) Y = AY (1)+ (1 − A)Y (0),

(ii) Y (a) ⊥⊥ A | (X ,R = 1) for a = 0, 1 and

(iii) the known treatment propensity score satisfies

1 > πA(x) = pr(A = 1 | X = x, R = 1) > 0

for all x such that pr(X = x,R = 1) > 0.

Assumption 1 is standard in the causal inference literature (Rosenbaum & Rubin,

1983; Imbens, 2004) and holds for the well-controlled clinical trials guaranteed by the

randomization mechanism. Under Assumption 1, τ is identifiable with the trial data.

Moreover, the external controls should ideally be comparable with the concurrent

controls.

Assumption 2 (External control compatibility). Suppose that

(i) E{Y (0) | X = x, R = 0} = E{Y (0) | X = x, R = 1} and

(ii) pr(R = 1 | X = x) > 0 for all x such that pr(X = x, R = 0) > 0.

Assumption 2 states that the conditional mean of Y (0) is the same for the trial data

and external controls. This assumption holds if X captures all the outcome predictors that

are correlated with R. From the guidance in FDA (2023) for drug development in rare dis-

eases, there are five main concerns regarding the use of external controls: (i) selection bias,

(ii) unmeasured confounding, (iii) lack of concurrency, (iv) data quality and (v) outcome

validity. Assumption 2 does not require the covariate distribution of external controls to

be the same as that of the trial data, which is referred to as selection bias in the guidance.

Under Assumption 2, borrowing external controls to improve treatment effect estimation is

similar to a transportability or covariate shift problem. However, the presence of concerns

(ii)–(v) can result in violation of Assumption 2. Our paper has twomain objectives: (i) under

Assumption 2, similarly to the work of Li et al. (2023), we develop a semiparametrically effi-

cient and robust strategy to borrow external controls to improve estimation while correcting

for selection bias (§ 2.2); (ii) considering that Assumption 2 can be potentially violated, we

incorporate a selective borrowing procedure that will detect the biases and retain only a

subset of comparable external controls for integration (§ 2.3).

2.2. Semiparametric efficient estimation under the ideal situation

From the semiparametric theory (Bickel et al., 1998), we derive efficient and robust esti-

mators for τ under Assumptions 1 and 2. The derivation reaches the same estimator as

Li et al. (2023), and will serve as the base for our selective borrowing strategy. The semi-

parametric model is attractive as it exploits the observed data without making assumptions

about the nuisance parts of the data generation process that are not of substantive interest.

We derive the efficient influence function of τ in Theorem 1 below, which shall serve as the

foundational component of our proposed framework.
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Data-adaptive borrowing in randomized controlled trials 5

THEOREM 1. Under Assumptions 1 and 2, the efficient influence function of τ is

ψτ ,eff(V ;µ1,µ0, q, r) =
R

pr(R = 1)

[

{µ1(X)− µ0(X)− τ } +
A{Y − µ1(X)}

πA(X)

]

−
R(1 − A)+ (1 − R)r(X)

pr(R = 1)

q(X){Y − µ0(X)}

q(X){1 − πA(X)} + r(X)
,

where

µ1(X) = E(Y | X ,R = 1, A = 1),

µ0(X) = E(Y | X ,R = 1, A = 0) = E(Y | X ,R = 0),

r(X) = var(Y | X ,R = 1, A = 0)/var(Y | X ,R = 0),

q(X) = pr(R = 1 | X)/pr(R = 0 | X).

Based on Theorem 1, the semiparametric efficiency bound for τ is Vτ ,eff =

E{ψ2
τ ,eff

(V ;µ1,µ0, q, r)}. Hence, a principled estimator can be motivated by solving the

empirical analogue of E{ψτ ,eff (V ;µ1,µ0, q, r)} = 0 for τ .

Let the estimators of (µ0,µ1, q, r) be (µ̂0, µ̂1, q̂, r̂), and define ǫ̂a,i = Yi − µ̂a(Xi) (a =

0, 1). Then, by solving the empirical version of the efficient influence function for τ , we

have

τ̂ =
1

NR

∑

i∈R∪E

Ri

{

µ̂1(Xi)− µ̂0(Xi)+
Aiǫ̂1,i

πA(Xi)

}

−
1

NR

∑

i∈R∪E

{Ri(1 − Ai)+ (1 − Ri)r̂i(Xi)}q̂(Xi)

q̂(Xi){1 − πA(Xi)} + r̂(Xi)
ǫ̂0,i. (1)

We now discuss the estimators for the nuisance functions (µ0,µ1, q, r). To estimate µ0(X),

µ1(X) and r(X), one can follow the standard approach by fitting parametric models based

on the trial data.

For estimating weight q(X), a direct approach is to predict pr(R = 0 | X), which however

is unstable due to inverting probability estimates. To achieve stability of weighting, the key

insight is based on the central role of q(X) as balancing the covariate distribution between

two groups:E{(1−R)q(X)g(X)} = E{Rg(X)} for any g(X) = {g1(X),…, gK(X)}, which is a

K-dimensional function of X . Thus, we estimate q(X) by calibrating the covariate balance

between the trial data and external controls. In particular, we assign a weight qi for each

subject i ∈ E , then solve the following optimization problem for Q = {qi : i ∈ E}:

min
q
L(Q) =

∑

i∈E

qi log qi

subject to (i) qi > 0, i ∈ E , (ii)
∑

i∈E qig(Xi) =
∑

i∈R g(Xi). First, L(Q) is the entropy of the

weights; thus, minimizing this criterion ensures that the calibration weights are not too far

from uniform, so it minimizes the variability due to heterogeneous weights. Constraint (i)

is a standard condition for the weights. Constraint (ii) forces the empirical moments of the

covariates to be the same after calibration, leading to better-matched distributions of the

trial data and external controls.
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6 C. Gao et al.

