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ABSTRACT

Externally controlled trials are crucial in clinical development when randomized controlled trials are unethical or impractical. These trials con-
sist of a full treatment arm with the experimental treatment and a full external control arm. However, they present significant challenges in
learning the treatment effect due to the lack of randomization and a parallel control group. Besides baseline incomparability, outcome mean
non-exchangeability, caused by differences in conditional outcome distributions between external controls and counterfactual concurrent con-
trols, is infeasible to test and may introduce biases in evaluating the treatment effect. Sensitivity analysis of outcome mean non-exchangeability
is thus critically important to assess the robustness of the study’s conclusions against such assumption violations. Moreover, intercurrent events,
which are ubiquitous and inevitable in clinical studies, can further confound the treatment effect and hinder the interpretation of the estimated
treatment effects. This paper establishes a semi-parametric framework for externally controlled trials with intercurrent events, offering dou-
bly robust and locally optimal estimators for primary and sensitivity analyses. We develop an omnibus sensitivity analysis that accounts for
both outcome mean non-exchangeability and the impacts of intercurrent events simultaneously, ensuring root-n consistency and asymptotic
normality under specified conditions. The performance of the proposed sensitivity analysis is evaluated in simulation studies and a real-data

problem.
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1 INTRODUCTION

1.1 Why consider external controls

In medical research, the gold standard for evaluating new treat-
ments has been randomized controlled trials (RCTs). Regula-
tory bodies often require these rigorously controlled clinical
studies to validate the effectiveness and safety of these treat-
ments for specific patient groups. Despite the high regard for
randomized, double-blind trials, they may not always be viable
or ethical, particularly in rare or severe diseases with limited
treatment options. Recruiting enough participants for such tri-
als is often difficult, and using placebos in situations when al-
ternative effective treatments are available may be unethical or
impractical.

In these cases, single-arm trials (SATs) can be a practical alter-
native, though they come with limitations. Without direct com-
parison data for untreated subjects, researchers are compelled
to infer these outcomes from external sources such as previous
studies or real-world databases. These are referred to as externally
controlled trials (ECTs). However, data from past trials might not
always be relevant due to changes in the treatment landscape and
patient demographics, reducing its evidence capacity compared
with RCTs. Recently, real-world data have gained popularity for
external control arms due to its accessibility and contemporane-
ity with treatment groups.

1.2 Estimand considerations with external controls

The Food and Drug Administration’s (FDA) latest draft guide-
lines for natural history studies in rare disease drug develop-
ment emphasized S critical concerns with using external controls
(Food and Drug Administration, 2023). These concerns, out-
lined in Table 1, may introduce biases in research findings when
real-world data are utilized as a control arm in ECTs. For a more
structured analysis of these biases, we classified them into 2 prin-
cipal categories: baseline incomparability and outcome mean
non-exchangeability. Each category is characterized by unique
mechanisms for introducing bias, as detailed in Table 1.

Besides the challenges of non-exchangeability of the external
controls in clinical trials, managing intercurrent events such as
participant dropout, non-compliance, or premature termination
of therapy adds more complexities. Typically, the missingness at
random (MAR) framework is adopted after the absence of out-
comes following these events. While the MAR assumption is of-
ten deemed plausible, it remains unverifiable and may lack prac-
tical applicability since it assumes all participants persist with
the study medication, addressing only a theoretical aspect of
the treatment effect, as noted in the guidelines (ICH, 2021).
A more plausible assumption would be that the treatment ef-
fect may quickly fade away, leading to the missing not at ran-
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TABLE 1 Key considerations of using external controls.

(Observed) baseline incomparability

Covariate distribution shift
in SATs

(Unobserved) outcome mean non-exchangeability
Unmeasured confounding

Lack of concurrency/
temporal bias
Measurement error

settings

as measurement errors in covariates
Outcome validity

Systematic differences exist in the baseline characteristics of patients in external studies compared to those

External control data might not capture the same detailed patient information as SATs, leading to biases
from unknown or unmeasured factors
External control data and SATs may be collected in different time periods or under varying healthcare

There may exist potential inconsistencies in how patient information is collected and recorded, termed here

Methods of measuring outcomes in external data sources might differ from those used in SATS, or the

outcomes might not be clearly defined or reliable

Proper estimands
Intercurrent events
effects of the randomized treatment

Intercurrent events, such as stopping medication and/or adding rescue therapy, can confound the causal

dom (MNAR) pattern for the intercurrent events. The MNAR
assumption can also be put forward for the sensitivity analysis,
suggesting that any treatment effect observed, while a participant
was active in the study is nullified upon their discontinuation. To
evaluate this effect, the implementation of control-based impu-
tation (CBI) models has been proposed, offering a nuanced and
realistic assessment of treatment outcomes in clinical trials.

1.3 Primary analysis and doubly robust omnibus sensitivity
analysis

Numerous statistical methodologies have been developed to ad-
dress the potential biases from using external controls in ECTs.
Most of these methods utilize techniques such as propensity
score stratification, matching, or weighting to mitigate selection
bias by balancing baseline covariates between external controls
and SATs. Nonetheless, the outcome exchangeability of external
controls cannot be verified with observed data due to the ab-
sence of concurrent controls. Therefore, sensitivity analyses be-
come essential to evaluate the impact of potential violations of
outcome non-exchangeability and to understand the effects of
intercurrent events under different realistic scenarios.

