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Abstract
Multivariate nonresponse is often encountered in complex survey sampling, and 
simply ignoring it leads to erroneous inference. In this paper, we propose a new 
matrix completion method for complex survey sampling. Different from existing 
works either conducting row-wise or column-wise imputation, the data matrix is 
treated as a whole which allows for exploiting both row and column patterns simul-
taneously. A column-space-decomposition model is adopted incorporating a low-
rank structured matrix for the finite population with easy-to-obtain demographic 
information as covariates. Besides, we propose a computationally efficient projec-
tion strategy to identify the model parameters under complex survey sampling. 
Then, an augmented inverse probability weighting estimator is used to estimate the 
parameter of interest, and the corresponding asymptotic upper bound of the esti-
mation error is derived. Simulation studies show that the proposed estimator has a 
smaller mean squared error than other competitors, and the corresponding variance 
estimator performs well. The proposed method is applied to assess the health status 
of the U.S. population.
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1  Introduction

Survey sampling serves as a golden standard for estimating population param-
eters. However, survey data analysis becomes increasingly challenging due to 
the inevitable multivariate nonresponse (Keiding and Louis, 2016), leading to 
complex “Swiss cheese” patterns in the sample. This occurs due to item non-
response, when individuals provide answers to partial but not all questions. 
Moreover, response rates may vary across questions, and some of them are low. 
This phenomenon is not an exception but is universally encountered in practice 
(Elliott and Valliant, 2017). Inference ignoring the nonresponse is questionable 
(Rubin, 1976).

1.1 � Existing works

Imputation is widely used to handle item nonresponse, and existing methods for 
multivariate missingness can be categorized into two types: row-wise imputation 
and column-wise imputation. Multiple imputation (Clogg et al., 1991; Fay, 1992; 
Kim et  al., 2006; Meng, 1994; Nielsen, 2003; Rubin, 1976; Wang and Robins, 
1998; Yang and Kim, 2016) can be viewed as a row-wise imputation method, 
and it models the joint distribution of all variables and generates imputed val-
ues by a posterior predictive distribution. However, multiple imputation suffers 
from model misspecification and is computationally intensive, especially for large 
surveys. Hot deck imputation (Andridge and Little, 2010; Chen and Shao, 2000; 
Fuller and Kim, 2005; Kim and Fuller, 2004), on the other hand, is a column-
wise imputation method. For unit i with nonresponse yij of the jth question, hot 
deck imputation searches among the units responding the jth question (referred 
to as donors for the jth question), and imputes yij by the responses from its neigh-
bors based on a certain distance metric. Although hot deck imputation is easy to 
implement, it is hard to find a good distance metric, and it is also computationally 
inefficient for large surveys since it is conducted to impute the nonresponses for 
each question.

Compared with existing methods using either parametric models or a pre-
specified distance, we treat the sample data matrix as a whole and apply matrix 
completion (Cai and Zhou, 2016; Candès and Recht, 2009; Koltchinskii et  al., 
2011; Mazumder et  al., 2010; Negahban and Wainwright, 2012; Robin et  al., 
2020) for imputation, which exploits both row and column patterns of the sample 
data matrix simultaneously. Imputation by matrix completion has gained growing 
attention in survey sampling due to its flexibility. Davenport et  al. (2014) pro-
posed 1-bit matrix completion for sample data matrices with binary responses. 
Zhang et  al. (2020) adopted a classical probabilistic matrix factorization for 
imputation. Sengupta et  al. (2021) explored machine learning algorithms for 
social surveys. However, neither the sampling mechanism nor the demographic 
covariates were incorporated in the existing works.
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1.2 � Our contribution

In this paper, we adopt a column-space-decomposition model (Mao et al., 2019) 
for the sample data matrix incorporating easy-to-obtained demographic data as 
covariates. Besides, sampling weights are involved in the proposed risk function 
to adjust for the selection bias due to complex survey sampling. Most works in 
the matrix completion literature assume uniform missingness (or generally miss-
ingness completely at random), which, however, is unlikely to hold for survey 
data. Instead, the response probabilities are estimated for the proposed method. 
After imputing missing values in the sample data matrix, we adopt an augmented 
inverse probability weighting (AIPW) estimator (Qin et al., 2017; Robins et al., 
1995) to estimate the population parameters, and the asymptotic error bounds of 
the AIPW estimator are also established.