The optimization problem can be solved using constrained convex optimization.

The estimated calibration weight is q̂i = q(Xi; η̂) = exp{η̂Tg(Xi)}, and η̂ solves U(η) =
∑

i∈E exp{η
Tg(Xi)}g(Xi)−

∑

i∈R g(Xi) = 0, which is the Lagrangian dual problem to the

optimization problem. The dual problem also entails that the calibration weighting

approach makes a log regression model for q(X). We refer to τ̂ with calibration weights

as the augmented calibration weighting estimator τ̂acw.

Remark 1. The variance ratio r(X) quantifies the relative residual variability of Y (0)

given X between the trial data and external controls. In general, estimating the condi-

tional variance ratio involves nonparametric regression, which can be challenging; see

Shen et al. (2020) and the references therein. Fortunately, the consistency of τ̂acw does

not rely on the correct specification of r(X). For example, if r̂(X) is set to be zero, τ̂acw
reduces to the trial-only estimator without borrowing any external information, which is

always consistent. In order to leverage external information and estimate r(X) practically,

we can make a simplifying homoscedasticity assumption that the residual variances of

Y (0) after addressing X are constant over studies. In this case, r(X) can be estimated by

r̂ = NEN
−1
c

∑

i∈R(1 − Ai){Yi − µ̂0(Xi)}
2/

∑

i∈E{Yi − µ̂0(Xi)}
2.

We show that τ̂acw has the following desirable properties. (i) Local efficiency: τ̂acw achieves

the semiparametric efficiency bound if the nuisance functions are correctly specified.

(ii) Double robustness: τ̂acw is consistent for τ if either the model for µa(X) or that for

q(X) is correct; see the proof in the Supplementary Material.

The doubly robust estimators were initially developed to gain robustness to paramet-

ric misspecification, but are now known to also be robust to approximation errors using

machine learning methods (e.g., Chernozhukov et al., 2018). We investigate this new doubly

robust feature for the proposed estimator τ̂acw, and use flexible semiparametric or non-

parametric methods to estimate both µa(X) (a = 0, 1), r(X) and q(X) in (1). First, we

consider themethod of sieves (Chen, 2007) for q(X). In comparisonwith other nonparamet-

ric methods such as kernels, the method of sieves is particularly well suited for calibration

weighting. We consider general sieve basis functions such as power series, Fourier series,

splines, wavelets and artificial neural networks; see Chen (2007) for a comprehensive review.

The number of bases can be selected by cross-validation. Second, we consider flexible

outcome models, e.g., generalized additive models, kernel regression and the method of

sieves for µa(X) (a = 0, 1). Using flexible methods alleviates bias from the misspecification

of parametric models. The following regularity conditions are required for the nuisance

function estimators.

Assumption 3. For a function f (X) with a generic random variableX , define its L2 norm

as ‖f (X)‖ = {
∫

f (x)2 dpr(x)}1/2. Assume that

(i) ‖µ̂a(X)− µa(X)‖ = op(1), a = 0, 1 and ‖q̂(X)− q(X)‖ = op(1),

(ii) ‖µ̂0(X)− µ0(X)‖ × ‖q̂(X)− q(X)‖ = op(N
−1/2),

(iii) ‖r̂(X)− r∗(X)‖ = op(1) for some r∗(X),

(iv) the additional regularity conditions Assumptions S1 and S2 in the Supplementary

Material hold.

Assumption 3 is a set of typical regularity conditions for M-estimation to achieve rate

double robustness (Van der Vaart, 2000). Under these regularity conditions, our proposed

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asae069/7926878 by N
C

 State U
niversity Libraries user on 30 June 2025

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae069#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae069#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae069#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae069#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae069#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae069#supplementary-data


Data-adaptive borrowing in randomized controlled trials 7

framework can incorporate flexible methods for estimating the nuisance functions, while

maintaining parametric rate consistency for τ̂acw.

THEOREM 2. Under Assumptions 1–3, we have N1/2(τ̂acw − τ )
d
−→ N(0,Vτ ), where Vτ =

E{ψ2
τ ,eff

(V ;µ1,µ0, q, r
∗)}. If r∗(X) = r(X), τ̂acw achieves semiparametric efficiency.

Theorem 2motivates variance estimation by V̂r = N−1
∑

i∈R∪E ψ
2
τ ,eff

(Vi; µ̂1, µ̂0, q̂, τ̂acw),

which is consistent for Vτ under Assumptions 1–3.

2.3. Bias detection and selective borrowing

In practical situations, Assumption 2 may not hold, and the augmentation in (1) can

be biased. We develop a selective borrowing framework to select external subjects that are

comparable with the concurrent controls for integration. To account for potential violations,

we introduce a vector of bias parameters b0 = (b1,0,…, bNE ,0) for all i ∈ E , where bi,0 =

b0(Xi) = E(Yi | Xi,Ai = 0, Ri = 0) − E(Yi | Xi,Ai = 0, Ri = 1) = µ0,E(Xi) − µ0(Xi).

When Assumption 2 holds, we have b0 = 0. Otherwise, there exists at least one i ∈ E such

that bi,0 |= 0. To prevent bias in τ̂acw from incomparable external controls, the goal is to

select the comparable subset with bi,0 = 0 and exclude any others with bi,0 |= 0.