In this context, we introduce a sensitivity analysis framework
tailored for ECTs with intercurrent events. This framework en-
compasses models such as the tilting models, which control the
degree of outcome mean non-exchangeability in external con-
trols and alterations in outcome distributions after intercurrent
events. Central to our framework is the establishment of iden-
tification results, the development of eflicient influence func-
tions (EIFs), and EIF-motivated tilting estimators under sensi-
tivity models, which jointly capture the effect of changes due
to outcome mean non-exchangeability and intercurrent events.
These EIF-motivated estimators have several advantageous sta-
tistical properties, such as local efficiency, double robustness,
and asymptotic normality. By analytically establishing the con-
ditions for desirable asymptotic properties, our estimator allows
flexible models for nuisance parameters while maintaining root-
n consistency (Theorem 4). Therefore, our major contribution
is to derive the locally efficient estimator for evaluating the treat-
ment effect under the sensitivity models and to jointly assess the

robustness and reliability of multiple assumptions in ECTs with
intercurrent events in a more efficient and flexible manner.

Our paper is organized as follows: Section 2 presents a brief
overview of sensitivity analysis. Section 3 introduces the nota-
tion and develops the semi-parametric efficient estimator for the
primary analysis. Section 4 details the tilting sensitivity models
and the efficient inference for the sensitivity analysis. Another ef-
ficient estimator for the CBI sensitivity analysis under the jump-
to-reference (J2R) model is presented in the Supplementary
Materials. Section S discusses one practical method for choosing
the sensitivity parameters by bounding their impacts. Extensive
simulation studies for both primary and sensitivity analyses are
presented in Section 6. Section 7 illustrates our approach with an
antidepressant trial, and Section 8 concludes with a discussion.

2 RELATED WORKS

Before we delve into the proposed sensitivity analysis frame-
work, we provide a review of sensitivity analysis methods. Causal
inference involving observational studies usually requires no un-
measured confounding assumption, that is, the treatment assign-
ment is ignorable conditional on a set of covariates (Rosenbaum
and Rubin, 1983b; Imbens and Rubin, 2015). Yet, claiming the
absence of confounders in the treatment-outcome relationship is
untestable and often implausible in practice. Thus, it is advised
to conduct a series of sensitivity analyses assessing how robust
the causal findings are against the plausible violations of the un-
confoundedness (Faries et al., 2024). The problem of sensitivity
analyses has been studied in a variety of fields with the earliest
work in Cornfield et al. (1959), which is later extended in Im-
bens (2003), Rosenbaum (1987), and Rosenbaum and Rubin
(1983a). However, one concerning issue regarding this frame-
work is that it demands a specific parametric assumption on the
unmeasured confounder U. In many cases, sensitivity analyses
can be quite fragile against the model misspecification of U as
shown in Zhang and Tchetgen (2019).

To circumvent modeling the conditional (or marginal) dis-
tribution for the unmeasured confounder, a plethora of sensi-
tivity approaches have been proposed, which preserve the crit-
ical elements in Imbens (2003) and Rosenbaum and Rubin



(1983a) and allow for flexible strategies to model the distribu-
tion of U. Zhang and Tchetgen (2019) leverage the modern
semi-parametric theory to obtain a consistent estimation in a
model while placing no distributional assumptions on U. The
idea of partial misspecification of the nuisance parameters en-
dows the framework with an unrestricted law of latent variables
and has been similarly considered in the context of measurement
error (Tsiatis and Ma, 2004), mixed models (Garcia and Ma,
2016), and statistical genetics (Allen et al,, 2005). Another line
of work to tackle this problem is based on the idea of “omitted-
variable” bias, which can be computed easily without needs to
specify the parametric form of the potential unobserved con-
founding. The idea of general bias formula is introduced in Van-
derWeele and Arah (2011), and is further extended in Cinelli

and Hazlett (2020) with more flexibility and robustness.

As illustrated so far, most of the work blurs the line between
sensitivity analysis and model checking by introducing sensitiv-
ity parameters under stringent parametric assumptions. For ex-
ample, Little and Rubin (2019) suggest that the ignorability as-
sumption in Heckman (1979) can be tested as the result of their
Gaussian parametric assumption, thereby inducing testable im-
plications of the untestable ignorability assumption. Moreover,
the lack of such “clean” separation requires that the observed
model to be refit for each setting of the sensitivity parameters,
which will be an onerous task as modern non-parametric mod-
els may be adopted to fit the potential outcomes. To address this

concern, Robins et al. (2000) propose and extended by Franks

et al. (2020) and Nabi et al. (2024) to use the “tilting,” or “se-
lection” function to decouple the sensitivity analyses from the
observed data model. Typically, such sensitivity analysis specifi-
cation does not impose any parametric assumptions on the dis-
tribution of the observed data or the unmeasured confounder,
but only on a relaxed version of the unconfoundedness assump-
tion:

f(@) A=1-a|X} = flY(a),A=a| x) UEdr@ I8 (1)

where Y (a) is the potential outcome under treatment a, A is the
treatment assignment, and X is the baseline covariates. Here, the
first term constitutes the observed data density, while the sec-
ond term is the selection function governed by the sensitivity
parameter 1. Other approaches in Blackwell (2014) and Yang
and Lok (2018) take a different track by representing the con-
founding as a function of the observed covariates, and describe
the conditional potential outcomes difference varied by the
treatment assignment as q(a, X; o) = E{Y(a) | A = a, X} —
E{Y(a) | A=1 — a, X}, where the confounding function g is
characterized by the single sensitivity parameter «. As the ob-
served data distribution is free of the sensitivity parameters
(¥ or a), it achieves the “clean” factorization of the identi-
fied and unidentified parts of the sensitivity analysis framework.
Veitch and Zaveri (2020), extending from Imbens (2003), posit
a probabilistic model to bypass the need to specify any distri-
butional assumption on U, which also decouples the sensitiv-
ity analyses from the observed data and leads to tractable bias
calculations.
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3 SINGLE-ARM TRIAL DATA WITH
EXTERNAL CONTROLS: PRIMARY ANALYSIS

