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The heterogeneity of treatment effect (HTE) lies at the heart of precision medicine. Randomized controlled tri-
als are gold-standard for treatment effect estimation but are typically underpowered for heterogeneous effects.
In contrast, large observational studies have high predictive power but are often confounded due to the lack of
randomization of treatment. We show that the observational study, even subject to hidden confounding, may be
used to empower trials in estimating the HTE using the notion of confounding function. The confounding function
summarizes the impact of unmeasured confounders on the difference between the observed treatment effect and
the causal treatment effect, given the observed covariates, which is unidentifiable based only on the observational
study. Coupling the trial and observational study, we show that the HTE and confounding function are identifiable.
We then derive the semiparametric efficient scores and the integrative estimators of the HTE and confounding
function. We clarify the conditions under which the integrative estimator of the HTE is strictly more efficient than
the trial estimator. Finally, we illustrate the integrative estimators via simulation and an application.

Keywords: Estimating equation; goodness of fit; over-identification test; semiparametric efficiency; structural
model

1. Introduction

Randomized controlled trials are the cornerstone of evidence-based medicine for treatment effect eval-
uation because randomization of treatment ensures that treatment groups are comparable and biases
are minimized. Recently, considerable interest has been in understanding the heterogeneity of treat-
ment effects, a critical path toward personalized medicine (Collins and Varmus, 2015). However, due
to eligibility criteria for recruiting patients, the trial sample is often limited in the patient diversity,
which renders the trial underpowered to estimate the heterogeneity of treatment effect. On the other
hand, large observational studies are increasingly available for research purposes, such as electronic
health records, claims databases, and disease registries, with much broader demographic and diver-
sity than trial cohorts. However, they also present challenges such as confounding due to the lack of
randomization.

Existing approaches to harmonize evidence from trial and observational studies include meta-
analysis (Verde and Ohmann, 2015) and joint analysis of the pooled data (Prentice et al., 2008). As
related, Chen, Hong and Tarozzi (2008) proposed an efficient generalized-method-of-moments estima-
tor combining primary and auxiliary samples under missingness at random, i.e., no unmeasured con-
founding in our context. However, these approaches assume no hidden confounders, which is unlikely
to be true in practice. The no unmeasured confounding assumption requires researchers to measure
all relevant predictors of treatment and outcome. However, it is always possible that certain important
confounders are unavailable in uncontrolled, real-world settings. For example, doctors use patients’
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symptoms not captured in the medical charts to assign treatments. Alternatively, certain prognostic
factors are measured with errors due to technological limitations. Unmeasured confounding presents
a major threat to causal inference from observational studies. Classical approaches to mitigating bias
due to unmeasured confounding include instrumental variables (Angrist, Imbens and Rubin, 1996),
negative controls (Kuroki and Pearl, 2014), and sensitivity analysis (Robins, Rotnitzky and Scharfstein,
2000). In particular, sensitivity analysis is often recommended to assess the robustness of the study
conclusion to no unmeasured confounding. Many authors have implemented sensitivity analysis using
the so-called confounding function (Robins, Rotnitzky and Scharfstein, 2000, Yang and Lok, 2018,
Kasza, Wolfe and Schuster, 2017); namely, the difference of the potential outcome means between the
treatment groups given the measured covariates due to the unmeasured confounders. Because the ob-
servational studies carry no information about confounding biases due to unmeasured confounders, the
confounding function is not identifiable based solely on the observational studies.

In this paper, we leverage observational studies to improve trial analysis of the heterogeneity of
treatment effect (HTE) with a vector of known effect modifiers. We focus on the setting where the
transportability of the heterogeneous treatment effect holds from the trial to the observational study
but the observational study may be subject to hidden confounding. Transportability is a minimal re-
quirement for data integration and has been considered in a vast literature (e.g., Stuart et al., 2011,
Tipton, 2013, Buchanan et al., 2018, Dahabreh et al., 2019). It holds if the sample is randomly selected
from the population or treatment effect modifiers are fully captured. We also introduce a new and nat-
ural confounding function to capture the impact of unmeasured confounding in observational studies
on the difference between the observed treatment effect and the causal treatment effect given measured
covariates. Under structural model assumptions, we show that the trial can be leveraged to identify the
HTE and confounding function, in contrast to sensitivity analysis.

The identification results motivate a broad class of consistent estimators of the model parameters.
However, naive choices lead to inefficient estimators. We derive the semiparametric efficient score
combining the two data sources to guide constructing efficient estimators and accelerate the full poten-
tial of trial and observational studies. The theoretical task is challenging because of restrictions on the
parameters of interest induced from the identification assumptions, such that the existing semiparamet-
ric efficiency theory for data integration (e.g., Chen, Hong and Tarozzi, 2008) cannot apply. To over-
come the challenges, we translate the restrictions into the likelihood function by re-parameterization
and follow the geometric approach (e.g., Bickel et al., 1993, Tsiatis, 2006) to derive the efficient score.
Built upon the efficient score, we propose an integrative estimator, which enables a fast root-𝑁 rate of
convergence under weaker conditions on nuisance function approximation, e.g., using consistent but
flexible semiparametric and nonparametric methods. We clarify the conditions under which the gain of
efficiency is strictly positive by data integration over the trial-only estimator. The improvement in effi-
ciency arises when certain predictors in the heterogeneous treatment effect function are absent in the
confounding function. The formulation of the heterogeneous treatment effect and confounding func-
tions can be grounded in domain expertise or determined through variable selection based on training
data. Additionally, we propose goodness-of-fit tests for assessing the structural assumptions based on
over-identification tests. A simulation study shows that the integrative estimator outperforms the trial-
only estimator in two settings with and without unmeasured confounding in the observational study. In
addition, we apply the proposed method to estimate the heterogeneous treatment effect of chemother-
apy for non-small cell lung cancer. The proofs of the semiparametric efficient score and its asymptotic
properties are presented in the last section of the main paper, with more technical proofs given in the
supplementary material (Yang et al., 2025).

Our work is motivated by related works and addresses challenges in the areas of data fusion, projec-
tion, and nonparametric structural models, each of which is elaborated as follows.
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Data fusion. Yang and Ding (2020) developed integrative causal analyses of the average treatment
effect by calibrating auxiliary information from the validation sample to the big main sample with un-
measured confounders for efficiency gain. However, their approach requires the validation and main
samples to be comparable in providing consistent estimators of auxiliary parameters. This require-
ment may be stringent because randomized controlled trials often have strict inclusion and exclusion
criteria lending their patient compositions different from the observational population (Stuart, Brad-
shaw and Leaf, 2015). Yang et al. (2023) pretested the comparability between trial and observational
studies and customized the subsequent analysis based the pretest result. Another line of research for
combining trial and observational studies is to generalize the average treatment effect from trials to
the target population (Buchanan et al., 2018, Lee et al., 2023; Lee, Yang and Wang, 2022), where the
observational sample provides a representative covariate distribution of the target population. Yang
and Wang (2022) and Colnet et al. (2024) provided comprehensive reviews. As a by-product of the
proposed framework, we derive an efficient plug-in sample estimator of the population average treat-
ment effect in the data integration context. Most existing methods rely on the overlap assumption of
the covariate distribution between the trial and observational samples. Our method does not require the
overlap assumption but utilizes parametric structural assumptions on the HTE, thus offering an alter-
native means for causal generalization. Nonetheless, we add a caveat that the lack of overlap renders
the structural assumptions fragile, and one relies on model extrapolation. In practice, we still advocate
checking the overlap assumption for generalizing the treatment effect from trial to a target popula-
tion.

Projection parameters. In clinical applications, parametric models are preferable for their straightfor-
ward interpretability. We operate under the assumption that the structural models are parametric and
are correctly specified. However, in cases of misspecification, they can still be interpreted as projec-
tion parameters—the projection of nonparametric structural models onto a constrained model space.
Projection-based interpretation has gained popularity and facilitates deriving nonparametric efficient
scores for the projection parameters (e.g., Neugebauer and van der Laan, 2005, Chernozhukov et al.,
2018a, Kennedy, Lorch and Small, 2019, Kennedy, Balakrishnan and Wasserman, 2023). Unlike these
approaches, our semiparametric efficiency scores take into account the constraints on the structural
parameters imposed by the identification assumptions. Semiparametric efficiency for models subject to
constraints can be of independent interest.

Nonparametric structural models. Aside from the interpretability, a technical reason to consider para-
metric models is that the nonparametric HTE and confounding functions are often local parameters
that are not pathwise differentiable, so their efficient scores with finite variances do not exist (Bickel
et al., 1993). Exceptions include the cases of fully discrete data and functions valued in general Hilbert
space (Luedtke and Chung, 2024). With the nonparametric models, one can alternatively study the
bounds on the asymptotic minimax risk indicating the best possible performance of any estimator in
the worst case scenarios (Kennedy et al., 2024 and references therein). For example, Kennedy et al.
(2024) derived a lower bound on the minimax rate of HTE estimation when the HTE and nuisance
functions are Holder-smooth in studies without hidden confounding. When considering nonparamet-
ric rates of HTE estimation in the data fusion context, one strategy involves initially approximating
the HTE by projecting it onto a finite-dimensional approximating space and then balancing estima-
tion accuracy and approximation error. However, in such analyses, the objective differs from what
is presented in this paper; specifically, there is no need to derive a precise asymptotic distribution
of the estimation for the finite-dimensional projection. Instead, the focus is on controlling the mean-
squared error as the dimension of the projection increases. This research topic will be pursued in the
future.
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Figure 1. Demonstration of the data structure for the trial and observational study (OS) samples within the target
population.

2. Basic setup and identification

2.1. Notation, causal effects, and two data sources

Let 𝐴 be the binary treatment, 𝑋 be a vector of pre-treatment covariates with the first component
being 1, and 𝑌 be the outcome of interest. The target population consists of all patients with certain
diseases where the new treatment is intended to be given. We use the potential outcomes to define
causal effects. Let 𝑌 (𝑎) be the potential outcome had the subject been given treatment 𝑎, for 𝑎 = 0,1.
Based on the potential outcomes, the individual treatment effect becomes 𝑌 (1) −𝑌 (0), the HTE can be
characterized through 𝜏(𝑋) = E[𝑌 (1) −𝑌 (0) | 𝑋], and the average treatment effect is 𝜏0 = E[𝜏(𝑋)].

We consider two independent data sources: one is a randomized trial study, and the other is an obser-
vational study. Let 𝑆 = 1 denote trial participation, and let 𝑆 = 0 denote observational study participa-
tion. Let A and B be sample index sets for the two data sources with sample sizes |A| = 𝑛 and |B| =𝑚,
and the total sample size is 𝑁 = 𝑛 + 𝑚. The trial data consist of {𝑉𝑖 = (𝐴𝑖 , 𝑋𝑖 ,𝑌𝑖 , 𝑆𝑖) : 𝑖 ∈ A, 𝑆𝑖 = 1},
where the observations i.i.d. follow 𝑓 (𝑋, 𝐴,𝑌 | 𝑆 = 1), and the observational data consist of {𝑉𝑖 : 𝑖 ∈
B, 𝑆𝑖 = 0}, where the observations i.i.d. follow 𝑓 (𝑋, 𝐴,𝑌 | 𝑆 = 0). Figure 1 displays the envisioned data
structure within the target population. To link the observed outcome and potential outcomes, we make
the typical causal consistency assumption of 𝑌 =𝑌 (𝐴). This assumption rules out the interference be-
tween subjects and treatment version relevance between samples and population (Tipton, 2013). The
implication is that 𝑌 (𝑎) has consistent meaning and value across the trial and observational studies.
This assumption requires the same treatment or comparison conditions to be given to both studies, and
being in the trial should not affect the values of the potential outcomes. To simplify the exposition, we
define

𝑒(𝑋, 𝑆) = P(𝐴 = 1 | 𝑋, 𝑆), 𝜇𝑎 (𝑋, 𝑆) = E[𝑌 | 𝐴 = 𝑎, 𝑋, 𝑆],

𝜎2
𝑎 (𝑋, 𝑆) = var[𝑌 | 𝐴 = 𝑎, 𝑋, 𝑆], 𝜇(𝑋, 𝑆) = E[𝑌 | 𝑋, 𝑆],
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where 𝑒(𝑋, 𝑆) is the propensity score, 𝜇𝑎 (𝑋, 𝑆) and 𝜎2
𝑎 (𝑋, 𝑆) are the treatment-specific outcome mean

and variance functions, for 𝑎 = 0,1, and 𝜇(𝑋, 𝑆) is the outcome mean function marginalized over
treatment. For any 𝑔(𝑉), define 𝜖𝑔(𝑉 ) = 𝑔(𝑉) − E[𝑔(𝑉) | 𝑋, 𝑆], e.g., 𝜖𝐴 = 𝐴 − 𝑒(𝑋, 𝑆).