The proposed method differs from existing works in the following aspects. First, 
instead of proposing an identification condition on the sample data matrix as Mao 
et  al. (2019), we propose it for the finite population model, which is more appro-
priate for survey sampling; see (2) and its discussion for details. Since only a sam-
ple is available, the proposed identification condition cannot be used to guarantee 
the uniqueness of the estimated model parameters. To circumvent this identification 
issue, we have innovatively proposed a projection technique, and the theoretical prop-
erties of the proposed method have been investigated as well; see Sects. 2.2–2.3 and 
Theorem 1 for details. Second, in the literature of matrix completion, existing works 
mainly focused on imputing missing values for the target matrix, and researchers 
are often interested in the average squared loss of a “completed matrix”. However, 
under survey sampling, we are more interested in estimating the population param-
eters, such as the population mean of the responses to a specific question. Thus, we 
propose to use matrix completion as an intermediate tool to impute missing values 
in the sample data matrix. To alleviate the bias of the estimated model parameters, 
an AIPW estimator is used to estimate the parameters of interest. Please notice that 
in order to guarantee a design-unbiased estimator for the population parameters, we 
need to incorporate the uncertainty due to the sampling design, which is also new 
in the literature of matrix completion. Besides, we have also considered a plug-in 
variance estimator for the AIPW estimator, but up to our knowledge, there is no vari-
ance estimator in the literature of matrix completion. Third, using matrix completion 
for imputing missing values is new under survey sampling. Different from existing 
works either conducting row-wise or column-wise imputation when dealing with 
missing data problems, the data matrix is treated as a whole which allows for exploit-
ing both row and column patterns simultaneously. Besides, we have compared the 
matrix completion techniques with existing works in Sect. 2.4. Numerical results also 
demonstrate that the proposed estimator outperforms its competitors in terms of esti-
mation efficiency, and the relative bias of the plug-in variance estimator is also small.

The proposed method achieves the following advantages:

•	 First, it is computationally efficient compared with the multiple imputation and 
hot deck imputation, especially for large surveys. Based on the column-space-
decomposition model, we have modified the objective function so that a closed-
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form solution is available to recover the sample data matrix, and only one sin-
gular value decomposition (SVD) of an n × L matrix is required, where n is the 
sample size, and L is the number of questions in the sample.

•	 Second, it is a multi-purpose imputation method. We impute all nonresponse 
simultaneously, and it is particularly attractive for a comprehensive analysis by 
the imputed sample data matrix.

•	 Third, compared with parametric methods, we only assume a low-rank structure 
to achieve robustness; see Remark 1 in Sect. 2 for details.

•	 Last but not least, we do not assume any restricted nonresponse missing patterns 
(Fletcher Mercaldo and Blume, 2018; Molenberghs et al., 1998) for the survey 
data, so the proposed method can be widely applied to handle multivariate nonre-
sponse under complex survey sampling.

The rest of the article is structured as follows. Section 2 provides the basic setup 
and estimation procedure of the proposed method. Section 3 establishes the theoreti-
cal properties of the proposed method. Simulation studies are conducted in Sect. 4 
to illustrate the advantage of the proposed method compared with other competitors, 
and the performance of the variance estimator is tested as well. Section 5 presents 
the analysis of the National Health and Nutrition Examination Survey (NHANES) 
Questionnaire Data. Some concluding remarks are given in Sect.  6. Additional 
materials are relegated to the appendices.

2 � Basic setup

2.1 � Model

Consider a finite population UN = {(xi, yi) ∶ i = 1,… ,N} of size N, where 
xT
i
= (xi1,… , xid) ∈ ℝ

d is a covariate vector of length d associated with the ith unit, 

and yT
i
= (yi1,… , yiL) ∈ ℝ

L is the response of interest for L questions. The goal is to 

estimate �j = N−1
∑N

i=1
yij for j = 1,… , L.

Assume that the finite population is a realization of the following super-popula-
tion model,

where YN = (yij) ∈ ℝ
N×L , AN ∈ ℝ

N×L represents the structural component, 
�N = (�ij) ∈ ℝ

N×L is a matrix of independent errors with E(�ij) = 0 and E(𝜖2
ij
) < 𝜎2

0
 

for i = 1,… ,N and j = 1,… , L , and �2
0
 is a constant with respect to N and L. Fol-

lowing Candès and Recht (2009), we assume that AN has a low-rank structure due to 
underlying clusters of individuals and sections of questions; also see Davenport and 
Romberg (2016), Robin et al. (2020) and van der Linden and Hambleton (2013) for 
details. To further incorporate the covariates XN = (xij) ∈ ℝ

N×d , we consider the 
following column-space-decomposition model (Mao et al., 2019),

(1)YN = AN + �N ,
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where �∗ = (�ij) is a d × L coefficient matrix, and B∗
N
= (bij) is an N × L low-rank 

matrix, inherited from the low-rank structure of AN . To avoid identification issues 
for (�∗,B∗

N
) , we assume that XT

N
B∗
N
= 0 ; see Sect. 2.2 for details. For simplicity of 

notation, we omit the dependence of the elements on N in the matrices.