To ground ideas, we first focus on cross-sectional studies. Let
S =1 denote trial participation, and the trial data consist of
{(Vi=(X;,A,R,Y;,S;=1):i€ R}, where R = 1 indicates
the absence of intercurrent events (eg, treatment discontinua-
tion) during follow-up and 0 otherwise. Let S = 0 denote the
external participation, and the external data consist of {V; =
(Xi, Ai,R;,Y;,S;=0):i€ ). Assume (X;, A;,R;,Y;, S;) are
independent and identically distributed, and we omit the sub-
script i for the simplicity of notation. Let V. = (X, A, R, Y, S)
be the random vector of all observed variables and follow the
observed data distribution Py. The treatment policy strategy des-
ignates a treatment effect estimand that measures the total ef-
fect of the treatment assignment and the intercurrent event on
the outcome. Therefore, to define the estimand unambiguously,
we extend the causal framework in Lipkovich et al. (2020) and
introduce the potential outcomes framework for R and Y. De-
note R(a) as the potential indicator for the absence of inter-
current events under treatment a, Y (a, ) as the potential out-
come under treatment a with intercurrent event status r, and
Y(a) =Y{a, R(a)}.

The estimand of interest is the average treatment effect (ATE)
for the trial, defined as

T =E[Y{1,R(1)} —Y{0,R(0)} | S=1]
=Ey (1) -v(0)|S=1},

which is a treatment policy estimand, as the occurrence of in-
tercurrent events is considered irrelevant. However, due to the
missing outcomes following these events, the treatment policy
strategy cannot be implemented for intercurrent events that are
terminal, such as treatment discontinuation. Table 2(A) outlines
several key causal assumptions to identify the treatment effect for
the primary analysis.

Assumptions 1 and 2 are standard causal assumptions for iden-
tification (Rosenbaum and Rubin, 1983b). Assumption 1 maps
the potential outcomes to the observed data, and Assumption
2 ensures that each participant has a positive probability of be-
ing recruited into the SAT or external controls, and not having
intercurrent events. Assumption 3 states that the conditional ex-
pectation of Y (0) is the same for the trial and the external con-
trols. Assumptions 4 and S imply that the intercurrent events oc-
cur at random for SAT and the external controls, respectively.
These assumptions are satisfied if the covariates X capture all
the confounding variables. Take a weight-loss trial for an exam-
ple, where the intercurrent events are the non-compliance with
the prescribed diet. If we assume that the covariates, such as
age, baseline weight, and other lifestyle factors, capture all the
confounding variables, it follows that given the same covariates
for 2 participants, they have the same likelihood of being non-
compliant with the diet, regardless of their weight loss. There-
fore, we can conclude that the weight loss will not be affected by
the occurrence of the non-compliance conditional on these co-
variates, and the post-intercurrent event outcomes are exchange-
able to the observed outcomes.
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TABLE 2 Lists of (A) key assumptions for primary analysis (B) necessary notation.

A) Assumptions Details
p

1. Causal consistency

2. Positivity

3. Outcome exchangeability of the
external controls

4. Ignorability of intercurrent event for
SAT data

5. Ignorability of intercurrent event for
external controls

R=R(A),andY =Y {A,R(A)}
P(S=1|X)>0andP(R=1|X,S=5s)> 0fors=0,1
E{y(0) | X,S=1} = E{Y(0) | X, S = 0} = po(X)

R(a) LY(a,r) | X,S=1,foralla,r

R(a) LY(a,r) | X,S=0,foralla,r

(B) Formula Details
ms(X) participation propensity, defined as 75(X) = P(S =1 | X)
qs(X) participation propensity density ratio, defined as gs(X) = ms(X)/{1 — ws(X)}
7R, (X) propensity of not having intercurrent event for s = 0, 1, defined as
7R (X)=P(R=1]X,S=5s)
qr,(X) propensity density ratio of intercurrent event for s = 0, 1, defined as
qr, (X) = {1 — 7, (X)}/ 7z, (X)
ws(X) outcome means fors = 0, 1, definedas u,(X) = E(Y | X,S=s,R=1)
(X5 YRy )y (X5 ¥R, ), (X5 ¥5), Normalizing terms, defined as ¢(X; y&,) = E[exp{yzr,, Y(0)} | X,S=0,R = 1],
(X3 ¥s + vro) o(X; yr,) = E[exp{yr, Y (1)} | X, S =1,R=1)],

c(X; ys) = ElexplysY (0)} | X, S =0,R = 1],
(X5 s + vry) = Elexp{(ys + yr,)Y(0)} | X, S=0,R = 1]

b(X: ¥R ), b(X: ¥R, ), b(X ¥5),
b(X; ys + Vr,)

Tilted outcome means, defined as b(X; yr,) = E[Y exp{yr,, Y (0)} | X,S=0,R =1],
b(X; yr,) = E[Y exp{yr, Y (1)} | X, S=1,R=1],

b(X; ys) = E[Y exp{ysY (0)} | X,S=0,R = 1],
b(X: ¥s + vr,) = E[Y exp{(ys + ¥&,)Y(0)} | X, S =0,R = 1]

d(X; vry» ¥s), e(X; Vry» Vs)

d(X; yry» ¥s) = 7R, (X)b( ¥5)e(X; ¥r,) + {1 — Ry (X)}6(X5 ¥s + ¥z, ),

e(X; VR V5) = TRy (X) (X5 ¥5)e(X5 ¥Ry ) + {1 — 7R, (X)}e(X5 vs + &, )

Theorem 1 provides 3 identification formulas for T under the
assumptions in Table 2(A), and Table 2(B) summarizes the nec-
essary models for the identification.