2.2. Assumptions, confounding function, and nonparametric identification

Due to the fundamental problem that the potential outcomes can never be jointly observed for a partic-
ular subject, 𝜏(𝑋) is not identifiable in general. We make the following assumptions.

Assumption 1 (Transportability and randomized trial design). (i) E[𝑌 (1) − 𝑌 (0) | 𝑋, 𝑆 = 𝑠] =
𝜏(𝑋), for 𝑠 = 0,1, (ii) 𝑌 (𝑎)⊥⊥𝐴 | (𝑋, 𝑆 = 1) for 𝑎 ∈ {0,1}, and 0 < 𝑒(𝑋, 𝑆) < 1 almost surely.

Assumption 1(i) states that the treatment effect function is transportable from the trial and observa-
tional samples to the target population. This assumption is common in the data integration literature.
Stronger versions of Assumption 1(i) include the ignorability of study participation (e.g., Buchanan
et al., 2018) and the mean exchangeability (e.g., Dahabreh et al., 2019). Assumption 1(i) holds if 𝑋
captures the heterogeneity of effect modifiers or the study sample is a random sample from the tar-
get population. To ensure this assumption holds, variables and samples should be carefully chosen
with consultations of subject knowledge; e.g., collect data on likely effect modifiers that affect study
participation. Under the structural equation model framework, Pearl and Bareinboim (2011) provided
graphical conditions for transportability. Assumption 1(ii) holds by a well-designed trial with good
patient compliance.

Unlike trials, treatment randomization is typically unrealistic for observational studies. To take into
account the possible unmeasured confounders, we define the confounding function

𝜆(𝑋) = 𝜇1 (𝑋, 𝑆 = 0) − 𝜇0 (𝑋, 𝑆 = 0) − 𝜏(𝑋),

which measures the difference between the observed treatment effect and the causal treatment effect
given 𝑋 . In the absence of unmeasured confounders, we have 𝜆(𝑋) = 0. In the presence of unmeasured
𝑈 that is related to both {𝑌 (0),𝑌 (1)} and 𝐴 after controlling for 𝑋 , we have 𝜆(𝑋) ≠ 0.

Proposition 1. Under Assumption 1, 𝜏(𝑋) and 𝜆(𝑋) are identifiable by

𝜏(𝑋) = 𝜇1 (𝑋, 𝑆 = 1) − 𝜇0 (𝑋, 𝑆 = 1) = E[𝑌 | 𝑋, 𝑆 = 1], (1)

𝜆(𝑋) = 𝜇1 (𝑋, 𝑆 = 0) − 𝜇0 (𝑋, 𝑆 = 0) − 𝜏(𝑋) = E[𝑌 | 𝑋, 𝑆 = 0] − 𝜏(𝑋), (2)

where 𝑌 =𝑌 {𝐴 − 𝑒(𝑋, 𝑆)}/[𝑒(𝑋, 𝑆){1 − 𝑒(𝑋, 𝑆)}].

That is, the transportability and randomized trial design identify 𝜏(𝑋). The observed treatment ef-
fect from the observational study is attributable to both 𝜏(𝑋) and 𝜆(𝑋), but coupling the trial and
observational samples identifies 𝜆(𝑋). The second equality on (1) and (2) follows by E(𝑌 | 𝑋, 𝑆) =
𝜇1(𝑋, 𝑆) − 𝜇0 (𝑋, 𝑆). Proposition 1 provides two identification strategies relying on different compo-
nents of the observed data distribution, one using the outcome mean functions and the other using the
propensity score via 𝑌 .
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2.3. Parametric structural models and identification results

In clinical settings, the parametric models of the HTE are desirable due to their easy interpretation.
These models offer a transparent way of describing how the treatment effect varies across patients’
characteristics and can be used to tailor the treatment to an individual’s characteristics (Chakraborty
and Moodie, 2013). We make the following parametric structural assumptions.

Assumption 2 (Parametric structural models). The HTE and confounding functions are

𝜏(𝑋) = 𝜏𝜑0 (𝑋), 𝜆(𝑋) = 𝜆𝜙0 (𝑋), (3)

where 𝜏𝜑 (𝑋) and 𝜆𝜙 (𝑋) are known continuous functions of 𝜑 ∈ Θ1 and 𝜙 ∈ Θ2, 𝜑0 and 𝜙0 are unique
but unknown values, and Θ1 and Θ2 are compact sets in R 𝑝1 and R 𝑝2 , respectively.

When 𝑋 is discrete and models are saturate, the structural models are nonparametric. The continuity
of 𝜏𝜑 (𝑋) and 𝜆𝜙 (𝑋) and compactness of Θ1 and Θ2 are imposed for identification and are standard
in the literature. The treatment effect model 𝜏𝜑0 (𝑋) is a special case of structural nested mean models
(Robins, 1994) with a single treatment. Tian et al. (2014) and Vansteelandt and Joffe (2014) considered
a linear treatment effect 𝜏𝜑0 (𝑋) = 𝑋T𝜑0, where the first component of 𝑋 is one, specifying an intercept
term. This model entails that on average, the treatment would increase the mean of the outcome by
𝑋T𝜑0, and the magnitude of the increase depends on 𝑋 . Moreover, each component of 𝜑0 quantifies the
magnitude of the treatment effect of each component of 𝑋 . Assume that higher values are indicative of
better outcomes. If 𝑋T𝜑0 > 0, it indicates that the treatment is beneficial for the subject with 𝑋 . Other
flexible models can also be considered, such as single-index models (Song et al., 2017) and multiple-
index models (Chen, Hall and Müller, 2011). Modeling 𝜆𝜙0 (𝑋) follows the large sensitivity analysis
literature (Robins, Rotnitzky and Scharfstein, 2000), which typically requires domain knowledge to
identify the possible unmeasured confounders and their relationships with the observed data.

Nonparametric identification, established in (1) and (2), leads to identification of 𝜓0 = (𝜑T
0, 𝜙

T
0)

T

under Assumption 2:

𝜑0 = arg min
𝜑∈Θ1

E[𝑆{𝜇1 (𝑋, 𝑆 = 1) − 𝜇0(𝑋, 𝑆 = 1) − 𝜏𝜑 (𝑋)}
2], (4)

𝜙0 = arg min
𝜙∈Θ2

E[(1 − 𝑆){𝜇1 (𝑋, 𝑆 = 0) − 𝜇0(𝑋, 𝑆 = 0) − 𝜆𝜙 (𝑋) − 𝜏𝜑0 (𝑋)}
2], (5)

and 𝜑0 and 𝜙0 are the unique values that satisfy (4) and (5). With model misspecification, 𝜏𝜑0 (𝑋) and
𝜆𝜙0 (𝑋) can be interpreted as the best approximations of 𝜏(𝑋) and 𝜆(𝑋) in the overlap population (Li,
Morgan and Zaslavsky, 2018); see Remark 2. A substantial body of literature has advocated for the
use of parametric structural models and projection-based interpretations (e.g., Neugebauer and van der
Laan, 2005, Chernozhukov et al., 2018a, Kennedy, Lorch and Small, 2019, Kennedy, Balakrishnan and
Wasserman, 2023).

2.4. Direct estimators and the need for improved estimators

Proposition 1 gives two identification strategies and motivates two direct estimators. To construct
the direct estimators, let the adjusted outcomes be 𝑌

adj,1
𝑖 = 𝜇1 (𝑋𝑖 , 𝑆𝑖 = 1) − 𝜇0 (𝑋𝑖; 𝑆𝑖 = 1)} and

𝑌
adj,2
𝑖 = 𝑌𝑖{𝐴𝑖 − �̂�(𝑋𝑖 , 𝑆𝑖)}/[�̂�(𝑋𝑖 , 𝑆𝑖){1 − �̂�(𝑋𝑖 , 𝑆𝑖)}], where 𝜇𝑎 (𝑋, 𝑆) and �̂�(𝑋, 𝑆) are estimators of
𝜇𝑎 (𝑋, 𝑆) and 𝑒(𝑋, 𝑆) for 𝑎 = 0,1. For 𝑘 = 1 or 2, one can then fit the adjusted outcome 𝑌

adj,𝑘
𝑖 with
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mean 𝜏𝜑 (𝑋)+(1 − 𝑆)𝜆𝜙 (𝑋) to obtain the direct estimators. However, the two direct estimators require
either the correct specification of the outcome mean function or the propensity score. One can use
flexible semiparametric or nonparametric models to estimate the two nuisance functions; however, the
corresponding direct estimators will suffer from a slower rate of convergence due to the slower-rate
of convergence of the nuisance function estimators (Chernozhukov et al., 2018b). This calls for the
construction of more principled estimators that provide more attractive statistical properties. It is well-
known that estimators constructed based on efficient scores are doubly robust in the sense that they
are consistent if either one of the parametric models for the nuisance functions is correctly specified
(Robins, Rotnitzky and Zhao, 1994). More recently, many authors have shown that doubly robust es-
timators possess a “rate-double robustness” property (Rotnitzky, Smucler and Robins, 2021) in the
sense that they retain a root-𝑁 convergence rate under weaker conditions on consistent but otherwise
flexible semi-/non-parametric models of the nuisance functions (Chernozhukov et al., 2018b). In the
next section, we derive the semiparametric efficiency score for 𝜏𝜑 (𝑋) and 𝜆𝜙 (𝑋) to motivate a new
estimator.

3. Semiparametric efficiency theory for 𝝉𝝋0 (𝑿) and 𝝀𝝓0 (𝑿)

3.1. Semiparametric models with conditional moment restrictions

Our semiparametric model consists of structural models (3), Assumption 1, and other unspecified com-
ponents of the likelihood function. We show that Assumption 1 imposes restrictions on the structural
parameters of interest.

For the trial participants (𝑆 = 1), the transportability assumption of 𝜏(𝑋) and trial design lead to

E[𝑌 | 𝐴 = 1, 𝑋, 𝑆 = 1] − 𝜇0 (𝑋, 𝑆 = 1) = 𝜏(𝑋). (6)

Moreover, for the observational participants (𝑆 = 0), the transportability assumption of 𝜏(𝑋) and defi-
nition of 𝜆(𝑋) lead to

E[𝑌 | 𝐴 = 1, 𝑋, 𝑆 = 0] − 𝜇0 (𝑋, 𝑆 = 0) = 𝜏(𝑋) + (1 − 𝑆)𝜆(𝑋). (7)

Combining (6) and (7) results in

E[𝑌 | 𝐴 = 1, 𝑋, 𝑆] = 𝜏(𝑋) + (1 − 𝑆)𝜆(𝑋) + 𝜇0(𝑋, 𝑆). (8)

Based on (8), the key insight is to introduce

𝐻𝜓0 =𝑌 − {𝜏𝜑0 (𝑋) + (1 − 𝑆)𝜆𝜙0 (𝑋)}𝐴, (9)

which enjoys a mean exchangeability property of E[𝐻𝜓0 | 𝐴, 𝑋, 𝑆] = 𝜇0 (𝑋, 𝑆) and consequently a con-
ditional moment restriction.