Remark 1  Under survey sampling, the finite population is often assumed to be a 
random sample from a super-population model; refer to Section 2.2 of Chen et al. 
(2020), Section 1.3.1 of Fuller (2009), Section 1 of Tan (2013) and Section 2 of Wu 
(2003) for details. Different from existing works, we consider an additional fixed 
effect B∗

N
 in the super-population model (2). For example, in the NHANES Ques-

tionnaire Data (https://​www.​cdc.​gov/​nchs/​nhanes), there exist different sections of 
questions, such as health and nutrition status and education, and it is reasonable to 
assume a fixed effect for the responses in the same section. Besides, there may also 
exist common effects for respondents sharing certain hidden common characters. 
Instead of specifying B∗

N
 parametrically, we only assume a low-rank structure for it 

to achieve robustness. There have been several works taking specific distributions of 
responses into account (Alaya and Klopp, 2019; Fan et al., 2019; Robin et al., 2020) 
under general setups, but it is beyond our scope to investigate those methods under 
complex survey sampling.

In practice, it is both time-consuming and expensive to conduct a census, and 
survey sampling serves as a golden standard to estimate population parameters. 
Assume that a sample of size n is generated by a probability sampling design 
(Fuller, 2009, Chapter 1). For i = 1,… ,N , let {Ii ∶ i = 1,… ,N} be the sampling 
indicators, and �i = E(Ii ∣ UN) be the corresponding inclusion probability, where 
Ii = 1 if the ith unit is sampled and 0 otherwise, and the expectation is taken with 
respect to the sampling design conditional on the finite population. Without loss 
of generality, assume that the first n subjects of the finite population are sam-
pled, and denote Mn and MN to be generic sample and population data matrices, 
respectively. If the sample data were fully observed, we could use the following 
Horvitz–Thompson estimator (Horvitz and Thompson, 1952) to estimate �j:

It follows that �̂j is a design-unbiased estimator of �j given the finite population, that 
is, E(�̂j ∣ UN) = �j.

However, nonresponse is common in survey sampling (Keiding and Louis, 
2016), and ignoring the nonresponse leads to erroneous inference. In the presence 
of nonresponse in the sample data matrix Yn , we propose to impute the nonre-
sponse simultaneously by the following risk function:

(2)AN = XN�
∗ + B∗

N
,

(3)�̂j =
1

N

N∑
i=1

Ii

�i
yij.

https://www.cdc.gov/nchs/nhanes
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where rij is the response indicator with response probability pij associated with yij , 

(M)ij = mij for a generic matrix M = (mij) , “ ◦ ” is the Hadamard product with 

A◦B = (aijbij) for two matrices A = (aij) and B = (bij) of the same dimension, 

Rn = (rij) ∈ {0, 1}n×L is the response indicator matrix with rij = 1 if yij is observed 

and rij = 0 otherwise, P†
n
= (p−1

ij
) ∈ ℝ

n×L , ‖M‖F = (
∑n

i=1

∑L

j=1
m2

ij
)1∕2 is the Frobe-

nius norm of an n × L matrix M = (mij) , and Dn = diag(�1,… ,�n) is a diagonal 

matrix with �i being the (i,  i)th entry. Ideally, the risk function is associated with 

estimation of (�∗,B∗
n
) , where B∗

n
 is the sample counterpart of B∗

N
 . If the sampling 

mechanism is non-informative, there is no need to adjust sampling weights for esti-

mating (�∗,B∗
n
) in (4). Adjusting for sampling weights, however, achieves two goals. 

First, the expectation of (4) is the population risk function

so we target for estimating parameters for the population data matrix not for the 
sample data matrix, where RN and P†

N
 are the corresponding population versions of 

Rn and P†
n
 , respectively. Second, it allows for informative sampling, under which the 

empirical risk function without sampling weights is biased of the population risk 
function; refer to Pfeffermann (1993) for details.

Remark 2  Another commonly used population risk function which leads to unbiased 
minimizer (�∗,B∗

N
) would be E‖RN ◦P∗

N
◦ (YN − XN� − B)‖2

F
 where 

P∗
N
= (p

−1∕2

ij
) ∈ ℝ

N×L . In this paper, we adopt the former one so that we can com-
pletely separate the loss into two parts by utilizing the orthogonality between �∗ and 
B∗
N

 . Due to the existence of RN ◦P∗
N

 , we cannot eliminate the inner product term for 
the later risk function, when separating the XN� and B parts.