Theorem 1 (Identification): Under the assumptions in Table 2,
T is identifiable by

(a) trial participation propensity and outcome means:

o E{rrs(X) 1 (X) — w5 (X)) po(X)}
o P(S=1)

’

(b) trial participation propensity and response propensity:
1 { SRY  (1-— S)RqS(X)Y}
T= - ,
P(S=1) |7, (X) 7R, (X)

(c) response propensity and outcome mean:

7 = g E{S7R (Y + {1 = 78, (O} (X) = Spo(X)}-

We give some intuitions behind these identification formu-
las. Theorem 1(a) describes that the individual treatment effect
given the covariates X is p41 (X) — 19(X). Taking the expecta-
tion over the trial population yields the identification for ATE.
Theorem 1(b) can be understood as a transportability prob-
lem. The first term, corresponding to 775 (X ) i1 (X ), adjusts the
outcomes from SAT SY by R/mg, (X ), which weights the ob-
served subjects by their response propensity. The second term,
corresponding to 775 (X ) o (X ), adjusts the outcomes (1 — S)Y
from the external controls by Rqs(X)/7mg, (X ), which trans-

ports the external controls to the trial via the density ratio g5 (X))
after response propensity weighting. In Theorem 1(c), it pre-
dicts the outcomes for the treatment group by g, (X)Y + {1 —
g, (X)}e1 (X ), which imputes the post-intercurrent event out-
comes by 41 (X). Similarly, it predicts the outcomes of the exter-
nal controls by 14o(X). The difference between these 2 predic-
tions marginalized over the trial population quantifies the ATE.

Based on these identification formulas, infinitely many estima-
tors can be constructed. To develop a more principled estimator,
we derive the EIF for 7, and the resulting EIF-motivated tilting
estimator achieves the rate double robustness, local efliciency,
and asymptotic normality. The details of the estimator and these
properties are relegated to Theorems S1 and S2 in the Supple-
mentary Materials.

4 SENSITIVITY ANALYSIS UNDER TILTING
MODELS

4.1 Assumptions and a graphical representation
Assumptions 3-5 in Table 2 are critical for the identification of
7. However, these assumptions may be subject to violations in
practice and are unverifiable based on the observed data. Here,
we develop the tilting sensitivity models to assess whether the
primary analysis result is sensitive to the violation of these as-
sumptions.

Model 1 (Tilting sensitivity models): Assume that the tilting models
for EC outcome mean non-exchangeability and the effects of intercur-



rent events are

exp{yrY (5)}

dF{Y(5,0) | X,S=5s,R=0} =dF{Y(s,1) | X,S=s,R=1} ,
o(X: yvr.)

exp{ysY (0)}

dF{Y(0) | X,S=1} =dF{Y(0) | X,S=0} FlopeY (0)] | X, 5= 0]’

fors = 0, 1, where the normalizing terms c¢(X; yr.) are defined in

Table 2(B).

Model 1 posits that each unobserved outcome distribution
is a “tilted version” of the observed outcomes, where ys, ¥z,
and yg, are treated as the sensitivity parameters, entailing the
level of EC outcome non-exchangeability and the effect of inter-
current events within each arm; see Figure 1 for an illustration
when Assumptions 3-5 in Table 2 are violated due to unmea-
sured confounders U, Ug,, and Ug, under the tilting sensitivity
models.

Given negative (or positive) sensitivity parameters, the unob-
served outcome distribution is tilted to the left (or right) rel-
ative to the distribution of observed outcomes, with smaller
(or larger) values receiving greater weight. For example, if ys is
smaller (or larger) than 0, Model 1 implies that trial participants,
if untreated, tend to have smaller (or larger) outcomes compared
to the external controls, given the same covariates. Similarly, if
YR, and g, are both smaller (or larger) than 0, Model 1 implies
that participants with intercurrent events tend to have smaller
(or larger) outcomes compared to those without such events,
given the same covariates. In particular, ys = 0leads to Assump-
tion 3, yg, = 0leads to Assumption 4, and yg, = 1leads to As-
sumption S.

Remark 1 (Logistic selection): The tilting sensitivity models are
motivated by the logistic model for the binary indicators S and R. As-
sume the log odds of being in the trial are linear in Y (0) and X under
the logistic selection specification:

P(S=1]Y(0),X) = logit " {as(X) + ysY (0)},  (2)

where logit ™' (x) = {1 + exp(—x)} ", and as(X) can be identi-
fied by the observed data once ys is specified. Using the Bayes rule, the
unobserved outcome distribution f(Y (0) | S = 1, X) is a “tilting”
version of the observed outcomes:

P(S=0]X) o P(S=1]Y(0),X)
P(S=1]|X) P(S=0]|Y(0),X)

exp{ysY (0)}
exp{ysY (0)} | X, S =0]"

f(0)[s=1.X) = f(¥(0) | $=0,X)

= fr©) 15 =0.X) ¢

which is free of s (X ); similar logistic selection specifications can be
applied to model the indicator of the intercurrent event within the
SAT and external controls as well.