Let b̂i = µ̂0,E(Xi)− µ̂0(Xi) be a consistent estimator for bi,0, where µ̂0,E(Xi) is a consis-

tent estimator for µ0,E(Xi). Let b̂ = (b̂1,…, b̂NE
) be an initial estimator for b0. We propose

a refined estimator of b0 by penalized estimation:

b̃ = argmin
b

{

(b̂− b)T6̂−1
b
(b̂− b)+ λN

∑

i∈E

p(|bi|)

}

. (2)

Here 6̂b is the estimated variance of b̂, p(|bi|) = |bi|/|b̂i|
ν is the adaptive lasso penalty term

and (λN , ν) are two tuning parameters. Intuitively, if b̂i is close to zero, the associated penalty

will be large, which further shrinks estimate b̃i towards zero. According to Zou (2006),

Huang et al. (2008) and Lin et al. (2009), the adaptive lasso penalty can lead to a desirable

property under the following regularity conditions.

Assumption 4. Suppose that

(i) aN maxi{µ̂0(Xi)− µ0(Xi)} = Op(1) and aN maxi{µ̂0,E(Xi)− µ0,E(Xi)} = Op(1) for all

i ∈ E ,

(ii) there exist constants τ1 and τ2 such that 0 < τ1 6 τb,min 6 τb,max 6 τ2, where τb,min

and τb,max are the smallest and largest eigenvalues of 6̂b,

(iii) aNbmin → ∞, where bmin = min{bi,0, i /∈ A}, and

(iv) λN/b
ν+1
min

→ 0 and λNa
ν
N → ∞.

LEMMA 1. Suppose that the assumptions in Theorem 2 and Assumption 4 hold except that

Assumption 2 may be violated. We have limN→∞ pr(Ã = A) = 1.

Lemma 1 shows that the adaptive lasso penalty has the ability to select zero-valued

parameters consistently when using an aN-consistent initial estimator b̂i and proper choices

of (λN , ν), provided that the minimum of the nonzero bias bmin does not diminish too

fast and the initial estimator b̂i is sufficiently good. In practice, the initial estimator b̂i
can be obtained by leveraging off-the-shelf machine learning models with a guaranteed
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8 C. Gao et al.

convergence rate, and (λN , ν) are selected by minimizing the mean square error using cross-

validation. Given b̃, the selected set of comparable external controls is Ã = {i : b̃i = 0}. The

modified integrative estimator is

τ̂ alassoacw =
1

NR

∑

i∈R∪E

Ri

[

µ̂1(Xi)− µ̂0(Xi)+
Aiǫ̂1,i

πA(Xi)

]

−
1

NR

∑

i∈R∪E

{Ri(1 − Ai)+ (1 − Ri)r̂b(Xi)1(b̃i = 0)}q̂(Xi)

q̂(Xi){1 − πA(Xi)} + r̂b(Xi)pr(b̃i = 0 | X ,R = 0)
ǫ̂0,i, (3)

where r̂b(X) is the estimated function of rb(X) = var(Y | X ,R = 1, A = 0)/var(Y | X ,R =

0, b0 = 0), which is used to adjust for changes in the covariate distribution from all external

controls in E to Ã.

Following the suggestions of Ho et al. (2007) to improve the finite-sample performances,

nearest-neighbour matching based on the estimated probability of trial inclusion e(X) =

pr(R = 1 | X) is performed after selecting the comparable subset Ã, which ensures a

more balanced allocation ratio between the treated group and the hybrid control arm; see

Algorithm 1 below for an overview of our selective borrowing framework.

Algorithm 1. Proposed selective integrative estimator.

Input: a randomized controlled trial with size NR = Nt +Nc and external controls.

Step 1. Fit the models for the outcome means µ1,µ0,µ0,E and weights q.

Step 2. Construct the initial estimator b̂ for the bias parameter b0.

Step 3. Select the comparable subset Ã = {i : b̃i = 0} via the bias penalization (2).

Step 4. If |Ã| > Nt − Nc then perform the nearest-neighbour matching to select

Nt −Nc external controls as the final Ã; otherwise, jump to step 5.

Step 5. Compute τ̂ alassoacw in (3) using the selected external controls in Ã.

We show the efficiency gain of the proposed estimator compared to the trial-only

estimator.

THEOREM 3. Suppose that the assumptions in Theorem 2 andAssumption 4 hold except that

Assumption 2 may be violated. Let r∗
b
(X) = rb(X). The reduction of the asymptotic variance

of τ̂ alassoacw compared to the trial-only estimator is

1

pr2(R = 1)
E

[

pr(R = 1 | X)rb(X)1(b0 = 0)var(Y | X ,R = 1,A = 0)

[q(X){1 − πA(X)} + rb(X)pr(b0 = 0 | X ,R = 0)]{1 − πA(X)}

]

, (4)

which is strictly positive unless rb(x) = 0 or b0 |= 0 or var(Y | X ,R = 1, A = 0) = 0 for all x

such that pr(X = x) > 0.

We derive (4) using orthogonality of the efficient influence function of τ to the nuisance

tangent space, and relegate the details to the should be highlighted. Theorem 3 showcases the

advantage of including external controls in a data-adaptive manner, where the asymptotic

variance of τ̂ alassoacw should be strictly smaller than the trial-only estimator unless the external

controls all suffer exceeding noise, i.e., rb(Xi) = 0, or the compatible subsetA of the external
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controls is an empty set, i.e., b0 |= 0, or the covariate X captures all the variability of Y (0)

in the trial data, i.e., var(Y | X ,R = 1, A = 0) = 0. Below, we establish the asymptotic

properties and provide a valid inferential framework for the proposed integrative estimator;

more details are provided in the Supplementary Material.