2.2 � Non‑identifiability of (ˇ∗
, B∗

n
)

In the population risk function (6), XT
N
B∗
N
= 0 guarantees that (�∗,B∗

N
) is identifi-

able and the unique minimizer of (6); see Proposition 1 of Mao et al. (2019) for 
details. Moreover, the decomposition of AN into XN�

∗ ∈ C(XN) and B∗
N
∈ N(XN) 

gives benefits for showing theoretical properties of the estimators and encourages 

(4)R∗(�,Bn) =
1

NL

N∑
i=1

Ii

�i

L∑
j=1

{
rij

pij
yij − (XN�)ij − bij

}2

(5)=
1

NL

‖‖‖D
−1∕2
n

(
Rn◦P

†
n
◦Yn − Xn� − Bn

)‖‖‖
2

F
,

(6)R(�,B) =
1

NL
E
‖‖‖RN ◦P

†

N
◦YN − XN� − B

‖‖‖
2

F
,
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an efficient algorithm allowing for a closed-form solution, where C(XN) is the lin-
ear space spanned by the columns of XN , and N(XN) is the orthogonal comple-
ment of C(XN) . However, the same decomposition technique may fail to guaran-
tee identification of the model parameters in the sample risk function R∗(�,Bn) 
in (5) since (D−1∕2

n
Xn)

T(D−1∕2
n

Bn) = XT
n
D−1

n
Bn may not be a zero matrix. Even 

for simple random sampling with �i = n∕N for i = 1,… ,N , we cannot ensure 
XT
n
D−1

n
Bn = Nn−1XT

n
Bn = 0 . Thus, there is no space restriction for both � and 

Bn in R∗(�,Bn) . Specifically, for any (�,Bn) and nonzero �1 , we always have 
R∗(�,Bn) = R∗(� + �1,Bn − Xn�1).

To deal with the lack of identifiability, we decompose

where PD−1∕2
n

Xn
= D−1∕2

n
Xn(X

T
n
D−1

n
Xn)

−1XT
n
D−1∕2

n
 , P⟂

D−1∕2
n

Xn

= I − PD−1∕2
n

Xn
 and I is the 

n × n identity matrix. Denote

Then, we have B∗�
n
∈ N(D−1∕2

n
Xn) , so we can decompose the objective function 

R∗(�,Bn) as

It can be seen that �∗� and B∗�
n

 are the unique minimizers of R∗(��,B�
n
) . Although �∗ 

and B∗
n
 cannot be uniquely determined, we ensure that Xn�

∗� + D1∕2
n

B∗�
n
= Xn�

∗ + B∗
n
, 

which is sufficient to estimate the parameters of interest �j for j = 1,… , L . There-
fore, in what follows, we focus on estimating �∗� and B∗�

n
.

2.3 � Estimation of ˇ∗� and B∗�
n

Since Pn = (pij) ∈ ℝ
n×L is unknown, we adopt the assumption of missingness at 

random (Rubin, 1976) and consider a maximum likelihood estimator P̂n of Pn 
based on the following logistic regression model:

D−1∕2
n

(Rn ◦P
†
n
◦Yn − Xn� − Bn)

= D−1∕2
n

(
Rn ◦P

†
n
◦Yn

)
− D−1∕2

n
Xn� − PD−1∕2

n
Xn
(D−1∕2

n
Bn)

− P
⟂

D−1∕2
n

Xn

(D−1∕2
n

Bn),

�∗� = �∗ + (XT
n
D−1

n
Xn)

−1XT
n
D−1

n
B∗
n
, B∗�

n
= P

⟂

D−1∕2
n

Xn

(D−1∕2
n

B∗
n
).

R∗(�,Bn) = R∗(��,B�
n
)

=
1

NL

[‖‖‖PD−1∕2
n

Xn

{
D−1∕2

n

(
Rn ◦P

†
n
◦Yn

)}
− D−1∕2

n
Xn�

�‖‖‖
2

F

+
‖‖‖‖P

⟂

D−1∕2
n

Xn

{
D−1∕2

n

(
Rn ◦P

†
n
◦Yn

)}
− B�

n

‖‖‖‖
2

F

]
.

(7)pij = pij
(
xi
)
=

exp
{(

1, xT
i

)
� .j
}

1 + exp
{(

1, xT
i

)
� .j
} ,
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where � .j ∈ ℝ
d+1 is the parameter vector specific for the jth column of Yn . Once P̂n is 

estimated, we consider

where P̂
†

n
 is the matrix containing the inverse of the estimated response probabilities. 