Remark 1 implies that our tilting sensitivity model, also known
as the exponential tilting model, is connected to the logis-
tic selection specification (2) with flexible formulation, includ-
ing many non-parametric models, such as sieve approximation,
Dirichlet process mixtures, and Bayesian additive regression
trees. The logistic selection model, despite its drawbacks noted
in Copas and Li (1997), is widely used to assess selection bias
in missing data (Robins et al., 2000; Dahabreh et al., 2023) and
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to conduct sensitivity analyses for unmeasured confounding in
causal inference (Franks et al., 2020; Nabi et al., 2024).

4.2 1dentification and EIF

The following theorem establishes the non-parametric identifi-
cation of T when the sensitivity parameters ys, V,, and yg, are

fixed.

Theorem 2 (Identification under tilting sensitivity mod-
els): Under Assumptions 1 and 2 in Table 2, and Model 1 with fixed
YRy VR, and s, the following identification formula holds for T :

1 b(X; ;)
©= e 00 00 () + 100t~ 001
1 E{ns(X)d(X: m»ys)}
P(S=1) e(X: ¥y ¥5)

where the tilted outcomes b(X; yr,) and d(X; yr,, ¥s) and the
normalizing terms c(X; yr, ) and e(X; Yr,, Vs) are defined in Ta-
ble 2(B).

The identification formula in Theorem 2 is derived under the
same logic as Theorem 1. Under the tilting sensitivity model, we
have

b(X7 VRl)/C(X; VRl) = [E{Y(l) |X$ S= lsR: 0}’ (3)

d(X; Vre» Vs) /(X5 ¥R, ¥s) = E{Y(0) | X, S =1}, (4)

where (3) reduces to 1 (X) when yg, = 0 as the intercurrent
events occur at random for SAT, and (4) reduces to 14y (X ) when
¥R, = ¥s = O as external controls are exchangeable to SAT and
the intercurrent events occur at random for external controls.
Similarly, we can derive the EIF for T under Model 1 to motivate
the semi-parametric efficient estimator.

Theorem 3 (EIF under tilting sensitivity models): Under the
assumptions in Theorem 2, the EIF for T with fixed yg,, Yr,, and Vs
is

G (V3 Po, Vs, Vo Vi) = %, (%)

b(X; 1 .
o (1= RIS + Rar, (g(Vi ). (6)

1 { d(X5 YRy ¥5)
— S
P(S=1) | e(X:yr, ¥s)

(1= $)gsCORV: v, ys)}

St

TP(S=1) @

where the augmentation terms [E{g(V;yr, )} =0 and
E{h(V; yr,, ¥s)} = O with detailed definitions in the Supple-
mentary Materials.

The EIF in Theorem 3 is constituted by 3 parts. The first part
(S) is contributed by the SAT with no intercurrent events (ie,
S =1, R = 1); the second part (6) is contributed by the SAT
with intercurrent events. When yg, = 0, indicating the inter-
current event occurs at random for SAT, g(V; y&, ) equals to
Y — 11(X), and part (6) reduces to (S10) for primary analysis;
the third part (7) is contributed by the external controls. When
YR, = ¥s = 0, indicating external controls are exchangeable to
SAT and the intercurrent event occurs at random for external
controls, h(V; yr,, ¥s) equals to R{Y — 110(X)}/mr,(X), and
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YRy

TRy

FIGURE 1 Schematic plot of the tilting sensitivity models subject to unmeasured confounders Us, Ug,, and Uy, .

the part (7) reduces to (S11). Next, we construct an estimator  Theorem 4: Under the assumptions in Theorem 3 and other regu-
for T by solving the empirical mean of ¢£ff (V5 By, ¥s, VRos VR,) larity conditions in Assumption S1, we have
with Py replaced by its estimated counterpart, and present the

. . At . s _ L RY+L 1-R b(X;J/R,)+RA VRV
asymptotic properties for T* in Theorem 4. "= EZR: Yt ; ( ,)7?()(' ) ar, (X)(Vis vz,)
1 d(X yr,. v

)) _ NLR DGRV vy ).

ief

Nr = Xt YRy Vs

1 Y
=t o 2 eV By Vs v [Rem (B Pl + op (N12),
IERUE

where |[Rem’ (P, Py) |z, is bounded by

{18, (X) = qr, (X) Iz, + I1F0CG vr,) — (X5 v e, b > {60 vry) — (X5 vr,) lln, + Ib(X; Yr) — b(X; vr,) Iz, }
+ Y b y) = b ),

Y €{yry - ¥s.Vstvre}

3 13R, (X) = ar, (Ol + 135(X) —as( e+ D> &K y) — (X3 V)l

v E{Vry Vs, Vs VRo )

F G — sl + Y X y) = (X )l

Y E{VRy Vs: Vst Vry}

x Yoo Xy -+ Y B y) = b )l

VElVRy:Vs: Vst Vry} Y E{VrysVssVst¥ry}




up to some multiplicative constants.