THEOREM 4. Suppose that the assumptions in Theorem 2 and Assumption 4 hold except

that Assumption 2may be violated. We have N1/2(τ̂ alassoacw − τ ) → N(0,Valasso
τ ). Furthermore,

the (1 − α)× 100% confidence interval [Lτ ,Uτ ] for τ can be constructed as

[Lτ ,Uτ ] = [τ̂ alassoacw − zα/2(V̂
alasso
τ /N)1/2, τ̂ alassoacw + zα/2(V̂

alasso
τ /N)1/2],

where V̂alasso
τ is a variance estimator of Valasso

τ , zα/2 is the 1 − α/2 quantile for the standard

normal distribution and [Lτ ,Uτ ] satisfies pr(τ ∈ [Lτ ,Uτ ]) → 1 − α as N → ∞.

3. Simulation

In this section, we evaluate the finite-sample performance of the proposed framework to

estimate treatment effects under potential bias scenarios via plasmode simulations. First,

a set of d = 12 baseline covariates X ∈ R
d is generated by mimicking the correlation

structure and the moments (up to the sixth) of variables from an oncology randomized

placebo-controlled trial (i.e., the trial data) and the FlatironHealth Spotlight Phase 2 cohort

(© 2020 Flatiron Health, all rights reserved; external controls).

Next, we generate the data source indicator Ri as Ri | Xi,Ui ∼ Ber{πR(Xi,Ui)} given

the sample sizes (NR,NE ), where Ui represents an unmeasured confounder. The treatment

assignment for the trial data is completely at random (i.e., pr(Ai = 1 | Ri = 1) = Nt/NR),

while all external subjects receive the control (i.e., pr(Ai = 0 | Ri = 0) = 1). The outcomes

Yi are generated as

Yi | (Xi,Ai,Ui,Ri = 1) ∼ N{µ0(Xi,Ui,Ai), σ
2
Y },

Yi | (Xi,Ui,Ri = 0) ∼ N{µ0,E(Xi,Ui), σ
2
Y }.

We consider three data-generating scenarios in Table 1(a), where η0 is chosen adaptively to

ensure the desired sample sizes (NR,NE), and (η,β, η̃, β̃, σ
2
Y ) are chosen empirically based

on the model fits using the observed oncology clinical trial data. In all the scenarios, we

use the linear predictor of X to fit (q,µ0,µ0,E), and thus the models are correctly specified

under the model choicesC, where the linear predictor of X governs the true data generation,

but are misspecified under choices W , where the data generation depends on a new set of

covariates X̃ , which include the quadratic and cubic terms of the (d − 1)th and dth covari-

ates (i.e., X2
d−1

,X2
d
,X3

d−1
,X3

d
) addition to the baseline covariate X . Moreover, we utilize the

cross-fitting procedure to select tuning parameters for the gradient boosting model.

The proposed framework is evaluated on imbalanced trial data, where Nc =

(20, 30, 40, 50, 75, 100) and Nt = 200 with an external control group of size NE = 3000.

We investigate the performance of our proposed estimator under two levels of unmea-

sured confounding (ω = 0 and 0.3) by comparing with other estimators in Table 1(b). The

trial-only augmented inverse probability weighting estimator τ̂aipw (Cao et al., 2009) and

the augmented calibration weighting estimator τ̂acw with full borrowing (Li et al., 2023)

are used as benchmarks. Two data-adaptive integrative estimators, τ̂ alassoacw and τ̂ alasso
acw,gbm

, are

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asae069/7926878 by N
C

 State U
niversity Libraries user on 30 June 2025

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae069#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae069#supplementary-data


10 C. Gao et al.

Table 1. Simulation settings: (a) model choices (C and W), where X̃ = [X ,X2
d−1

,X2
d
,

X3
d−1

,X3
d
], and (b) descriptions of the five estimators

(a) Model choices

logit{πR(X ,U)} µ0(X ,U ,A) µ0,E (X ,U)

C η0 + ηTX + ωU βTX + AαT(1,X)+ ωUσY βTX + ωUσY + ωσY

W η0 + η̃TX̃ + ωU β̃TX̃ + AαT(1,X)+ ωUσY β̃TX̃ + ωUσY + ωσY

(b) Estimators

τ̂aipw The augmented inverse probability weighting estimator without borrowing (Cao et al., 2009)

τ̂acw The integrative augmented calibration weighting estimator with full borrowing (Li et al., 2023)

τ̂ alassoacw The data-adaptive integrative estimator using the linear regressions for (µ0,µ0,E )

τ̂ alassoacw,gbm The data-adaptive integrative estimator using the tree-based gradient boosting for (µ0,µ0,E )

τ̂ppp The Bayesian predictive p-value power prior estimator (Kwiatkowski et al., 2023)

considered, where linear regressions and tree-based gradient boosting are used to estimate

the nuisance models. Other machine learning algorithms that satisfy pointwise consistency,

such as the generalized additive model, can also be utilized to select a comparable subset of

external controls consistently. The Bayesian predictive p-value power prior estimator, τ̂ppp,

is an extension of the power prior, which discounts each external control according to its

outcome compatibility using Box’s p-value (Kwiatkowski et al., 2023).