Proposition 2 (Conditional moment restriction). Under Assumptions 1 and 2, for 𝐻𝜓0 , we have

E[𝐻𝜓0 | 𝐴, 𝑋, 𝑆] = E[𝐻𝜓0 | 𝑋, 𝑆] = 𝜇0 (𝑋, 𝑆). (10)
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3.2. Semiparametric efficient score

The likelihood function based on a single variable 𝑉 is L(𝜓0, 𝜃;𝑉) = 𝑓 (𝜖𝐻,𝜓0 | 𝐴, 𝑋, 𝑆) 𝑓 (𝐴 |

𝑋, 𝑆) 𝑓 (𝑋, 𝑆), where

𝜖𝐻,𝜓0 = 𝐻𝜓0 − E[𝐻𝜓0 | 𝑋, 𝑆] =𝑌 − 𝜇(𝑋, 𝑆) − {𝜏𝜑0 (𝑋) + (1 − 𝑆)𝜆𝜙0 (𝑋)}{𝐴 − 𝑒(𝑋, 𝑆)}, (11)

and 𝜃 is a infinite-dimensional nuisance parameter. The general geometric approach of Bickel et al.
(1993) to obtaining the efficient score requires deriving the nuisance tangent space Λ of 𝜃 and the
projection of the score function of 𝜓0 onto Λ⊥, the orthogonal complement space of Λ. This task is non-
trivial because Assumption 1 imposes restrictions on 𝜓0 by (10) or equivalently E[𝜖𝐻,𝜓0 | 𝐴, 𝑋, 𝑆] = 0.
To resolve this challenge, following Robins (1994), we will translate the restrictions directly into the
observed data likelihood function, leading to an unconstrained likelihood function of 𝜓0, see (21), and
finally the efficient score 𝑆𝜓0 (𝑉). A detailed roadmap and relevant propositions are provided in §8.1 to
illustrate the derivation.

Theorem 1 (Semiparametric efficient score of 𝜓0). Suppose Assumptions 1 and 2 hold. The efficient
score of 𝜓0 is

𝑆𝜓0 (𝑉) =
���

𝜕𝜏𝜑0 (𝑋)

𝜕𝜑

(1 − 𝑆)
𝜕𝜆𝜙0 (𝑋)

𝜕𝜙

��	
(
𝐴 − E [𝐴𝑊 | 𝑋, 𝑆] E[𝑊 | 𝑋, 𝑆]−1

)
𝑊𝜖𝐻,𝜓0 , (12)

where 𝑊 = {𝜎2
𝐴(𝑋, 𝑆)}

−1, and 𝑉eff = (E[𝑆𝜓0 (𝑉)𝑆
T
𝜓0
(𝑉)])−1 is the semiparametric efficiency bound.

Theorem 1 provides a benchmark for gauging the efficiency of estimators of 𝜓0. The efficient score
in (12) depends on the unknown distribution through the nuisance functions 𝜗 = (𝑒, 𝜇, 𝜎2

𝑎), indicat-
ing 𝑒(𝑋, 𝑆), 𝜇(𝑋, 𝑆), and 𝜎2

𝑎 (𝑋, 𝑆), respectively. To facilitate the estimation of 𝜓0, we approximate
the nuisance functions by flexible semiparametric or nonparametric models and solve the estimating
equation of 𝜓0 with the approximated nuisance functions based on the observed data. The variance
function 𝜎2

𝑎 (𝑋, 𝑆) can be estimated by fitting a model for log{𝑌𝑖 − 𝜇𝑎 (𝑋𝑖 , 𝑆𝑖)}
2 against 𝑋𝑖 , separately

for the treatment group and data source, and transforming the fitted models to the exponential scale.
In the simulation study, we adopt the super learner (Van der Laan, Polley and Hubbard, 2007), with
the candidate learners including generalized linear models, generalized additive models, and multi-
variate adaptive regression splines, which can be carried out using off-the-shelf software, e.g., the
“SuperLearner” function with specified algorithms in R. To emphasize the dependence on the nui-
sance functions 𝜗, we write 𝑆𝜓 (𝑉) in (12) as 𝑆𝜓 (𝑉 ;𝜗). The proposed estimator 𝜓 = (𝜑T, 𝜙T)T solves
P𝑁 𝑆𝜓 (𝑉 ;𝜗) = 0 with 𝑒(𝑋, 𝑆), 𝜇(𝑋, 𝑆), and 𝜎2

𝑎 (𝑋, 𝑆) replaced by their estimators �̂�(𝑋, 𝑆), 𝜇(𝑋, 𝑆),
and �̂�2

𝑎 (𝑋, 𝑆), respectively.
The decomposition (11) has been utilized in different contexts, including partially linear models

(Robinson, 1988, Chernozhukov et al., 2018b), structural nested mean models (Robins, 2004, Yang,
2022), causal random forest (Athey, Tibshirani and Wager, 2019), and R-learner of the HTE (Nie and
Wager, 2021). This particular formulation leads to a desirable statistical property of 𝑆𝜓0 (𝑉) known as
Neyman orthogonality, which in turn results in the rate-double robustness property of 𝜓 concerning
�̂�(𝑋, 𝑆) and 𝜇(𝑋, 𝑆). In the next section, we will delve further into studying this property.
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4. Asymptotic property

4.1. Robustness to slower rates for nuisance functions

To protect the estimator from model misspecification, suppose 𝜗 = (�̂�, 𝜇, �̂�2
𝑎) include general semi-

/non-parametric estimators �̂�(𝑋, 𝑆), 𝜇(𝑋, 𝑆), and �̂�2
𝑎 (𝑋, 𝑆). Let 𝜗0 be the probability limit of 𝜗.

For a vector 𝑣, we use ‖𝑣‖2 = (𝑣�𝑣)1/2 to denote its Euclidean norm. For a function 𝑔(𝑉), denote
P𝑔(𝑉) =

∫
𝑔(𝑣)dP(𝑣) and the 𝐿2-norm ‖𝑔(𝑉)‖ =

{∫
𝑔(𝑣)2dP(𝑣)

}1/2. For simplicity of the exposition,
we assume the sample size ratio 𝑛/𝑚 → 𝑝 ∈ (0,1), as 𝑛 → ∞, so that the asymptotic regime is the
same for 𝑛→∞, 𝑚 →∞ or 𝑁 = 𝑛 +𝑚 →∞. We discuss the case with 𝑛/𝑚→ 0 in Remark 1. Suppose
that ‖�̂�(𝑋, 𝑆) − 𝑒(𝑋, 𝑆)‖ = 𝑜P(𝑁

−𝛼𝑒 ) and ‖𝜇(𝑋, 𝑆) − 𝜇(𝑋, 𝑆)‖ = 𝑜P(𝑁
−𝛼𝜇 ). The following theorem

summarizes the regularity conditions and asymptotic properties of 𝜓. The proof is relegated to §8.2.

Theorem 2 (Rate-double robustness). Suppose the assumptions in Theorem 1 hold. Assume further
the following regularity conditions hold:

Condition 1. 𝜓0 is the unique solution to P𝑆𝜓 (𝑉 ;𝜗0) = 0, and for any sequence 𝜓𝑛, | |P𝑆𝜓𝑛 (𝑉 ;
𝜗0) | |2 → 0 implies | |𝜓𝑛 − 𝜓0 | |2 → 0.

Condition 2. (i) P𝑁 𝜕𝑆𝜓 (𝑉 ;𝜗)/𝜕𝜓 exists and converges uniformly for 𝜓 and 𝜗 in the neighborhoods
of their true values, and (ii) Ψ = E[𝜕𝑆𝜓0 (𝑉 ;𝜗0)/𝜕𝜓] is non-singular.

Condition 3. 𝑆𝜓0 (𝑉 ;𝜗) and 𝑆𝜓0 (𝑉 ;𝜗0) belong to a Donsker class of functions (van der Vaart and
Wellner, 1996).

Condition 4. |𝜕𝜏𝜑0 (𝑋)/𝜕𝜑
T |, |𝜕𝜆𝜙0 (𝑋)/𝜕𝜙

T |, and {�̂�2
𝑎 (𝑋, 𝑆)}

−1 are uniformly bounded.

Condition 5. The convergence rates of �̂�(𝑋, 𝑆) and 𝜇(𝑋, 𝑆) satisfy 𝛼𝑒 ≥ 1/4 and 𝛼𝑒 + 𝛼𝜇 ≥ 1/2.

Then, we have | |𝜓 − 𝜓0 | | = 𝑜P(1), and

𝑁1/2 (𝜓 − 𝜓0) →N
{
0,ΣΨ0 = (Ψ−1)TE[𝑆𝜓0 (𝑉 ;𝜗0)

⊗2]Ψ−1} , (13)

in distribution, as 𝑁 →∞. Moreover, if
∑1

𝑎=0 | |�̂�
2
𝑎 (𝑋, 𝑆) −𝜎2

𝑎 (𝑋, 𝑆) | | = 𝑜P(1), the asymptotic variance
of 𝜓 achieves the semiparametric efficiency bound 𝑉eff in Theorem 1.

We discuss the implications of the regularity conditions. Condition 1 is the identifiability condition.
Condition 2 is standard in the Z-estimation literature (van der Vaart, 2000). The Donsker class condi-
tion in Condition 3 requires that the nuisance functions should not be too complex without imposing
independence between the estimated nuisance functions and the data. We refer the interested readers to
§4.2 of Kennedy (2016) for a thorough discussion of Donsker classes of functions. Relaxing this condi-
tion is possible by using the sample splitting and cross fitting technique for estimation (Chernozhukov
et al., 2018b). See §S7.2 in the supplementary material for technical details and empirical evidence.
Condition 5 requires �̂�(𝑋, 𝑆) and 𝜇(𝑋, 𝑆) to converge to 𝑒(𝑋, 𝑆) and 𝜇(𝑋, 𝑆) at the rates that make the
remaining term in the empirical process negligible; namely,

| |P𝑆𝜓0 (𝑉 ;𝜗) | |2 
 ||�̂�(𝑋, 𝑆) − 𝑒(𝑋, 𝑆) | | × {| |𝜇(𝑋, 𝑆) − 𝜇(𝑋, 𝑆) | | + | |�̂�(𝑋, 𝑆) − 𝑒(𝑋, 𝑆) | |}

= 𝑜P(𝑁
−1/2),
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where “𝐴 
 𝐵” denote that 𝐴 is bounded by a constant times 𝐵. Thus, the convergence rate of �̂�(𝑋, 𝑆)
should be 𝑜P(𝑁

−1/4), and the convergence rate of 𝜇(𝑋, 𝑆) combined with that of �̂�(𝑋, 𝑆) should be
𝑜P(𝑁

−1/2). In general, there exist different combinations of convergence rates of �̂�(𝑋, 𝑆) and 𝜇(𝑋, 𝑆)
that result in a negligible error bound accommodating different smoothness conditions of the underly-
ing true nuisance functions, leading to the “rate-double robustness” of 𝜓. This result differs from the
mixed bias property of influence functions in Rotnitzky, Smucler and Robins (2021). However, Condi-
tion 5 appears similarly in the R-learner of Nie and Wager (2021) due to the similar residual formulation
as mentioned in §3.

Importantly, the consistency and asymptotic normality of 𝜓 do not require �̂�2
𝑎 (𝑋, 𝑆) to be consistent

for 𝜎2
𝑎 (𝑋, 𝑆) but the efficiency of 𝜓 does. For variance estimation of 𝜓, we approximate the variance

formula in (13) by replacing the analytical components with their estimated counterparts, and the ex-
pectations with the empirical averages.