Theorem 4 shows that T' is root-n consistent and asymp-
totically normal for fixed sensitivity parameters ys, Yg,, and

Y&, when the remainder term N'/2|Rem' (P, B,) Iz, is op(1).
Intuitively, when y5 = yg, = y&, = 0, we have [[c(X;y) —
c(X; )L, = Oforany y, and

B(X: va,) = b(X; yo )l = 171 (X) — 1 (X) I,

DX y) = b(X )l = 170(X) — po(X)l,
VE{YRg Vs ¥styry

Thus, the remainder term reduces to
IRem' (B, Po) Iz, < 13, (X) = g, (), % 171 (X) = 121 (X)),
Hl720 (X) = o (X)), x {11qk, (X) — qr, (X)L, + 175(X) — g5 ()1, }

which is at the same convergence rate as [Rem(P, P,) |l L,
for the primary analysis in Theorem S2. The remainder term
[Rem! (P, )| 1, suggests that the error of 7] is only affected
by the estimation errors of the nuisance models in second-
order terms. Therefore, 71} is more robust and remains con-
sistent when flexible machine learning methods used for nui-
sance estimation converge at rates faster than N~'/4. This con-
dition is satisfied by some machine learning methods (Kennedy,
2016; Bradic et al., 2019), which is the so-called rate double
robustness (Chernozhukov et al., 2018). Note that the condi-
tional expectations b(X; y) and ¢(X; ) are critical to obtain
accurate tilting estimates for the sensitivity analysis. In general,
these conditional expectations require heavy computation or
strong restrictions on the outcome model. Fortunately, these
terms are analytically tractable when the observed outcome
model belongs to the class of exponential family mixtures, for
example, the Dirichlet processes mixture models (Dorie et al,,
2016).

Remark 2 (Exponential family mixtures): Let the
observed outcome  follow Y(0)|S=0,R=1,X~
e N (o (X), 04 (X)). Under the tilting sensitivity mod-
els, we can show that ¢(X; yr,) = D 7k exp{por(X)yr, +
Y, 00:(X)/2), and b(X; vr,) = D mielpor(X) +
YRo oozk (X)} exp{reor(X)yr, + )/1%0 Uozk (X)/2}. Analogously,
these conditional expectations are analytically obtainable if an
invertible function of Y follows the exponential family mixtures (eg,
Box-Cox transformation); other advanced methods are also avail-
able to compute the conditional expectations in exchange for heavy
computation, for example, modeling the conditional distribution of
the observed data (Chiang and Huang, 2012).

S CALIBRATING SENSITIVITY PARAMETERS

The magnitude of the sensitivity parameters indicates the
strength of the non-ignorability of the indicators (R, S) given
the covariates, which is commonly caused by the existence
of unmeasured confounders. However, it is practically infea-
sible to identify the sensitivity parameters with the observed
data. Furthermore, assessing whether a confounder with such
strength plausibly exists, given the prior knowledge and do-
main expertise, is arguably challenging as well. While sensitiv-
ity parameters are not directly identifiable from the data, it is
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reasonable to bound their relative strength using the observed
data.

Following the calibration approach proposed by Franks et al.
(2020), we introduce a method to determine the plausible quan-
tities for sensitivity analysis based on the observed data. As-
sume the logistic selection specification outlined in Remark 1
holds. Next, we assume that the relative strength of the un-
measured confounder cannot exceed that of the observed co-
variates, meaning it should not account for more variation of
the indicators as the most important covariate. To measure the
relative strength, we adopt the “implicit R*” concept from Im-
bens (2003), which generalizes variance-explained measures to
the case of binary outcomes. For example, the partial variances
p12/(0)|x explained by Y (0) given X is

2.,2
2 _ Oy Vs
YO = Yar{ms (X))} + 72/3 + 02y

P(S=1]|X)= logit_l{ms(X)},

where 0 = E[var{Y (0) | X, S = 0}]. Then, we propose a tar-
get value (p*)? for the unidentified /)}2,(0)IX using the observed
data. In specific, we compute the partial variance explained
by each covariate X; given all other covariates X_;, and set
(p*)* = max; 10)2(,|X,,./(1 — max; p)zf,|X,j)' Here, (p*)?* repre-
sents the maximum partial variance explained by adding one
covariate X; to the others, relative to the baseline variance that
needs to be explained, referred to as the partial Cohen’s f in
Cinelli and Hazlett (2020). Setting p}%(o)‘x = (p*)? allows us
to calibrate s by ¢, which implies that the information gained
by adding Y (0) to X as a predictor of S is comparable to the
maximum information gain by the most important covariate. To
calibrate the sensitivity parameter ys, the following one-to-one
mapping is adopted:

o 1 (p*)? N
lys| = o w[var{mg(X)} +m2/3].  (8)

Similar bounding procedures apply to the calibration of yg, and
VR,

6 SIMULATION STUDY

We first conduct a set of simulations to evaluate the operating
characteristics of the proposed estimators under possible model
misspecification when Assumptions 3-$ in Table 2 are satisfied.
Set the sample sizes of the SAT and EC to be around Ng =
200 and Ng = 500 with total size N = 700. The covariates
X € RS are generated by X; ~ N(0.25,1) for j=1,---,4
and X5 ~ Bernoulli(0.5). Consider a nonlinear transformation
of the covariates and denote Z; = {X]2 + 2sin(X;) — 1.5}/v2
forj=1,---,4and Zs = X;. We generate the indicator of be-
ing selected to SAT or ECby S | X ~ Bernoulli{rrs(X)}, where
75(X) = logit " (as + 0.1 Z?=1 Z;) and g is chosen adap-
tively to ensure the average of S is about N /N. Next, we gen-
erate the indicators of the intercurrent events and the outcomes
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for SAT and EC by

R| X,S =5~ Bernoulli{rrg,(X)}, mr(X)