Figure 1 displays the average bias, variance, mean squared error and Type-I error when

E{τ (X) | R = 1} = 0, and power for testing τ > 0 when E{τ (X) | R = 1} = 0.3 based

on 1000 sets of data replications. Over the three model scenarios, the trial-only estimator

τ̂aipw is always consistent, but lacks efficiency as it only utilizes the concurrent controls

for estimation, especially when Nc is small. When the conditional mean exchangeability

in Assumption 2 holds (i.e., ω = 0), the full-borrowing estimator τ̂acw is most efficient,

shown by its low mean squared error and high power for detecting a significant treatment

effect. Our proposed selective integrative estimators, τ̂ alassoacw and τ̂ alasso
acw,gbm

, may be less efficient

than τ̂acw due to finite-sample selection error. However, they maintain smaller variance and

improved power compared to τ̂aipw, regardless of whether the nuisance models are misspeci-

fied. When Assumption 2 is violated (i.e., ω = 0.3), τ̂acw becomes biased, leading to an

inflated Type-I error and low power. The Bayesian estimator τ̂ppp requires correct para-

metric specification of the outcome model and performs poorly when the model omits a

key confounder that is imbalanced between data sources. In our simulations, high weights

were assigned to the external control subjects, which led to some bias in the treatment effect

estimates when Nc was small. However, both τ̂ alassoacw and τ̂ alasso
acw,gbm

achieve smaller mean

squared errors than the trial-only estimator by incorporating external control subjects. In

cases where the outcome model is incorrectly specified and ω = 0.3, the benefit of using

machine learning methods becomes apparent. Specifically, the flexibility of the gradient

boosting model ensures the convergence rate assumption for b̂i, i.e., aN(b̂i − bi,0) = Op(1)

for a certain sequence aN (Zhang & Yu, 2005). By incorporating compatible external con-

trols more accurately, τ̂ alasso
acw,gbm

better controls bias and achieves comparable power levels

to τ̂ alassoacw . However, the adaptive lasso estimation based on the misspecified linear model

lacks such properties and may not provide gains in power. One notable trade-off of our

proposed estimators is the slight Type-I error inflation when Nc is small and Assumption 2

is violated, which can be attributed to finite-sample selection error and was also observed by

Viele et al. (2014).
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Fig. 1. Simulation results under various levels of ω, and different model choices of q(X) and µ0(X).

4. Real-data application

In this section, we present an application of the proposed methodology to investigate the

effectiveness of basal insulin lispro against regular insulin glargine in patients with Type-I

diabetes. When combined with preprandial insulin lispro, basal insulin lispro and insulin
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Table 2. Point estimates, standard errors and 95% confidence intervals of the

treatment effect of BIL against regular GL based on the IMAGINE-1 and

IMAGINE-3 studies

τ̂aipw τ̂acw τ̂ alassoacw τ̂ alassoacw,gbm τ̂ppp

Est. (SE) −0.25 (0.072) −0.22 (0.057) −0.24 (0.065) −0.25 (0.070) −0.27 (0.062)

CI (−0.39,−0.11) (−0.33,−0.11) (−0.37,−0.08) (−0.39,−0.12) (−0.39,−0.15)

Est., estimate; SE, standard error; CI, confidence interval; BIL, basal insulin lispro; GL, regular

insulin glargine.

glargine are two long-acting insulin formulations used for patients with Type-I diabetes

mellitus. We analyse the IMAGINE-1 study, a randomized controlled trial where partic-

ipants were unevenly assigned to either basal insulin lispro (treatment group) or insulin

glargine (control group). Additionally, external control subjects from the IMAGINE-3 trial

were used. In the Supplementary Material we also explore the effectiveness of solanezumab

versus the placebo in slowing Alzheimer’s disease progression using external observational

data.

Our primary objective is to test the hypothesis of whether basal insulin lispro is supe-

rior to regular insulin glargine at glycemic control for patients with Type-I diabetes mellitus.

This can be achieved by comparing the deviation of the hemoglobin A1c level from base-

line after 52 weeks of treatment. Both studies contain a rich set of baseline covariates X ,

such as age, gender, baseline hemoglobin A1c (%), baseline fasting serum glucose (mmol/L),

baseline triglycerides (mmol/L), baseline low-density lipoprotein cholesterol (mmol/L) and

baseline alanine transaminase (U/L). The primary analysis population in IMAGINE-1 was

the randomized patients who received at least one treatment dose. Tomimic the full-analysis

population from IMAGINE-1, external control subjects with missing baseline assessments

are discarded from IMAGINE-3. The last observation carried forward is used to impute

missing postbaseline outcomes. The IMAGINE-1 study consists of NR = 439 subjects with

286 in the treated group and 153 in the control group, while the IMAGINE-3 study includes

NE = 444 patients in the control arm. In our statistical analysis, we first use the baseline

covariates X to model the trial inclusion probability by calibration weighting under the

entropy loss function. Next, we assume a linear heterogeneity treatment effect function for

the outcomes with X as the treatment modifier, and compare the same set of estimators in

the simulation study.

Table 2 reports the estimated results. The trial-only estimator τ̂aipw shows that basal

insulin lispro has a significant treatment effect on reducing the glucose level solely based on

the IMAGINE-1 study. Because of potential population bias, the naively integrative estima-

tors τ̂acw and τ̂ppp, albeit significant, are slightly different from τ̂aipw, whichmay be subject to

possible biases of the external controls. After filtering out the incompatible patients from the

external controls by our adaptive lasso selection, the final integrative estimates τ̂ alassoacw and

τ̂ alasso
acw,gbm

are closer to the benchmark, but have narrower confidence intervals. According to

our adaptive analysis result, basal insulin lispro is significantly more effective than regular

insulin glargine at glycemic control when used for patients with Type-I diabetes mellitus.

Next, we compare the performances of τ̂aipw with our data-adaptive integrative estimates

to highlight the advantages of our dynamic borrowing framework. To this end, we retain the

size of the treatment group, but create 100 subsamples by randomly selecting Ns
c patients

from its control group, where Ns
c = 10,…, 153. Then, the patients treated with regular

insulin glargine in the IMAGINE-3 study are augmented to each selected subsample and
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Fig. 2. Probability of success for detecting τ < −0.1 by τ̂aipw, τ̂
alasso
acw and τ̂ alassoacw,gbm with varying control group

sizes in the IMAGINE-1 study.

the treatment effect is evaluated upon the hybrid control arm design. Figure 2 presents the

average probabilities of successfully detecting τ < −0.1, the so-called probability of success,

against the size of subsamples. When solely utilizing patients from the IMAGINE-1 study,

τ̂aipw produces a probability of success larger than 0.8 only if the size of the control group is

larger than 25. Combined with the IMAGINE-3 study, τ̂ alassoacw and τ̂ alasso
acw,gbm

refine the treat-

ment effect estimation and only 15 patients are needed in the concurrent control group to

attain a probability of success higher than 0.8. Therefore, by properly leveraging the exter-

nal controls, we may accelerate drug development by decreasing the number of patients on

the concurrent control, thereby reducing the duration and cost of the clinical trial.