Remark 1. The asymptotic covariance matrix of the HTE estimator 𝜑, denoted by Σ𝜑0 , can be ob-
tained from the upper 𝑝1 × 𝑝1 block of Σ𝜓0 . This matrix allows us to investigate the impact of the
distribution of 𝑆 on 𝜓 and the potential efficiency gain due to data integration. Toward this end, define

𝑟2
𝐴 =

(
𝐴 − E [𝐴𝑊 | 𝑋, 𝑆] E[𝑊 | 𝑋, 𝑆]−1

)2
𝑊 ,

Γ1,rct = E

[
𝑆

{
𝜕𝜏𝜑0 (𝑋)

𝜕𝜑

}⊗2

𝑟2
𝐴

]
, Γ12 = E

[
(1 − 𝑆)

𝜕𝜏𝜑0 (𝑋)

𝜕𝜑

𝜕𝜆𝜙0 (𝑋)

𝜕𝜙T
𝑟2
𝐴

]
,

Γ1,rwd = E

[
(1 − 𝑆)

{
𝜕𝜏𝜑0 (𝑋)

𝜕𝜑

}⊗2

𝑟2
𝐴

]
, Γ2 = E

[
(1 − 𝑆)

{
𝜕𝜆𝜙0 (𝑋)

𝜕𝜙

}⊗2

𝑟2
𝐴

]
.

Using these notations and some algebra (§S3 of the supplementary material), we have Σ𝜑0 =(
Γ1,rct + Γ1,rwd − Γ12Γ−1

2 ΓT
12

)−1
. We then obtain a general result that holds even when 𝑛/𝑚→ 0:

𝑁1/2 (Γ1,rct + Γ1,rwd − Γ12Γ
−1
2 ΓT

12)
1/2 (𝜑 − 𝜑0) →N(0, 𝐼𝑝1×𝑝1),

where 𝐼𝑝1×𝑝1 is a 𝑝1 × 𝑝1 identity matrix.
The result sheds light on the advantages of using observational studies for possible efficiency gains

in treatment effect estimation. The components Γ1,rct and Γ1,rwd − Γ12Γ−1
2 ΓT

12 in the precision matrix
of 𝜑 depend on the trial sample (𝑆 = 1) and the observational sample (𝑆 = 0), respectively. If Γ1,rwd −

Γ12Γ−1
2 ΓT

12 is nonzero, the precision of 𝜑 is improved by using the observational sample. The next
subsection establishes the conditions for achieving efficiency gains through the use of observational
studies.

4.2. Efficiency gain of the treatment effect estimation by using the
observational studies

We now discuss the advantages of data integration. The trial data grant a consistent estimator of 𝜑0. Un-
der Assumptions 1 and 2, following the same strategy in §3 for the trial sample, the efficient score of 𝜑0
is 𝑆rct,𝜑0 (𝑉 ;𝜗) = 𝑆{𝜕𝜏𝜑0 (𝑋)/𝜕𝜑}(𝐴 −E [𝐴𝑊 | 𝑋, 𝑆] E[𝑊 | 𝑋, 𝑆]−1)𝑊𝜖𝐻,𝜓0 . Then, the trial estimator
𝜑rct can be obtained by solving 𝑃𝑁 𝑆rct,𝜑 (𝑉 ;𝜗) = 0.

Theorem 3 shows that combining trial and observational studies has the advantage of gaining effi-
ciency in the estimation of 𝜑0.
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Theorem 3 (Efficiency gain by combining trial and observational studies). Suppose the assump-
tions in Theorem 2 hold. The asymptotic variance of 𝜑 is equal to or less than the asymptotic variance
of 𝜑rct, where the equality holds if

𝜕𝜏𝜑0 (𝑋𝑖)

𝜕𝜑
= 𝑀

𝜕𝜆𝜙0 (𝑋𝑖)

𝜕𝜙
(14)

for some constant matrix 𝑀 . Moreover, the gain in the asymptotic precision, i.e., the inverse of the
asymptotic variance, is

{var𝑎 (𝜑)}−1 − {var𝑎 (𝜑rct)}
−1 =𝑚 ×

(
Ω𝜑𝜑 −Ω𝜑𝜙Ω

−1
𝜙𝜙Ω

T
𝜑𝜙

)
≥ 0, (15)

where var𝑎 denotes the asymptotic variance, Ω𝑎𝑏 is a covariance matrix for 𝑎, 𝑏 ∈ {𝜑, 𝜙}, and recalling
𝑚 is the sample size of the observational study.

Exact expressions of Ω𝑎𝑏 for 𝑎, 𝑏 ∈ {𝜑, 𝜙} are provided in the supplementary material. To gain intu-
ition about Theorem 3, it is helpful to discuss two scenarios. If 𝜆𝜙0 (𝑋) is known, 𝑆𝜓 (𝑉 ;𝜗) uses the ad-
ditional observational data (1− 𝑆){𝜕𝜏𝜑 (𝑋)/𝜕𝜑}(𝐴−E [𝐴𝑊 | 𝑋, 𝑆] E[𝑊 | 𝑋, 𝑆]−1){𝜎2

𝐴(𝑋, 𝑆)}
−1𝜖𝐻,𝜓

for estimating 𝜑0, comparing with 𝑆rct,𝜑 (𝑉 ;𝜗); therefore, 𝜑 gains precision over 𝜑rct. Next, because
𝜆𝜙0 (𝑋) is unknown, the estimation of 𝜙0 and 𝜑0 competes for the information in the observational
study. When (14) holds, the terms in 𝜆𝜙0 (𝑋) and that in 𝜏𝜑0 (𝑋) are collinear, and all observational
data are used to estimate 𝜙0. In this case, 𝜓 and 𝜓rct have the same asymptotic precision. When (14)
does not hold, the terms in 𝜆𝜙0 (𝑋) and that in 𝜏𝜑0 (𝑋) are not entirely linearly dependent, and the
observational data are used to estimate both 𝜙0 and 𝜑0. In this case, 𝜓 gains precision over 𝜓rct, the
magnitude of the gain increases with the observational sample size.

Remark 2. The integrative framework shows the efficiency benefits of combining the trial and ob-
servational samples over using only the trial sample under Assumptions 1 and 2. Drawn on the semi-
parametric theory, the projection parameter (𝜑0, 𝜙0) results from a projection of the structural models
on a constrained model space, enjoys good theoretical properties in terms of consistency and asymp-
totic efficiency, and is identical to the true model parameters when the posited parametric models are
correct. If the underpinning assumptions for the observational sample are violated, potential biases
may offset the efficiency benefits. Thus, it is important to scrutinize the required assumptions in prac-
tice.

When the putative models for 𝜏(𝑋) and 𝜆(𝑋) are misspecified, 𝜏𝜑0 (𝑋) and 𝜆𝜙0 (𝑋) are dif-
ferent from the true estimands, and thus the estimators are biased for 𝜏(𝑋) and 𝜆(𝑋). However,
𝜏𝜑0 (𝑋) and 𝜆𝜙0 (𝑋) can be interpreted as the best approximations of 𝜏(𝑋) and 𝜆(𝑋) in the sense
of

(𝜑0, 𝜙0) = arg min
𝜑,𝜙

E𝑊 [𝜔(𝑋, 𝑆) [𝜏(𝑋) − 𝜏𝜑 (𝑋) + (1 − 𝑆){𝜆(𝑋) − 𝜆𝜙 (𝑋)]
2],

where E𝑊 [𝑔(𝑉) | 𝑋, 𝑆] = E[𝑔(𝑉)𝑊 | 𝑋, 𝑆]/E[𝑊 | 𝑋, 𝑆] for any 𝑔(𝑉) and 𝜔(𝑋, 𝑆) = E𝑊 [𝐴 | 𝑋, 𝑆] (1−
E𝑊 [𝐴 | 𝑋, 𝑆]) is the overlap weight (Li, Morgan and Zaslavsky, 2018); see a proof in §S2. Additional
simulations under model misspecification of 𝜏(𝑥) and 𝜆(𝑥) are provided in §S7.3 of the supplementary
material, which confirms the above statement.

In practice, a goodness-of-fit test can also be developed to assess the adequacy of the structural
models using over-identification restrictions; see Yang and Lok (2016) and also §S4.



2998 Yang, Liu, Zeng and Wang

5. Improve average treatment effect estimation
The HTE characterizes individual variations of the treatment effect, while the average treatment effect
𝜏0 summarizes the treatment effect for the target patient population at large. Because the trial assigns
treatments randomly to the participants, 𝜏𝜑0 (𝑋) is identifiable and can be estimated. However, due to
the inclusion and exclusion criteria for recruiting patients, the patient composition in the trial may be
different from the target population; i.e., 𝑓 (𝑋 | 𝑆 = 1) is different from 𝑓 (𝑋) in general. Consequently,
E[𝜏𝜑0 (𝑋) | 𝑆 = 1] is different from 𝜏0, and the estimator using the trial data only is biased of 𝜏0 gener-
ally. On the other hand, the observational sample is conceivably more representative of the real patient
population because of the real-world data collection mechanisms.

Assumption 3. 𝑓 (𝑋 | 𝑆 = 0) = 𝑓 (𝑋).

We allow the support of 𝑓 (𝑋 | 𝑆 = 1) and 𝑓 (𝑋) to be different, and hence we allow the trial sample
and the observational sample to have non-overlapping covariate distributions.

A byproduct of the proposed framework is the identification of 𝜏0.

Proposition 3 (Identification of 𝜏0). Under Assumptions 1 and 3, 𝜏0 is identified by 𝜏0 = E[𝜏(𝑋)] =
E[𝜏(𝑋) | 𝑆 = 0], where 𝜏(𝑋) is identified by (1).

The semiparametric efficient score of 𝜏0 is presented in the following theorem.

Theorem 4. Suppose Assumptions 1–3 hold. The semiparametric efficient score of 𝜏0 is

𝑆𝜏0 (𝑉) =
1 − 𝑆

𝜋0
{𝜏𝜑0 (𝑋) − 𝜏0} + E

[
𝜕𝜏𝜑0 (𝑋)

𝜕𝜑T

���� 𝑆 = 0
]
𝑆𝜑0 (𝑉), (16)

where 𝜋0 = P(𝑆 = 0) and 𝑆𝜑0 (𝑉) is the efficient score of 𝜑0, i.e, the first 𝑝1 components of 𝑆𝜓0 (𝑉)
in (12).

Recall that 𝜑0 is the parameter in the HTE, 𝜙0 is the parameter in the confounding function, and
𝜓0 = (𝜑T

0, 𝜙
T
0)

T is the combined vector of parameters. From (12), 𝑆𝜑0 (𝑉) depends on 𝜙0 in general.
Although 𝜏0 depends only on 𝜑0 in 𝜏𝜑0 (𝑋), 𝑆𝜏0 (𝑉) can depend on 𝜙0 through 𝑆𝜑0 (𝑉). From Theo-
rem 4, the observational sample not only provides a representative covariate distribution of the target
population but also can contribute to the estimation efficiency of 𝜏0. Under Assumptions 1 and 3, one
can derive the nonparametric efficiency score of 𝜏0. However, this approach solely utilizes the covariate
distribution from the observational sample to adjust for the selection bias present in the trial sample,
without incorporating outcome data from the observational sample.

Once we obtain 𝜑, a simple plug-in estimator of 𝜏0 is �̂� = 𝑚−1∑𝑁
𝑖=1(1 − 𝑆𝑖)𝜏𝜑 (𝑋𝑖). The following

theorem shows the rate-double robustness and local efficiency of �̂�.