5
= logit_l(otRs + ZZ7/6), s=0,1,

j=1
YIX,S=1~N(X,Z/21), and Y[X,S=0~

/\/(Z?zl Z;/3, 1), where (org,,, gy, ) are adaptively chosen to
ensure the average propensity of R is around 0.5. With a large
sample size of Monte Carlo simulation, we compute true ATE
7 = 0.13. First, we assess the robustness of the proposed esti-
mator 7' when the sensitivity parameters ys = yr, = Y&, = 0.
Denote the tilting estimator T* with fixed zero-valued sensitivity
parameters as T'°), we consider 2 model specifications of the
propensity (PS) of the participation 775 (X ) and the intercurrent
events 77z (X ), and the outcome models (OM). In particular,
we fit the corresponding parametric models with the covariates
Z as the correctly specified models or with the covariates X
as the misspecified models. We compare our proposed EIF-
motivated tilting estimator with other 2 estimators, which are
constructed solely based on PS or OM, denoted by % and
TOM respectively. Figure 2A shows the point estimation results
based on 500 Monte Carlo experiments. When PS and OM are
correctly specified, the considered estimators are all unbiased.
However, T and T are biased when their required models
are misspecified. Our proposed tilting estimator is shown to be
doubly robust with fixed zero-valued sensitivity parameters as it
is consistent if either PS or OM is correctly specified.

Table 3(A) shows the absolute bias, standard errors (SE),
mean squared error (MSE), coverage rates (CRs), and the aver-
age CI lengths of each estimator. We construct the correspond-
ing 95% Wald-type Cls for inference, where the variances are es-
timated by non-parametric bootstrap with size B = 50. We ob-
serve that both 71 and TOM exhibit the smallest average con-
fidence interval lengths. However, when the OM is misspeci-
fied, the CR for 1% is closer to the nominal level compared
to TOM, This observation underscores the double robustness of
7ol aligning with the results shown in Figure 2 and supporting
our claims in Theorem S2 for the primary analysis.

Next, we assess the performance of our proposed tilting es-
timators 7' when Assumptions 3-5 in Table 2 are violated. We
keep the same data-generating process for the X, Z, and Y but
generate the indicators using Bernoulli sampling with different
propensities:

N

P(S=1]X,Y(0)} =logit ' (s + 0.1y Z; + ysY(0)),

j=1

N
PR=0|X,Y(s), S =s} =logit ' (—ar, = Y _Zj/6+ yrY(s)), s=0,1,

=1

where (¥s, ¥r,» Yr,) control the strength of the unmeasured
confounder, describing how the propensity depends on the po-
tential outcome after accounting for the covariates. We con-
sider a range of sensitivity parameters where the indicators are
equally confounded by the potential outcomes, that is, y =
¥s = YR, = VR,- Under the hypothetically fixed sensitivity pa-
rameters (s, Vg, V&, ) and assuming that all the nuisance mod-
els are correctly specified, Figure 2(B) shows the point esti-
mation for all 3 estimators, and Table 3(B) presents the finite-
sample performances of T in details. One important finding is
that our proposed estimator is always consistent across a range

of fixed sensitivity parameters, as indicated by its small bias and
approximately correct CRs. In contrast, the other 2 estimators
are unable to handle the joint sensitivity analysis for multiple
assumptions, suggested by their non-negligible biases for fixed
non-zero sensitivity parameters.

7 REAL-DATA APPLICATION

We examine a study designed to estimate an antidepressant drug
effect on the scores of the Hamilton Depression Rating Scale
for 17 items (HAMD-17). This study was conducted under
the Auspices of the Drug Information Association, which col-
lects the data at baseline and weeks 1, 2, 4, 6, and 8 for N =
196 patients with 99 in the control group and 97 in the treat-
ment group. However, some patients may drop out during the
study for various reasons. OQur primary interest is the ATE on
the change of HAMD-17, irrespective of the intercurrent events
such as dropout-related missing data. According to the guide-
lines in ICH (2021), the ATE is defined as the mean difference
of the change in the HAMD-17 scores from the baseline to the
final time point in week 8. We adhere to the same analysis plan
as Liu et al. (2024) with covariates X, including the investiga-
tion sites and baseline HAMD-17 scores. Let Y (a) and R be the
change of HAMD-17 scores under treatment a and the indicator
of whether a patient stayed in the study at week 8.

In our application, we consider the original trial as a single-
arm trial, with the concurrent control group being considered
as external controls to illustrate the proposed sensitivity anal-
ysis. We assume the potential outcomes Y (a) follow a Gaus-
sian mixture model fitted using the R package flexmix. Next,
we bound the magnitude of the sensitivity parameters using the
approach described in Section 5. We illustrate this approach
with the baseline HAMD-17 score, which is the most important
predictors in terms of partial variance explained, with (p§)* ~
0.02, (,01’{1 )?> A~ 0.11, and (/Oj!fo )* & 0.04. To map these values
to the sensitivity parameters, we apply the one-to-one map-
ping formula (8), and obtain the calibrated sensitivity parame-
ters |yg | & 0.02, |y | & 0.02,and |yg'| ~ 0.01. Figure 3 illus-
trates the ATE estimates across a range of hypothetical sensitiv-
ity parameters, adjusting for the potential outcomes as the un-
measured confounder in the logistic selection specification. The
shaded area indicates the unmeasured confounder with impacts
up to the values of the calibrated sensitivity parameters. Here,
“NS” denotes “not significant,” meaning the 95% confidence in-
terval of the ATE contains 0.