5. Discussion

Interest in the use of external control arms for drug development is becoming more

common. However, concerns regarding their quality and validity have limited their use for

healthcare decision-making thus far, necessitating careful and appropriate assessment. To

adjust for potential selection bias, our proposed method calibrates the covariate moments

across two data sources, ensuring that the covariate distributions in both sources match each

other. Alternative predictive model-based strategies are applicable when only a subset of

covariates is shared (Stuart et al., 2011; Tipton, 2014). To address differences in outcomes,

we select comparable external subsets based on the adaptive lasso penalty. Alternative penal-

ties can be considered if the selection consistency property is attained, such as the smoothly

clipped absolute deviation penalty (Fan & Li, 2001). Moreover, our framework can be

easily extended to augment observational studies with external data, which may require

additional modelling and assumptions to achieve double robustness. Slight Type-I error

inflation is observed in our simulations when the concurrent control group is small, attrib-

uted to selection error in finite samples. One future direction will be to rigorously construct

a data-adaptive confidence interval to account for finite-sample selection uncertainty with-

out being overly conservative (Lee et al., 2016; Tibshirani et al., 2016). Other future

directions include extending the proposed integrated inferential framework to survival out-

comes (Lee et al., 2022a), estimating heterogeneous treatment effects (Wu & Yang, 2022a;
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Yang et al., 2022) and combining probability and nonprobability samples (Yang et al., 2020;

Gao & Yang, 2023).

Acknowledgement

This project was supported by the Food and Drug Administration (FDA) of the U.S.

Department of Health andHuman Services (HHS) (U01FD007934) and the National Insti-

tute on Aging of the National Institutes of Health (R01AG06688). The views and opinions

expressed herein are those of the authors and do not necessarily represent those of, nor

endorsement by, FDA/HHS, the National Institutes of Health or the U.S. Government.

Supplementary material

The Supplementary Material includes all technical proofs, additional simulation results

and other real-data applications. An open-source software R package (R Develop-

ment Core Team, 2025) is available for implementing our proposed methodology at

https://github.com/IntegrativeStats/SelectiveIntegrative.

REFERENCES

Bickel, P. J., Klaassen, C., Ritov, Y. & Wellner, J. (1998). Efficient and Adaptive Inference in Semiparametric
Models, vol. 50. Baltimore, MD: Johns Hopkins University Press.

Cao, W., Tsiatis, A. A. & Davidian, M. (2009). Improving efficiency and robustness of the doubly robust
estimator for a population mean with incomplete data. Biometrika 96, 723–34.

Chatterjee, N., Chen, Y.-H., Maas, P. & Carroll, R. J. (2016). Constrained maximum likelihood estimation
for model calibration using summary-level information from external big data sources. J. Am. Statist. Assoc.
111, 107–17.

Chen, X. (2007). Large sample sieve estimation of semi-nonparametric models. In Handbook of Econometrics,
vol. 6, Ed. J.J. Heckman and E. E. Leamer, pp. 5549–5632. Amsterdam: Elsevier.

Chen, Z., Ning, J., Shen, Y. & Qin, J. (2021). Combining primary cohort data with external aggregate
information without assuming comparability. Biometrics 77, 1024–36.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. & Robins, J. (2018).
Double/debiased machine learning for treatment and structural parameters. Econom. J. 21, 1–68.

Chu, J., Lu, W. & Yang, S. (2023). Targeted optimal treatment regime learning using summary statistics.
Biometrika 110, 913–31.

Colnet, B., Mayer, I., Chen, G., Dieng, A., Li, R., Varoquaux, G., Vert, J.-P., Josse, J. & Yang, S. (2020).
Causal inference methods for combining randomized trials and observational studies: a review. Statist. Sci.
39, 165–91.

Fan, J. & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am.
Statist. Assoc. 96, 1348–60.

FDA. (2001). E10 Choice of Control Group and Related Issues in Clinical Trials. https://www.fda.gov/
regulatory-information/search-fda-guidance-documents/e10-choice-control-gr
oup-and-related-issues-clinical-trials

FDA. (2014). Blinatumomab Drug Approval Package. https://www.accessdata.fda.gov/
drugsatfda_docs/nda/2014/125557Orig1s000TOC.cfm

FDA. (2016). Avelumab Drug Approval Package. https://www.fda.gov/drugs/resources-
information-approved-drugs/avelumab-bavencio

FDA. (2019). Rare Diseases: Natural History Studies for Drug Development. https://www.fda.gov/
regulatory-information/search-fda-guidance-documents/rare-diseases-natural-
history-studies-drug-development

FDA. (2021).Real-World Data: AssessingRegistries to Support Regulatory Decision-Making for Drug and Biolog-
ical Products Guidance for Industry. https://www.fda.gov/regulatory-information/search-
fda-guidance-documents/real-world-data-assessing-registries-support-regula
tory-decision-making-drug-and-biological-products

FDA. (2023). Considerations for the Design and Conduct of Externally Controlled Trials for Drug and Biologi-
cal Products Guidance for Industry. https://www.fda.gov/regulatory-information/search-