Theorem 5. Suppose the assumptions in Theorem 2 and Assumption 3 hold. Then,

𝑁1/2 (�̂� − 𝜏0) →N
(
0,𝑉𝜏0

)
, (17)

in distribution, as 𝑁 →∞, where

𝑉𝜏0 =
1
𝜋0

var
[
𝜏𝜑0 (𝑋) | 𝑆 = 0

]
+ΨT

0Ψ
−1,TE[𝑆𝜓0 (𝑉 ;𝜗0)

⊗2]Ψ−1Ψ0,

and Ψ0 = E[𝜕𝜏𝜑0 (𝑋)/𝜕𝜑 | 𝑆 = 0]. Moreover, the asymptotic variance of �̂� achieves the semiparametric
efficiency bound.
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6. Simulation study

We conduct a simulation study to evaluate the finite sample performance of the proposed estimators
of the HTE and 𝜏0. We follow a similar strategy in Kallus, Puli and Shalit (2018) to generate the data.
We first generate the trial data with sample size 𝑛 = 1000. For the trial sample, we sample the covari-
ates 𝑋 from the superpopulation, where 𝑋 𝑗 ∼ N(0,1) and 𝑗 = 1, . . . ,5, with the sampling probability
𝑝(𝑋), where logit{𝑝(𝑋)} = 𝑋1/2 − 𝑋2, to characterize a difference between the patient composition
in the trial and the target population, and we generate 𝐴 | (𝑋, 𝑆 = 1) ∼Ber(0.5) and 𝑌 (𝑎) | (𝑋, 𝑆 =
1) = 𝑎𝜏(𝑋) + (𝑋1 + 𝑋2𝑋3/4− 𝑋4𝑋5/4) + exp(𝑋1/4 − 𝑋2/4)𝜖 (𝑎), where 𝜏(𝑋) = 1 + 𝑋1 + 𝑋2

1 + 𝑋2 + 𝑋2
2

and 𝜖 (𝑎) ∼ N(0,1), for 𝑎 = 0,1. We then generate the observational data with sample size 𝑚 = 5000.
We sample the covariates 𝑋 directly from the superpopulation, where 𝑋 𝑗 ∼ N(0,1) and 𝑗 = 1, . . . ,5,
and we generate 𝐴 | (𝑋, 𝑆 = 0) ∼ Ber{𝑒(𝑋,0)}, where logit{𝑒(𝑋,0)} = −(𝑋1𝑋2/3 + 𝑋3𝑋4/3 − 𝑋5),
and 𝑌 (𝑎) | (𝑋, 𝑆 = 0) = 𝑎𝜏(𝑋) + (𝑋1 + 𝑋2𝑋3/4 − 𝑋4𝑋5/4) + (𝑋T𝛽)𝑈 + exp(𝑋1/4 − 𝑋2/4)𝜖 (𝑎), where
𝑈 is a latent variable and 𝜖 (𝑎) ∼ N(0,1), for 𝑎 = 0,1. We generate 𝑈 according to a pattern mix-
ture model 𝑈 | (𝑋, 𝐴, 𝑆 = 0) ∼ N(𝐴 − 1/2,1), and thus the confounding function is 𝜆(𝑋) = 𝜇1 (𝑋, 𝑆 =
0) − 𝜇0(𝑋, 𝑆 = 0) − 𝜏(𝑋) = 𝑋T𝛽. We consider two settings: Setting 1 with 𝛽 = 0 × (1, . . . ,1)T, in
which 𝑈 does not confound the relationship between 𝐴 and 𝑌 , and Setting 2 with 𝛽 = (1, . . . ,1)T,
such that 𝑈 is an unmeasured confounder of 𝐴 and 𝑌 . We consider four estimators: i) 𝜑rct using
only the randomized controlled trial data, ii) 𝜑meta, meta-analysis of the combined trial and ob-
servational studies by regressing the inverse probability of treatment weighting adjusted outcome
𝑌

adj
𝑖 = {�̂�(𝑋𝑖 , 𝑆𝑖)}

−1𝐴𝑖𝑌𝑖 − {1 − �̂�(𝑋𝑖 , 𝑆𝑖)}
−1(1 − 𝐴𝑖)𝑌𝑖 on (1, 𝑋1, 𝑋

2
1 , 𝑋2, 𝑋

2
2 ), iii) 𝜑, the proposed

integrative estimator with the correctly specified variance model estimated by the linear regression,
and iv) 𝜑v1, the integrative estimator with the misspecified variance model estimated by 1. The ra-
tionale for 𝜑meta is that it uses weighting adjusting for measured confounders and in the absence
of unmeasured confounders, E[𝑌 adj

𝑖 | 𝑋𝑖 , 𝑆𝑖] = 𝜏𝜑0 (𝑋𝑖). For all estimators, we estimate the nuisance
functions via the super learner, including candidate learners as generalized linear models, generalized
additive models, and multivariate adaptive regression splines. The 95% confidence interval is calcu-
lated via parametric-t wild bootstrap as

(
𝜏𝜑 (𝑥) − 𝑐∗V̂1/2{𝜏𝜑 (𝑥)}, 𝜏𝜑 (𝑥) + 𝑐∗V̂1/2{𝜏𝜑 (𝑥)}) at some

specific values of 𝑥, where 𝑐∗ is the 95% quantile of the bootstrap t-values
{
|𝑇∗(𝑏) | : 𝑏 = 1, · · · , 𝐵

}
and

𝑇∗(𝑏) =
{
𝜏𝜑 (𝑏) (𝑥) − 𝜏𝜑 (𝑥)

}/
V̂

1/2{𝜏𝜑 (𝑏) (𝑥)
}

in each bootstrap iteration. We select the bootstrap size
𝐵 = 500.

Table 1 reports results for point estimation for 𝜏(𝑥) at various values of 𝑥 and 𝜏0, where Integra-
tive denotes the integrative estimator 𝜏𝜑 (𝑥) and Integrative0 denotes 𝜏𝜑v1 (𝑥). In Setting 1 without
unmeasured confounding in the observational study, 𝜏𝜑meta (𝑥) shows bias due to the use of the flexible
modeling strategy to approximate the propensity score. Among all the estimators, 𝜏𝜑 (𝑥) has a smaller
variance than 𝜏𝜑meta (𝑥) by capitalizing on semiparametric efficiency theory; 𝜏𝜑 (𝑥) has a smaller vari-
ance than 𝜏𝜑rct (𝑥) by leveraging the confounding function in the observational study. Although 𝜏𝜑v1 (𝑥)
preserves consistency, its variation is larger than 𝜏𝜑 (𝑥), indicating a loss of efficiency due to the vari-
ance model misspecification. In Setting 2 with unmeasured confounding in the observational study,
𝜏𝜑meta (𝑥) assuming no unmeasured confounding is biased for 𝜏(𝑥), due to the unmeasured confounding
biases in the observational study, 𝜏𝜑rct (𝑥), 𝜏𝜑 (𝑥), and 𝜏𝜑v1 (𝑥) remain unbiased for 𝜏(𝑥), and 𝜏𝜑 (𝑥) has
improved efficiency over 𝜏𝜑rct (𝑥) and 𝜏𝜑v1 (𝑥). From Table 2, the empirical coverage rates for 𝜏𝜑 (𝑥)
and 𝜏𝜑v1 (𝑥) in both settings with and without unmeasured confounding in the observational study are
close to the nominal level. For 𝜏0, 𝜏rct is biased when using only the trial data, as the covariate distri-
bution in the trial is different from that in the target population. In contrast, the integrative estimators
are consistent by leveraging the representativeness of the covariate distribution in the observational
sample.
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Table 1. Simulation results for point estimation under two settings with and without unmeasured confounding in
the observational study, where the biases are scaled by 10−2 and the variances are scaled by 10−3.

Meta RCT Integrative Integrative0 Meta RCT Integrative Integrative0
Bias Var Bias Var Bias Var Bias Var Bias Var Bias Var Bias Var Bias Var

Setting 1 (without unmeasured confounding in the observational study)
𝜏 (−3, 0) −49 1024 −4 638 4 203 6 262 𝜏 (0, −3) 110 703 4 828 5 227 3 279
𝜏 (−1.5, 0) −26 100 −1 79 −0 45 1 52 𝜏 (0, −1.5) 54 111 1 98 0 50 −0 58
𝜏 (1.5, 0) 22 100 1 79 2 45 1 52 𝜏 (0, 1.5) −59 111 2 98 2 50 2 58
𝜏 (3, 0) 48 1024 0 638 8 203 7 262 𝜏 (0, 3) −116 703 6 828 8 227 8 279
𝜏 (0, 0) −2 14 0 22 −1 13 −1 14 𝜏0 −2 5 60 17 1 13 1 13

Setting 2 (with unmeasured confounding in the observational study)
𝜏 (−3, 0) −324 1060 −4 638 4 203 7 266 𝜏 (0, −3) −95 691 4 828 5 227 3 282
𝜏 (−1.5, 0) −157 107 −1 79 −0 44 1 52 𝜏 (0, −1.5) −59 108 1 98 0 50 −0 58
𝜏 (1.5, 0) 141 107 1 79 2 44 1 52 𝜏 (0, 1.5) 79 108 2 98 2 50 2 58
𝜏 (3, 0) 272 1060 0 638 8 203 7 266 𝜏 (0, 3) 182 691 6 828 8 227 8 282
𝜏 (0, 0) −1 15 0 22 −1 13 −1 14 𝜏0 1 6 60 17 1 13 1 13

7. Real data application

We apply the proposed estimators to evaluate the effect of adjuvant chemotherapy for early-stage re-
sected non-small-cell lung cancer using the CALGB 9633 trial data and a large clinical oncology
observational database – the national cancer database. The CALGB 9633 trial used a set of patient
eligibility criteria, including disease stage, age, performance status, resection methods, to enroll pa-
tients. In the trial sample, 319 patients were randomly assigned to observation versus chemotherapy,
resulting 163 on observation, 𝐴 = 0, and 156 on chemotherapy, 𝐴 = 1. The same set of patient eligi-
bility criteria defines the target patient population and is used to select the comparable patients in the
national cancer database. The comparable observational sample consists of 15166 patients diagnosed

Table 2. Simulation results for variance estimation and coverage rate for the integrative estimator under two
settings with and without unmeasured confounding in the observational study, where the variances are scaled by
10−3 and the coverage rates are scaled by 10−2.

Integrative Integrative0 Integrative Integrative0
Var CVG Var CVG Var CVG Var CVG

Setting 1 (without unmeasured confounding in the observational study)
𝜏(−3, 0) 203 93.3 262 93.1 𝜏(0,−3) 227 94.4 279 93.9
𝜏(−1.5, 0) 45 94.8 52 94.3 𝜏(0,−1.5) 50 95.1 58 94.7
𝜏(1.5, 0) 45 93.2 52 94.4 𝜏(0, 1.5) 50 93.5 58 93.4
𝜏(3, 0) 203 94.1 262 93.1 𝜏(0, 3) 227 93.5 279 93.4
𝜏(0, 0) 13 92.6 14 94.2 𝜏0 13 93.9 13 93.6

Setting 2 (with unmeasured confounding in the observational study)
𝜏(−3, 0) 203 93.0 266 92.8 𝜏(0,−3) 227 94.7 282 94.3
𝜏(−1.5, 0) 44 95.0 52 94.1 𝜏(0,−1.5) 50 95.2 58 94.6
𝜏(1.5, 0) 44 93.6 52 94.6 𝜏(0, 1.5) 50 93.1 58 93.3
𝜏(3, 0) 203 94.0 266 93.0 𝜏(0, 3) 227 92.9 282 93.0
𝜏(0, 0) 13 93.8 14 93.8 𝜏0 13 93.6 13 93.6
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Table 3. Sample sizes and covariate means by 𝐴 in the trial and observational samples.