When the assumptions are satisfied, that is, all the sensitiv-
ity parameters equal 0, the ATE estimates are T8 = —1.42 with
the 95% bootstrap CI as (—2.80, —0.05), which is statistically
significant. Next, we assume the impact of the confounders acts
toward hurting our preferred hypothesis, that is, y§ < 0. Here,
a negative value of ys suggests that the unobserved change in
HAMD-17 scores in the concurrent control group tends to be
lower (ie, better) than the observed external controls, reduc-
ing the absolute value of the effect size. This could occur if pa-
tients are more likely to participate in the single-arm trial when
less depressed. When ys = —0.01 and y, = Y&, = —0.02,the
estimated treatment effect of the antidepressant drug becomes

7' = —1.28, where the unmeasured confounder is as strong as
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FIGURE 2 Performance of the PS-based, OR-based, and EIF-motivated tilting estimator with fixed sensitivity parameters: (A) zero-valued
under 4 different model specifications, and (B) non-zero-valued when all the nuisance models are correctly specified, based on 500 Monte
Carlo simulations.

the baseline HAMD-17 scores. Although the tilted estimate is baseline HAMD-17 scores. However, domain knowledge is still
below 0, suggesting the effectiveness of the drug on the HAMD-
17 scores, it is no longer statistically significant, as its 95% CI
is (—2.65, 0.09). Thus, following our sensitivity analyses, we
show that the magnitude of the possible drug effects on the
HAMD-17 scores is robust, but the significance of such effects
is not robust against unmeasured confounding at the strength of
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TABLE 3 The bias, standard errors (SE), mean squared error (MSE), coverage rates (CR), and the average CI width based on 500 Monte Carlo
experiments of (A) the PS-based, OR-based, and EIF-motivated estimator under 4 different model specifications when Assumptions 3-5 in Table
2 hold; (B) the EIF-motivated tilting estimates with the fixed sensitivity parameters when Assumptions 3-S5 in Table 2 are violated.

(A) Bias SE MSE CR CI width
PS-based estimator TF°
PS =yes OM = yes 0.01 0.22 0.05 95.8% 0.86
PS =yes OM =no 0.01 0.22 0.05 95.8% 0.86
PS =no OM =yes 0.07 0.18 0.04 91.4% 0.86
PS =no OM =no 0.07 0.18 0.04 86.4% 0.86
OM-based estimator TOM
PS =yes OM =yes 0.02 0.14 0.02 95.0% 0.55
PS =vyes OM =no 0.05 0.17 0.03 86.4% 0.55
PS =no OM =yes 0.02 0.14 0.02 95.0% 0.55
PS =no OM =no 0.05 0.17 0.03 86.4% 0.55
EIF-motivated tilting estimator 71°/
PS =yes OM =yes 0.02 0.14 0.02 94.2% 0.56
PS =yes OM =no 0.02 0.18 0.03 93.2% 0.56
PS =no OM =yes 0.02 0.14 0.02 95.2% 0.56
PS =no OM =no 0.04 0.17 0.03 89.8% 0.56
(B) ¥Ys = YR, = VR, bias SE MSE CR CIwidth
EIF-motivated tilting estimator T

—0.5 0.01 0.15 0.02 95.2% 0.58

—0.3 0.01 0.13 0.02 95.4% 0.52

—0.1 0.01 0.14 0.02 96.2% 0.54

0.0 0.00 0.14 0.02 94.2% 0.56

0.1 0.01 0.16 0.02 94.8% 0.61

0.3 0.02 022 0.05 93.6% 0.80

0.5 0.03 0.31 0.09 93.4% 1.09

Calibration Area 4 Unadjusted N a
-1.6-1.5-1.4-1.3
¥s=-0.01 Ys=0 s =0.01
NS NS NS NS NS
0.02 NS
E 0004 A §
r‘"
-0.02-
NS NS NS NS NS NS NS

—0.02 000 002

2002 0.00 0.2
YrRo

—0.02 000 002

FIGURE 3 Average treatment effects of an antidepressant drug effect on the HAMD-17 scores over a grid of hypothesized sensitivity

parameters under the tilting sensitivity models.

required to consider the plausibility of unmeasured confounders
of such strength level under this situation.

8 DISCUSSION

In this paper, we develop a semi-parametric efficient frame-
work for sensitivity analysis under the tilting models. Moti-
vated by Tukey’s factorization, this framework effectively sep-
arates the model checking from the sensitivity analysis, which
does not rely on any modeling assumption and fits perfectly
well with the EIF-motivated tilting estimators. Decoupling the

sensitivity analysis from the model fit assessment is crucial and
ubiquitous within the model-based sensitivity analysis. How-
ever, joint sensitivity analysis for multiple assumptions remains
largely unexplored to the best of our knowledge. By simultane-
ously assessing the EC outcome mean non-exchangeability and
the effects of intercurrent events, our framework hopes to shed
more light on the advancements of joint modeling for sensitivity
analysis.

Future work could extend our framework to longitudinal tri-
als with intercurrent events, particularly those with irregular and
informative observation patterns, as discussed by Yang (2021)



and Smith et al. (2024). Such an extension may increase the
number of sensitivity parameters across multiple time points,
and introduce additional challenges in deriving the EIFs condi-
tioned on the historical information. Another potential exten-
sion could focus on the choices of sensitivity parameters, which
is profoundly useful in practice. Our approach relies on bound-
ing the magnitude of sensitivity parameters using observed data,
and substantive domain expertise should be consulted to exam-
ine whether an unmeasured confounder with such strength is
plausible. For some hybrid control designs, the sensitivity pa-
rameters can be partially identified with the help of concurrent
controls; similar ideas have been explored in Gao et al. (2024)
to adjust for EC outcome mean non-exchangeability. Thus, the
internal validity from the hybrid controls can be leveraged to in-
form the choices of sensitivity parameters. In summary, our pro-
posed semi-parametric sensitivity analysis is both efficient and
flexible as it is rate-doubly robust, locally optimal, and can be in-
corporated with a range of models with a modern causal infer-
ence workflow.
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