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asae069/7926878 by N
C

 State U
niversity Libraries user on 30 June 2025

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae069#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae069#supplementary-data
https://github.com/IntegrativeStats/SelectiveIntegrative
https://github.com/IntegrativeStats/SelectiveIntegrative
https://www.fda.gov/
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/e10-choice-control-group-and-related-issues-clinical-trials
regulatory-information/search-fda-guidance-documents/e10-choice-control-gr
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/e10-choice-control-group-and-related-issues-clinical-trials
oup-and-related-issues-clinical-trials
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/e10-choice-control-group-and-related-issues-clinical-trials
https://www.accessdata.fda.gov/
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125557Orig1s000TOC.cfm
drugsatfda_docs/nda/2014/125557Orig1s000TOC.cfm
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125557Orig1s000TOC.cfm
https://www.fda.gov/drugs/resources-
https://www.fda.gov/drugs/resources-information-approved-drugs/avelumab-bavencio
information-approved-drugs/avelumab-bavencio
https://www.fda.gov/drugs/resources-information-approved-drugs/avelumab-bavencio
https://www.fda.gov/
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/rare-diseases-natural-history-studies-drug-development
regulatory-information/search-fda-guidance-documents/rare-diseases-natural-
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/rare-diseases-natural-history-studies-drug-development
history-studies-drug-development
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/rare-diseases-natural-history-studies-drug-development
https://www.fda.gov/regulatory-information/search-
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/real-world-data-assessing-registries-support-regulatory-decision-making-drug-and-biological-products
fda-guidance-documents/real-world-data-assessing-registries-support-regula
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/real-world-data-assessing-registries-support-regulatory-decision-making-drug-and-biological-products
tory-decision-making-drug-and-biological-products
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/real-world-data-assessing-registries-support-regulatory-decision-making-drug-and-biological-products
https://www.fda.gov/regulatory-information/search-
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-design-and-conduct-externally-controlled-trials-drug-and-biological-products


Data-adaptive borrowing in randomized controlled trials 15

fda-guidance-documents/considerations-design-and-conduct-externally-contro
lled-trials-drug-and-biological-products

Gao, C. & Yang, S. (2023). Pretest estimation in combining probability and non-probability samples. Electron.
J. Statist. 17, 1492–546.

Ghadessi, M., Tang, R., Zhou, J., Liu, R.,Wang, C., Toyoizumi, K., Mei, C., Zhang, L., Deng, C. & Beckman,

R. A. (2020). A roadmap to using historical controls in clinical trials – by Drug Information Association
Adaptive Design Scientific Working Group (DIA-ADSWG). Orphanet J. Rare Dis. 15, 1–19.

Ho, D. E., Imai, K., King, G. & Stuart, E. A. (2007). Matching as nonparametric preprocessing for reducing
model dependence in parametric causal inference. Polit. Anal. 15, 199–236.

Hobbs, B. P., Carlin, B. P., Mandrekar, S. J. & Sargent, D. J. (2011). Hierarchical commensurate and power
prior models for adaptive incorporation of historical information in clinical trials. Biometrics 67, 1047–56.

Huang, J.,Ma, S.& Zhang, C.-H. (2008). Adaptive lasso for sparse high-dimensional regressionmodels. Statist.
Sinica 18, 1603–18.

Ibrahim, J. G. & Chen, M.-H. (2000). Power prior distributions for regression models. Statist. Sci. 15, 46–60.
Imbens, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: a review. Rev.

Econ. Statist. 86, 4–29.
Kwiatkowski, E.,Zhu, J., Li, X., Pang,H., Lieberman, G.& Psioda,M. A. (2023). Case weighted adaptive power

priors for hybrid control analyses with time-to-event data. arXiv: 2305.05913v1.
Lee, D., Yang, S., Dong, L., Wang, X., Zeng, D. & Cai, J. (2022b). Improving trial generalizability using

observational studies. Biometrics 79, 1213–25.
Lee, D., Yang, S. & Wang, X. (2022a). Doubly robust estimators for generalizing treatment effects on survival

outcomes from randomized controlled trials to a target population. J. Causal Infer. 10, 415–40.
Lee, J. D., Sun, D. L., Sun, Y. & Taylor, J. E. (2016). Exact post-selection inference, with application to the

lasso. Ann. Statist. 44, 907–27.
Li, X., Miao, W., Lu, F. & Zhou, X.-H. (2023). Improving efficiency of inference in clinical trials with external

control data. Biometrics 79, 394–403.
Lin, Z., Xiang, Y. & Zhang, C. (2009). Adaptive lasso in high-dimensional settings. J. Nonparam. Statist. 21,

683–96.
Liu, M., Bunn, V., Hupf, B., Lin, J. & Lin, J. (2021). Propensity-score-based meta-analytic predictive prior for

incorporating real-world and historical data. Statist. Med. 40, 4794–808.
Neuenschwander, B., Branson, M. & Spiegelhalter, D. J. (2009). A note on the power prior. Statist. Med.

28, 3562–6.
Neuenschwander, B.,Capkun-Niggli,G.,Branson,M.& Spiegelhalter, D. J. (2010). Summarizing historical

information on controls in clinical trials. Clin. Trials 7, 5–18.
Odogwu,L.,Mathieu, L.,Blumenthal, G.,Larkins, E.,Goldberg, K. B.,Griffin, N.,Bijwaard, K.,Lee, E. Y.,

Philip, R., Jiang, X. et al. (2018). FDA approval summary: dabrafenib and trametinib for the treatment of
metastatic non-small cell lung cancers harboring BRAF V600E mutations. The Oncologist 23, 740–5.