Age Tumor Size Sex Histology Race
(1 = Male) (1 = Squamous) (1 = White)

𝑁 𝐴 (years) (cm) (1/0) (1/0) (1/0)

Trial 156 𝐴 = 1 60.6 4.62 64.1% 40.4% 90.4%
163 𝐴 = 0 61.1 4.57 63.8% 39.3% 88.3%

Observational study 4263 𝐴 = 1 63.9 5.19 54.3% 35.6% 88.6%
10903 𝐴 = 0 69.4 4.67 54.8% 40.5% 90.0%

with the same disease between years 2004 – 2016 in stage IB disease with 10903 on observation and
4263 received chemotherapy after surgery. As the treatments for the trial patients were randomly as-
signed and the treatments for the observational patients were chosen by physicians and patients, the
numbers of treated and controls are relatively balanced in the trial sample while they are unbalanced in
the observational sample. The outcome 𝑌 is the indicator of cancer recurrence within three years after
the surgery.

We are interested in estimating the heterogeneous treatment effects of chemotherapy varying by tu-
mor size. The original trial analysis did not show any clinical improvement for chemotherapy, possibly
because of its small sample size (Strauss et al., 2008). Some exploratory analysis, however, showed
that tumor size might modify the treatment effect and that patients with larger tumor sizes may benefit
more from the chemotherapy (Strauss et al., 2008, Speicher et al., 2015, Morgensztern et al., 2016).
Thus, we formulate the HTE of interest to be 𝜏𝜑 (𝑋) = 𝜑1 + 𝜑2tumor size∗ + 𝜑3 (tumor size∗)2, where
tumor size∗ standardizes tumor size by subtracting the mean 4.8 and dividing the standard error 1.7,
and 𝜑 = (𝜑1, 𝜑2, 𝜑3)

T. In the analysis, we include five covariates to adjust for in both samples: age,
tumor size, sex, histology, and race, and we use generalized additive models for approximating the
nuisance functions. Table 3 reports the covariate means by treatment group in the two samples. Due
to treatment randomization, all covariates are balanced between the treated and the control in the trial
sample. While due to a lack of treatment randomization, some covariates are highly unbalanced in
the observational sample. It can be seen that older patients with smaller tumor sizes and histology are
likely to choose a conservative treatment, on observation. Moreover, we cannot rule out the possibil-
ity of unmeasured confounders in the observational sample. To formulate the confounding function,
possible unmeasured confounders include disease status at diagnosis, financial status, and accessibility
to health care facilities that affect the decision of receiving adjuvant chemotherapy after surgery and
clinical outcomes (Speicher et al., 2015, Yang et al., 2016, Morgensztern et al., 2016, Speicher et al.,
2017). The linear confounding function 𝜆𝜙 (𝑋) includes age, tumor size, gender, race, histology, Charl-
son co-morbidity score, income level, insurance coverage, and travel range to large health care facilities
as predictors.

We compare the trial, Meta, and integrative estimators. Figure 2 displays the estimated treatment ef-
fect as a function of tumor size∗. Table 3 reports the results for Tian et al. (2014) the estimated parame-
ters. Due to the small sample size, the trial estimator is not statistically significant. By pooling all infor-
mation from the trial and observational sample, the Meta and integrative estimators gain efficiency and
both show that the tumor size is a significant treatment effect modifier. Interestingly, the two combining
approaches produce different conclusions. The difference between the Meta and integrative estimators
may be attributable to the no unmeasured confounding. The Meta estimators assume that there are no
unmeasured confounders, while the integrative estimators take into account the possible unmeasured
confounders in the observational sample. The results in the supplementary material show that age,
gender and histology are significant in the confounding function, suggesting that the no unmeasured
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Figure 2. Estimated treatment effect as a function of tumor size∗. The solid lines represent the estimators, and the
bands represent the solid lines ±1.96 standard errors of the estimators.

confounding assumption is not plausible in the observational sample. For the integrative estimator, we
carry out the over-identification restrictions test to assess the goodness-of-fit of 𝜏𝜓 (𝑋) and 𝜆𝜙 (𝑋). The
test is directed at the alternative model specifications 𝜏alt

𝜓 (𝑋) = a quadratic function of age∗ and tumor
size∗, and 𝜆alt

𝜙 (𝑋) = 𝜆𝜙 (𝑋) augmented with (tumor size∗)2. The test statistics is 5.5 with p-value 0.14
based on a 𝜒2

3 null reference distribution. Therefore, there is no strong evidence to reject the model
specifications of 𝜏𝜓 (𝑋) and 𝜆𝜙 (𝑋) in this application. From the integrative approach, chemotherapy
has significant benefits for patients with tumor size in [−0.71,1.2] × 1.7 + 4.8 = [3.6,6.8]cm.

8. Proofs of the main results

As Assumptions 1 and 2 induce the conditional moment restriction, it becomes crucial to take into
account such constraint when obtaining the semiparametric efficient score and assessing the asymptotic
properties of the integrative estimator. In this section, we provide a detailed derivation of 𝑆𝜓0 (𝑉)
in Theorem 1 and the rate-double robustness in Theorem 2. Those explorations establish the main
theoretical contribution of the paper.

8.1. Proof of Theorem 1

We present a roadmap and Propositions 4–6, whose proofs have been included in the supplementary
material, to facilitate the construction of the semiparametric efficient score 𝑆𝜓0 (𝑉) in Theorem 1.

8.1.1. A roadmap

We consider a regular asymptotically linear (RAL) estimator 𝜓 of 𝜓0:

𝑁1/2 (𝜓 − 𝜓0) = 𝑁−1/2P𝑁 IF(𝑉) + 𝑜P(1), (18)

where IF(𝑉) is the influence function of 𝜓, which has zero mean and finite and nonsingular variance. By
(18), the asymptotic variance of 𝑁1/2 (𝜓 − 𝜓0) is equal to the variance of IF(𝑉). Consider the Hilbert
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space H of all 𝑝-dimensional, mean-zero finite variance squared integrable functions of 𝑉 , ℎ(𝑉),
equipped with the covariance inner product < ℎ1, ℎ2 >= E[ℎ1 (𝑉)

Tℎ2 (𝑉)] and the L2-norm | |ℎ | |2 =
E[ℎ(𝑉)Tℎ(𝑉)] < ∞. To construct the efficient estimator for 𝜓0, we follow the geometric approach of
Bickel et al. (1993) to derive the semiparametric efficient score for 𝜓0 following the road map below.

The density function of a single variable 𝑉 = (𝐴, 𝑋,𝑌, 𝑆) is 𝑓 (𝑉) = 𝑓 (𝑌 | 𝐴, 𝑋, 𝑆) 𝑓 (𝐴 | 𝑋, 𝑆)
𝑓 (𝑋, 𝑆). The parameter of interest 𝜓0 satisfies restriction (10) with 𝐻 = 𝐻𝜓0 , and the nuisance parame-
ter is the nonparametric density functions 𝑓 (𝑌 | 𝐴, 𝑋, 𝑆), 𝑓 (𝐴 | 𝑋, 𝑆), and 𝑓 (𝑋, 𝑆). In order to incorpo-
rate restriction (10) into the likelihood function directly, we consider an equivalent re-parameterization,
and re-express the semiparametric likelihood function; see (21). Based on the likelihood function, we
characterize the nuisance tangent space Λ in the Hilbert space H ; see Proposition 4. We then express Λ
as a direct sum of orthogonal subspaces; see Proposition 5. This effort will be valuable in characteriz-
ing the orthogonal complement space of the nuisance tangent space Λ⊥, which consists of all influence
functions; see Proposition 6. The semiparametric efficient score of 𝜓0 is thus derived as the projection
of the score of 𝜓0 onto Λ⊥; see Theorem 1.

8.1.2. Re-parameterization of likelihood function

We consider an equivalent re-parameterization, in order to incorporate restriction (10) into the likeli-
hood function directly. Toward that end, we decompose 𝐻 as follows:

𝐻 = 𝐻 − E[𝐻 | 𝐴, 𝑋, 𝑆]︸������������������︷︷������������������︸
𝜖𝐻=𝜖𝐻 (𝐻,𝐴,𝑋,𝑆)

+E[𝐻 | 𝐴, 𝑋, 𝑆] − E[𝐻]︸�����������������������︷︷�����������������������︸
𝑄=𝑄 (𝐴,𝑋,𝑆)

+E[𝐻], (19)

where E[𝜖𝐻 | 𝐴, 𝑋, 𝑆] = 0, E[𝑄] = 0, and 𝜖𝐻 and 𝑄 are squared integrable. Note that “squared in-
tegrable” is a technical condition to ensure that the nuisance score vectors lie in the Hilbert space
H . Then, the semiparametric model defined by restriction (10) is equivalent to the following re-
parameterization

𝐻 = 𝜖𝐻 + 𝑞(𝑋, 𝑆) − E[𝑞(𝑋, 𝑆)] + E[𝐻], E [𝜖𝐻 | 𝐴, 𝑋, 𝑆] = 0. (20)

On the one hand, if restriction (10) holds, it implies 𝑄 depends only on (𝑋, 𝑆), but not on 𝐴. Because
E[𝑄] = 0, we can then express 𝑄 = 𝑞(𝑋, 𝑆) − E[𝑞(𝑋, 𝑆)] with 𝑞(𝑋, 𝑆) a squared integrable function
of (𝑋, 𝑆), so the re-parameterization (20) exists. On the other hand, if 𝐻 can be expressed in (20), 𝐻
satisfies the restriction (10).

We can write the likelihood function based on a single variable 𝑉 as

L(𝜓, 𝜃;𝑉) = 𝑓 (𝑌 | 𝐴, 𝑋, 𝑆) 𝑓 (𝐴 | 𝑋, 𝑆) 𝑓 (𝑋, 𝑆)

= 𝑓 (𝜖𝐻 | 𝐴, 𝑋, 𝑆) 𝑓 (𝐴 | 𝑋, 𝑆) 𝑓 (𝑋, 𝑆)
𝜕𝜖𝐻
𝜕𝑌

= 𝑓 (𝜖𝐻 | 𝐴, 𝑋, 𝑆) 𝑓 (𝐴 | 𝑋, 𝑆) 𝑓 (𝑋, 𝑆), (21)

where the last equality follows from

𝜖𝐻 = 𝑌 − {𝜏𝜑0 (𝑋) + (1 − 𝑆)𝜆𝜙0 (𝑋)}𝐴

−E[𝐻] −

{
𝑞(𝑋, 𝑆) −

∫
𝑞(𝑋, 𝑆) 𝑓 (𝑋, 𝑆)d𝜈(𝑋, 𝑆)

}
,

with 𝑞(𝑋, 𝑆) a nonparametric function of (𝑋, 𝑆). Because E[𝜖𝐻 | 𝐴, 𝑋, 𝑆] = 0, we require
∫
𝜖𝐻 𝑓 (𝜖𝐻 |

𝐴, 𝑋, 𝑆)d𝜈(𝜖𝐻 ) = 0, where 𝜈(·) is a generic measure. After re-parameterization, the nuisance parameter
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becomes the infinite dimensional set 𝜃 consisting of 𝑓 (𝜖𝐻 | 𝐴, 𝑋, 𝑆), 𝑓 (𝐴 | 𝑋, 𝑆), 𝑓 (𝑋, 𝑆), E[𝐻], and
𝑞(𝑋, 𝑆).

We assume all the regularity conditions to ensure the existence of the efficient score function of 𝜓0
are satisfied, which are mainly continuity conditions for the parameter and the semiparametric model;
e.g., we need 𝜓 = 𝜓(𝜃) to be pathwise differentiable with respect to 𝜃 (Bickel et al., 1993, Tsiatis, 2006).
These conditions are not restrictive for a typical application problem.

To distinguish nuisance parameters, we re-write the likelihood function as

L(𝜓0, 𝜃;𝑉) = 𝑓1(𝜖𝐻 | 𝐴, 𝑋, 𝑆) 𝑓5(𝐴 | 𝑋, 𝑆) 𝑓3(𝑋, 𝑆), (22)

where

𝜖𝐻 = 𝑌 − {𝜏𝜑0 (𝑋) + (1 − 𝑆)𝜆𝜙0 (𝑋)}𝐴 − 𝑐4 −

{
𝑞2(𝑋, 𝑆) −

∫
𝑞2 (𝑋, 𝑆) 𝑓3(𝑋, 𝑆)d𝜈(𝑋, 𝑆)

}
,

and 𝜃 = (𝜃1, . . . , 𝜃5) consists of the nuisance parameters 𝜃1 = 𝑓1(𝜖𝐻 | 𝐴, 𝑋, 𝑆), 𝜃2 = 𝑞2 (𝑋, 𝑆), 𝜃3 =
𝑓3(𝑋, 𝑆), 𝜃4 = 𝑐4, and 𝜃5 = 𝑓5(𝐴 | 𝑋, 𝑆). Then, 𝜖𝐻 = 𝜖𝐻 (𝜓0, 𝜃2, 𝜃3, 𝜃4) depends on the parameter of
interest 𝜓0 and the nuisance parameters (𝜃2, 𝜃3, 𝜃4). This order for indexing the nuisance parameters
makes the characterization of the nuisance tangent space easier.

Propositions 4 and 5 present the characterizations of the nuisance tangent space and its orthogonal
complement, respectively. The proofs are presented in §S1 of the supplementary material.

Proposition 4. The nuisance tangent space corresponding to 𝜃 = (𝜃1, . . . , 𝜃5) is

Λ = Λ(1) +Λ(2) +Λ(3) +Λ(4) +Λ(5) ,

where Λ( 𝑗 ) is the nuisance tangent space with respect to 𝜃 𝑗 , for 𝑗 = 1, . . . ,5. Define Λ∗ = {Γ∗ =
Γ∗(𝑋, 𝑆) ∈ R 𝑝 : E[Γ∗] = 0} and 𝑆𝜖 = 𝑆𝜖 (𝜖𝐻 , 𝐴, 𝑋, 𝑆) = 𝜕 log 𝑓1(𝜖𝐻 | 𝐴, 𝑋, 𝑆)/𝜕𝜖𝐻 ∈ R1 evaluated
at the truth. Then,

Λ(1) = {Γ (1) = Γ (1) (𝜖𝐻 , 𝐴, 𝑋, 𝑆) ∈ R 𝑝 : E[Γ (1) | 𝐴, 𝑋, 𝑆] = 0, and E[Γ (1)𝜖𝐻 | 𝐴, 𝑋, 𝑆] = 0},

Λ(2) = {Γ (2) = Γ (2) (𝜖𝐻 , 𝐴, 𝑋, 𝑆) = Γ (2) (Γ∗) = Γ∗𝑆𝜖 ∈ R 𝑝 : Γ∗ ∈ Λ∗},

Λ(3) = {Γ (3) = Γ (3) (𝜖𝐻 , 𝐴, 𝑋, 𝑆) = Γ (3) (Γ∗) = Γ∗ + E[𝑄Γ∗]𝑆𝜖 ∈ R 𝑝 : Γ∗ ∈ Λ∗},

Λ(4) = {𝑐𝑆𝜖 : 𝑆𝜖 = 𝑆𝜖 (𝜖𝐻 , 𝐴, 𝑋, 𝑆), 𝑐 ∈ R 𝑝},

Λ(5) =
{
Γ (5) = Γ (5) (𝐴, 𝑋, 𝑆) ∈ R 𝑝 : E[Γ (5) (𝐴, 𝑋, 𝑆) | 𝑋, 𝑆] = 0

}
.

Here and throughout in a slight abuse of notation, we use Γ (2) (·) and Γ (3) (·) as functions of
(𝜖𝐻 , 𝐴, 𝑋, 𝑆) and also as operators on Γ∗, but their meaning should be clear in the context.

Remark 3. It is important to note that Γ (5) (𝐴, 𝑋, 𝑆) with E[Γ (5) (𝐴, 𝑋, 𝑆) | 𝑋, 𝑆] = 0 is orthogonal to
all other subspaces in Λ.

For simplicity, we define the following notation.

Definition 1. Let

𝑊 =𝑊 (𝐴, 𝑋, 𝑆) = (var[𝜖𝐻 | 𝐴, 𝑋, 𝑆])−1, (23)

𝑇 = 𝑇 (𝑋, 𝑆) = E[𝑊 | 𝑋, 𝑆], (24)
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𝜖0 = 𝜖0(𝜖𝐻 , 𝐴, 𝑋, 𝑆) = E[𝑊 | 𝑋, 𝑆]−1𝑊𝜖𝐻 +𝑄, (25)

𝑇∗ = E[𝑇−1] = E[E[𝑊 | 𝑋, 𝑆]−1] . (26)

We now express Λ as a direct sum of orthogonal subspaces. This effort will be valuable in charac-
terizing the orthogonal complement space of the nuisance tangent space Λ⊥.

Proposition 5. The space Λ can be written as a direct sum of orthogonal subspaces:

Λ = Λ̃(1) ⊕ Λ̃(2) ⊕ Λ̃(3) ⊕ Λ̃(4) ⊕ Λ̃(5) , (27)

where ⊕ denotes a direct sum, and using the notation in Proposition 4 and Definition 1, Λ̃(1) = Λ(1) ,

Λ̃(2) =
{
Γ̃ (2) = Γ̃ (2) (Γ∗) = Γ∗𝑊𝜖𝐻 : Γ∗ ∈ Λ∗

}
, (28)

Λ̃(3) =
{
Γ̃ (3) = Γ̃ (3) (Γ∗) = Γ∗ − E[𝑄Γ∗] (𝑇∗𝑇)−1𝑊𝜖𝐻 : Γ∗ ∈ Λ∗

}
, (29)

Λ̃(4) =
{
Γ̃ (4) = 𝑐𝜖0 : 𝑐 ∈ R 𝑝

}
, (30)

Λ̃(5) =
{
Γ̃ (5) = Γ (5) (𝐴, 𝑋, 𝑆) : E[Γ (5) (𝐴, 𝑋, 𝑆) | 𝑋, 𝑆] = 0

}
. (31)

Proposition 6. Suppose Assumptions 1 and 2 hold. The space of the influence function space of 𝜓0 is

Λ⊥ =
{
𝐺 (𝐴, 𝑋, 𝑆;𝜓0, 𝑐) = 𝑐(𝐴, 𝑋, 𝑆)𝜖𝐻,𝜓0 : E[𝑐(𝐴, 𝑋, 𝑆) | 𝑋, 𝑆] = 0

}
. (32)

8.1.3. Proof of Theorem 1

Based on Proposition 6, we show that the projection of any 𝐵 ∈ H ,
∏ [

𝐵 | Λ⊥
]
, is of the form

𝑐(𝐴, 𝑋, 𝑆)𝜖𝐻,𝜓0 , where E[𝑐(𝐴, 𝑋, 𝑆) | 𝑋, 𝑆] = 0. Let the score vector of 𝜓0 be 𝑠𝜓0 (𝑉). Then, the semi-
parametric efficient score is the projection of 𝑠𝜓0 (𝑉) onto Λ⊥, given by

𝑆𝜓0 (𝑉) =
∏[

𝑠𝜓0 (𝑉) | Λ
⊥
]
=
(
E[𝑠𝜓0 (𝑉)𝜖𝐻,𝜓0 | 𝐴, 𝑋, 𝑆]

−E[E[𝑠𝜓0 (𝑉)𝜖𝐻,𝜓0 | 𝐴, 𝑋, 𝑆]𝑊 | 𝑋, 𝑆]E[𝑊 | 𝑋, 𝑆]−1
)
𝑊𝜖𝐻,𝜓0 := 𝑐∗(𝐴, 𝑋, 𝑆)𝜖𝐻,𝜓0 .

To evaluate 𝑐∗(𝐴, 𝑋, 𝑆) further, we note that E[𝜖𝐻,𝜓0 | 𝐴, 𝑋, 𝑆] = 0. We differentiate this equality
with respect to 𝜓0. By the generalized information equality (Newey, 1990), we have E[−𝜕𝜖𝐻,𝜓0/𝜕𝜓 |

𝐴, 𝑋, 𝑆] + E[𝑠𝜓0 (𝑉)𝜖𝐻,𝜓0 | 𝐴, 𝑋, 𝑆] = 0. Therefore, ignoring the negative sign, we have 𝑐∗(𝐴, 𝑋, 𝑆) as
given by

𝑐∗(𝐴, 𝑋, 𝑆) =

(
E
[
𝜕𝜖𝐻,𝜓0

𝜕𝜓T
| 𝐴, 𝑋, 𝑆

]
− E

[
𝜕𝜖𝐻,𝜓0

𝜕𝜓T
𝑊 | 𝑋, 𝑆

]
E[𝑊 | 𝑋, 𝑆]−1

)
𝑊

= ���
𝜕𝜏𝜑0 (𝑋)

𝜕𝜑

(1 − 𝑆)
𝜕𝜆𝜙0 (𝑋)

𝜕𝜙

��	
(
𝐴 − E [𝐴𝑊 | 𝑋, 𝑆] E[𝑊 | 𝑋, 𝑆]−1

)
𝑊.
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8.2. Proof of Theorem 2

8.2.1. Preliminaries

We introduce more notations and useful results to prepare for the proof of Theorem 2. Let “⇝” denote
weak convergence, and let “𝐴 
 𝐵” denote that 𝐴 is bounded by a constant times 𝐵. Denote �𝑆𝜓 (𝑉 ;𝜗) =
𝜕𝑆𝜓 (𝑉 ;𝜗)/𝜕𝜓. Denote a set of nuisance functions as G𝜗0 = {𝜗 : | |𝜗 − 𝜗0 | | < 𝛿} for some 𝛿 > 0 and
denote 𝑙∞(G𝜗0) as the collection of all bounded functions 𝑓 : G𝜗0 →R 𝑝 .

The following lemmas show the asymptotic properties of functions belong to Donsker classes.

Lemma 1. Suppose Conditions 2 and 3 hold. Then, we have sup𝜓∈Θ,𝜗∈G𝜗0
| |P𝑁 𝑆𝜓 (𝑉; 𝜗) − P𝑆𝜓 (𝑉 ;

𝜗) | |2 → 0 in probability as 𝑁 →∞, and sup𝜓∈Θ,𝜗∈G𝜗0
| |P𝑁

�𝑆𝜓 (𝑉 ;𝜗) − P �𝑆𝜓 (𝑉 ;𝜗) | |2 → 0 in proba-
bility as 𝑁 →∞.

Lemma 2. Suppose Conditions 2 and 3 hold. Then, we have

𝑁1/2 (P𝑁 − P)𝑆𝜓0 (𝑉 ;𝜗) ⇝ 𝑍 ∈ 𝑙∞(G𝜗0),

where the limiting process 𝑍 = {𝑍 (𝜗) : 𝜗 ∈ G𝜗0} is a mean-zero multivariate Gaussian process, and
the sample paths of 𝑍 belong to {𝑧 ∈ 𝑙∞(G𝜗0) : 𝑧 is uniformly continuous with respect to | | · | |}.