Phelan, M., Bhavsar, N. A. & Goldstein, B. A. (2017). Illustrating informed presence bias in electronic health
records data: how patient interactions with a health system can impact inference. J Electron. Health Data
Meth. 5, 22–36.

Pocock, S. J. (1976). The combination of randomized and historical controls in clinical trials. J. Chronic Dis. 29,
175–88.

Qin, J., Zhang, H., Li, P., Albanes, D. & Yu, K. (2015). Using covariate-specific disease prevalence information
to increase the power of case-control studies. Biometrika 102, 169–80.

R Development Core Team (2025). R: A Language and Environment for Statistical Computing. Vienna, Austria:
R Foundation for Statistical Computing. ISBN 3-900051-07-0. http://www.R-project.org

Rosenbaum, P. R. & Rubin, D. B. (1983). The central role of the propensity score in observational studies for
causal effects. Biometrika 70, 41–55.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ.
Psychol. 66, 688–701.

Schoenfeld, D. A., Finkelstein, D. M., Macklin, E., Zach, N., Ennist, D. L., Taylor, A. A., Atassi, N. &
PooledResource Open-Access ALSClinical Trials Consortium. (2019). Design and analysis of a clinical
trial using previous trials as historical control. Clin. Trials 16, 531–8.

Shan, M., Faries, D., Dang, A., Zhang, X., Cui, Z. & Sheffield, K. M. (2022). A simulation-based evaluation
of statistical methods for hybrid real-world control arms in clinical trials. Statist. Biosci. 14, 259–84.

Shen, Y., Gao, C., Witten, D. & Han, F. (2020). Optimal estimation of variance in nonparametric regression
with random design. Ann. Statist. 48, 3589–618.

Silverman, B. (2018). A baker’s dozen of US FDA efficacy approvals using real world evidence. Pharma
Intelligence Pink Sheet, 7 August.

Stuart, E. A. (2010). Matching methods for causal inference: a review and a look forward. Statist. Sci. 25, 1–21.
Stuart, E. A. & Rubin, D. B. (2008). Matching with multiple control groups with adjustment for group

differences. J. Educ. Behav. Statist. 33, 279–306.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asae069/7926878 by N
C

 State U
niversity Libraries user on 30 June 2025

fda-guidance-documents/considerations-design-and-conduct-externally-contro
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-design-and-conduct-externally-controlled-trials-drug-and-biological-products
lled-trials-drug-and-biological-products
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-design-and-conduct-externally-controlled-trials-drug-and-biological-products
http://www.R-project.org
http://www.R-project.org


16 C. Gao et al.

Stuart, E. A., Cole, S. R., Bradshaw, C. P. & Leaf, P. J. (2011). The use of propensity scores to assess the
generalizability of results from randomized trials. J. R. Statist. Soc. A 174, 369–86.

Tibshirani, R. J., Taylor, J., Lockhart, R.& Tibshirani, R. (2016). Exact post-selection inference for sequential
regression procedures. J. Am. Statist. Assoc. 111, 600–20.

Tipton, E. (2014). How generalizable is your experiment? An index for comparing experimental samples and
populations. J. Educ. Behav. Statist. 39, 478–501.

Tsiatis, A. (2006). Semiparametric Theory and Missing Data. New York: Springer.
Van der Vaart, A. W. (2000). Asymptotic Statistics, vol. 3. Cambridge: Cambridge University Press.
van Rosmalen, J., Dejardin, D., van Norden, Y., Löwenberg, B. & Lesaffre, E. (2018). Including historical

data in the analysis of clinical trials: is it worth the effort? Statist. Meth. Med. Res. 27, 3167–82.
Viele, K., Berry, S., Neuenschwander, B., Amzal, B., Chen, F., Enas, N., Hobbs, B., Ibrahim, J. G., Kinner-

sley, N., Lindborg, S. et al. (2014). Use of historical control data for assessing treatment effects in clinical
trials. Pharm. Statist. 13, 41–54.

Visvanathan, K., Levit, L. A., Raghavan, D., Hudis, C. A., Wong, S., Dueck, A. & Lyman, G. H. (2017).
Untapped potential of observational research to inform clinical decision making: American Society of
Clinical Oncology research statement. J. Clin. Oncol. 35, 1845–54.

Wu, L. & Yang, S. (2022a). Integrative R-learner of heterogeneous treatment effects combining experimental
and observational studies. In Proc. 1st Conf. Causal Learn. Reason., pp. 904–26. PMLR.

Wu, L. & Yang, S. (2022b). Transfer learning of individualized treatment rules from experimental to real-world
data. J. Comp. Graph. Statist. 32, 1036–45.

Yang, S.,Kim, J. K.& Song,R. (2020). Doubly robust inference when combining probability and non-probability
samples with high dimensional data. J. R. Statist. Soc. B 82, 445–65.

Yang, S., Zeng, D. & Wang, X. (2022). Elastic integrative analysis of randomized trial and real-world data for
treatment heterogeneity estimation. arXiv: 2005.10579v3.

Zhai, Y. & Han, P. (2022). Data integration with oracle use of external information from heterogeneous
populations. J. Comp. Graph. Statist. 31, 1001–12.

Zhang, H., Deng, L., Schiffman, M., Qin, J. & Yu, K. (2020). Generalized integration model for improved
statistical inference by leveraging external summary data. Biometrika 107, 689–703.

Zhang, T.&Yu, B. (2005). Boosting with early stopping: convergence and consistency.Ann. Statist. 33, 1538–79.
Zou, H. (2006). The adaptive LASSO and its oracle properties. J. Am. Statist. Assoc. 101, 1418–29.

[Received on 29 December 2023. Editorial decision on 21 October 2024]

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asae069/7926878 by N
C

 State U
niversity Libraries user on 30 June 2025