8.2.2. Proof of Theorem 3

First, we show the consistency of 𝜓. Toward this end, we show | |P𝑆𝜓 (𝑉 ;𝜗0) | |2 → 0. We bound
| |P𝑆𝜓 (𝑉 ;𝜗0) | |2 by

| |P𝑆𝜓 (𝑉 ;𝜗0) | |2 ≤ ||P𝑆𝜓 (𝑉 ;𝜗0) − P𝑆𝜓 (𝑉 ;𝜗) | |2 + ||P𝑆𝜓 (𝑉 ;𝜗) | |2

= | |P𝑆𝜓 (𝑉 ;𝜗0) − P𝑆𝜓 (𝑉 ;𝜗) | |2 + ||P𝑆𝜓 (𝑉 ;𝜗) − P𝑁 𝑆𝜓 (𝑉 ;𝜗) | |2

≤ ||P𝑆𝜓 (𝑉 ;𝜗0) − P𝑆𝜓 (𝑉 ;𝜗) | |2 + sup
𝜓∈Θ,𝜗∈G𝜗0

| |P𝑁 𝑆𝜓 (𝑉 ;𝜗) − P𝑆𝜓 (𝑉 ;𝜗) | |2. (33)

Both terms in (33) are 𝑜P(1) as shown below. By the Taylor expansion, we have

| |𝑆𝜓 (𝑉 ;𝜗0) − 𝑆𝜓 (𝑉 ;𝜗) | |2 =

�����
����� 𝜕𝑆𝜓 (𝑉 ;𝜗)

𝜕𝜓T

����
𝜓=𝜓,𝜗=𝜗

(𝜗 − 𝜗0)

�����
�����
2

≤

�����
����� 𝜕𝑆𝜓 (𝑉 ;𝜗)

𝜕𝜓T

����
𝜓=𝜓,𝜗=𝜗

�����
�����
2

× ||𝜗 − 𝜗0 | |2,

where 𝜗 lies in the segment between 𝜗 and 𝜗0. By the Cauchy–Schwartz inequality, we have

| |P𝑆𝜓 (𝑉 ;𝜗0) − P𝑆𝜓 (𝑉 ;𝜗) | |2 ≤ P| |𝑆𝜓 (𝑉 ;𝜗0) − 𝑆𝜓 (𝑉 ;𝜗) | |2

≤ P

{�����
����� 𝜕𝑆𝜓 (𝑉 ;𝜗)

𝜕𝜗T

�����
𝜗=𝜗

�����
�����
2

× ||𝜗 − 𝜗0 | |2

}
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≤

⎧⎪⎪⎨⎪⎪⎩E

�����
����� 𝜕𝑆𝜓 (𝑉 ;𝜗)

𝜕𝜗T

�����
𝜗=𝜗

�����
�����2
2

⎫⎪⎪⎬⎪⎪⎭
1/2

×
{
E| |𝜗 − 𝜗0 | |

2
2

}1/2


 ||𝜗 − 𝜗0 | |2 = 𝑜P(1). (34)

By Lemma 1, we have

sup
𝜓∈Θ,𝜗∈G𝜗0

| |P𝑁 𝑆𝜓 (𝑉 ;𝜗) − P𝑆𝜓 (𝑉 ;𝜗) | |2 → 0 (35)

in probability as 𝑁 →∞. Plugging (34) and (35) into (33) leads to | |P𝑆𝜓 (𝑉 ;𝜗0) | |2 = 𝑜P(1). Now, by

Condition 1, | |𝜓 − 𝜓0 | |2 = 𝑜P(1).
Second, we show the asymptotic distribution of 𝜓. By the Taylor expansion of 𝑁1/2P𝑁 𝑆𝜓 (𝑉 ;𝜗) = 0,
we have

0 = 𝑁1/2P𝑁 𝑆𝜓0 (𝑉 ;𝜗) + {P𝑁
�𝑆𝜓 (𝑉 ;𝜗)}𝑁1/2 (𝜓 − 𝜓0),

where 𝜓 lies in the segment between 𝜓 and 𝜓0. By Lemma 1, we have

sup
𝜓∈Θ,𝜗∈G𝜗0

| |P𝑁
�𝑆𝜓 (𝑉 ;𝜗) − P �𝑆𝜓 (𝑉 ;𝜗) | |2 → 0

in probability as 𝑁 →∞. Because 𝜓 → 𝜓0 and 𝜗→ 𝜗0, we have

P𝑁
�𝑆𝜓 (𝑉 ;𝜗) →Ψ = P �𝑆𝜓0 (𝑉 ;𝜗0)

in probability as 𝑁 →∞. Thus, we have

𝑁1/2 (𝜓 − 𝜓0) = −Ψ−1𝑁1/2P𝑁 𝑆𝜓0 (𝑉 ;𝜗) + 𝑜P(1). (36)

We express

P𝑁 𝑆𝜓0 (𝑉 ;𝜗) = (P𝑁 − P)𝑆𝜓0 (𝑉 ;𝜗) + P𝑆𝜓0 (𝑉 ;𝜗), (37)

and show that

P𝑆𝜓0 (𝑉 ;𝜗) = 𝑜P(𝑁
−1/2), (38)

(P𝑁 − P)𝑆𝜓0 (𝑉 ;𝜗) = (P𝑁 − P)𝑆𝜓0 (𝑉 ;𝜗0) + 𝑜P(𝑁
−1/2). (39)

To show (38), we denote 𝑐(𝑋, 𝑆) = (𝜕𝜏𝜑0 (𝑋)/𝜕𝜑
T, (1 − 𝑆)𝜕𝜆𝜙0 (𝑋)/𝜕𝜙

T)T for simplicity and evaluate
P𝑆𝜓0 (𝑉 ;𝜗) explicitly as

P𝑆𝜓0 (𝑉 ;𝜗) = E
[
𝑐(𝑋, 𝑆)

(
𝐴{�̂�2

𝐴(𝑋, 𝑆)}
−1 − {�̂�2

1 (𝑋, 𝑆)}
−1�̂�(𝑋, 𝑆)Ê[𝑊 | 𝑋, 𝑆]−1𝑊

)
�̂�𝐻,𝜓0

]
= E

[
𝑐(𝑋, 𝑆)

(
{�̂�2

1 (𝑋, 𝑆)}
−1𝑒(𝑋, 𝑆) − {�̂�2

1 (𝑋, 𝑆)}
−1�̂�(𝑋, 𝑆)Ê[𝑊 | 𝑋, 𝑆]−1𝑊

)
× [𝜇0 (𝑋, 𝑆) − 𝜇0 (𝑋, 𝑆) − (1 − 𝑆)𝜆𝜙0 (𝑋){𝑒(𝑋, 𝑆) − �̂�(𝑋, 𝑆)}]

]
= E

[
𝑐(𝑋, 𝑆)

(
{�̂�2

1 (𝑋, 𝑆)}
−1{𝑒(𝑋, 𝑆) − �̂�(𝑋, 𝑆)}

−{�̂�2
1 (𝑋, 𝑆)}

−1�̂�(𝑋, 𝑆)Ê[𝑊 | 𝑋, 𝑆]−1(𝑊 − Ê[𝑊 | 𝑋, 𝑆])
)
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× [𝜇0 (𝑋, 𝑆) − 𝜇0(𝑋, 𝑆) − (1 − 𝑆)𝜆𝜙0 (𝑋){𝑒(𝑋, 𝑆) − �̂�(𝑋, 𝑆)}]
]

= E
[
𝑐(𝑋, 𝑆)

(
{�̂�2

1 (𝑋, 𝑆)}
−1{𝑒(𝑋, 𝑆) − �̂�(𝑋, 𝑆)}

−{�̂�2
1 (𝑋, 𝑆)}

−1�̂�(𝑋, 𝑆)Ê[𝑊 | 𝑋, 𝑆]−1{�̂�2
1 (𝑋, 𝑆)}

−1{𝑒(𝑋, 𝑆) − �̂�(𝑋, 𝑆)}

+{�̂�2
1 (𝑋, 𝑆)}

−1�̂�(𝑋, 𝑆)Ê[𝑊 | 𝑋, 𝑆]−1{�̂�2
0 (𝑋, 𝑆)}

−1{𝑒(𝑋, 𝑆) − �̂�(𝑋, 𝑆)}
)

×[𝜇0 (𝑋, 𝑆) − 𝜇0 (𝑋, 𝑆) − (1 − 𝑆)𝜆𝜙0 (𝑋){𝑒(𝑋, 𝑆) − �̂�(𝑋, 𝑆)}]
]
.

Applying the Cauchy–Schwartz inequality and Condition 5, we have

| |P𝑆𝜓0 (𝑉 ;𝜗) | |2

≤ E
[������𝑐(𝑋, 𝑆) ({�̂�2

1 (𝑋, 𝑆)}
−1{𝑒(𝑋, 𝑆) − �̂�(𝑋, 𝑆)}

−{�̂�2
1 (𝑋, 𝑆)}

−1�̂�(𝑋, 𝑆)Ê[𝑊 | 𝑋, 𝑆]−1{�̂�2
1 (𝑋, 𝑆)}

−1{𝑒(𝑋, 𝑆) − �̂�(𝑋, 𝑆)}

+{�̂�2
1 (𝑋, 𝑆)}

−1�̂�(𝑋, 𝑆)Ê[𝑊 | 𝑋, 𝑆]−1{�̂�2
0 (𝑋, 𝑆)}

−1{𝑒(𝑋, 𝑆) − �̂�(𝑋, 𝑆)}
)

×[𝜇0 (𝑋, 𝑆) − 𝜇0(𝑋, 𝑆) − (1 − 𝑆)𝜆𝜙0 (𝑋){𝑒(𝑋, 𝑆) − �̂�(𝑋, 𝑆)}]
����

2

]
.


 (E[{𝑒(𝑋, 𝑆) − �̂�(𝑋, 𝑆)}2] × E
[
{𝜇0 (𝑋, 𝑆) − 𝜇0 (𝑋, 𝑆)}

2 + {𝑒(𝑋, 𝑆) − �̂�(𝑋, 𝑆)}2])1/2

= {| |𝜇0 (𝑋, 𝑆) − 𝜇0 (𝑋, 𝑆) | | × | |�̂�(𝑋, 𝑆) − 𝑒(𝑋, 𝑆) | | + | |�̂�(𝑋, 𝑆) − 𝑒(𝑋, 𝑆) | |2} = 𝑜P(𝑁
−1/2).

To show (39), Lemma 2 leads to

𝑁1/2 (P𝑁 − P)𝑆𝜓0 (𝑉 ;𝜗) ⇝ 𝑍 ∈ 𝑙∞(G𝜗0),

as 𝑁 →∞. Combining with the fact that | |𝜗 − 𝜗0 | | = 𝑜P(1), we have(
𝑁1/2 (P𝑁 − P)𝑆𝜓0 (𝑉 ;𝜗)

𝜗

)
⇝

(
𝑍
𝜗0

)
in 𝑙∞(G𝜗0) × G𝜗0 as 𝑁 →∞. Define a function 𝑠 : 𝑙∞(G𝜗0) × G𝜗0 ↦→ R 𝑝 by 𝑠(𝑧, 𝜗) = 𝑧(𝜗) − 𝑧(𝜗0),
which is continuous for all (𝑧, 𝜗) where 𝜗 ↦→ 𝑧(𝜗) is continuous. By Lemma 2, all sample paths of 𝑍 are
continuous on G𝜗0 , and thus, 𝑠(𝑧, 𝜗) is continuous for (𝑍, 𝜗). By the Continuous-Mapping Theorem,

𝑠(𝑍, 𝜗) = (P𝑁 − P)𝑆𝜓0 (𝑉 ;𝜗) − (P𝑁 − P)𝑆𝜓0 (𝑉 ;𝜗0) ⇝ 𝑠(𝑍, 𝜗0) = 0.

Thus, (39) holds. Plugging (37)–(39) into (36), we have

𝑁1/2 (𝜓 − 𝜓0) = −Ψ−1𝑁1/2{(P𝑁 − P)𝑆𝜓0 (𝑉 ;𝜗0)} + 𝑜P(1).

→N{0,(Ψ−1)TE[𝑆𝜓0 (𝑉 ;𝜗0)
⊗2]Ψ−1}, (40)

in distribution as 𝑁 →∞. If
∑1

𝑎=0 | |�̂�𝑎 (𝑋, 𝑆) − 𝜎𝑎 (𝑋, 𝑆) | | = 𝑜P(1), 𝑆𝜓0 (𝑉 ;𝜗0) becomes the efficient
score 𝑆𝜓0 (𝑉). Thus, the asymptotic variance in (40) achieves the efficiency bound. This completes the
proof of Theorem 2.
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