Since �′ and B′
n
 are high-dimensional, directly minimizing R̂∗(��,B�

n
) would often 

result in over-fitting. To avoid such an issue, we incorporate penalty terms for those 
two parameters and consider

where ‖M‖∗ = trace(
√
MTM) is the nuclear norm of a generic matrix M , and �1 , 

𝜏2 > 0 along with 0 ≤ � ≤ 1 are regularization parameters. Since B∗
N

 is assumed to 
be low-rank, B∗

n
 is also low-rank and rank(B∗�

n
) = rank(B∗

n
) . Similar to the rank sum 

norm, the nuclear norm also encourages a low-rank solution; see Candès and Recht 
(2009) for details. The two additional Frobenius norm penalties for �′ and B′

n
 are 

applied to improve finite sample performance (Zou and Hastie, 2005; Harchaoui 
et  al., 2012; Li et  al., 2012; Sun and Zhang, 2012; Kim et  al., 2015; Mao et  al., 
2019).

It is essentially a ridge regression problem to estimate �′ , and we have

To obtain B̂
′

n
 , following the same argument in Proposition 2 of Mao et al. (2019), we 

can extend the searching domain for B�
n
∈ N(D−1∕2

n
Xn) in the minimization problem 

(8) to be B�
n
∈ ℝ

n×L . This allows us to express the solution B̂
′

n
 in a closed form. Let 

U�VT be the SVD of a generic matrix M , where � = diag({�i}) . For c > 0 , define 
a singular value soft-thresholding operator Tc by Tc(M) = Udiag({

(
�i − c

)
+
})V⊺, 

where x+ = max(x, 0) . It can be shown that the solution B̂
′

n
 in (8) is

Following the common practice in matrix completion (Mazumder et al., 2010), we 
obtain tuning parameters �1 , �2 and � by a 5-fold cross validation procedure. Cross 
validation is widely adopted to choose the tuning parameters; see a voluminous 

R̂∗(��,B�
n
) =

1

NL

[‖‖‖‖PD−1∕2
n

Xn

{
D−1∕2

n

(
Rn ◦ P̂

†

n
◦Yn

)}
− D−1∕2

n
Xn�

�
‖‖‖‖
2

F

+
‖‖‖‖P

⟂

D−1∕2
n

Xn

{
D−1∕2

n

(
Rn ◦ P̂

†

n
◦Yn

)}
− B�

n

‖‖‖‖
2

F

]
,

(8)

(�̂
�
, B̂

�

n
) = argmin

��∈ℝd×L

B�
n
∈N(D−1∕2

n
Xn)

R̂∗(��,B�
n
)

+ �1
‖‖��‖‖2F + �2

{
�‖‖B�

n
‖‖∗ + (1 − �)‖‖B�

n
‖‖2F

}
,

�̂
�
=
(
XT
n
D−1

n
Xn + NL�1I

)−1
XT
n
D−1

n

(
Rn ◦ P̂

†

n
◦Yn

)
.

B̂
�

n
=

1

1 + (1 − �)NL�2
T�NL�2∕2

[
P
⟂

D−1∕2
n

Xn

{
D−1∕2

n

(
Rn ◦ P̂

†

n
◦Yn

)}]
.
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literature such as Bi et  al. (2017), Liu et  al. (2020), Mao et  al. (2019, 2021) and 
Mazumder et al. (2010). After obtaining (�̂

�
, B̂

�

n
) , an estimator of An is

2.4 � Comparison with some existing approaches

It is worth comparing the proposed matrix completion method with existing 
approaches for imputation under survey sampling. The multiple imputation (Rubin, 
1978) assumes a joint model of (xi, yi) and uses all available variables for imputa-
tion. However, fully parametric modeling is sensitive to model misspecification, and 
the computation may be cumbersome when the dimension of yi is large. To impute 
each missing item, hot deck imputation chooses an observed datum as a “donor” 
based on a specific distance using some fully observed auxiliary information. For 
hot deck imputation, an underlying regression model, fj(xi) , is (implicitly) assumed 
for the item yij . Therefore, only the fully observed auxiliary information xi is used 
for imputing yij but not yik with k ≠ j.

For the proposed approach, we do not make restrictive parametric model assump-
tions. Instead, the low-rank structure of AN suggests a general decomposition of AN 
to be AN = UNV

T
N

 , where UN ∈ ℝ
N×rAN and VN ∈ ℝ

L×rAN are two hidden matrices. 
Due to the low-rank assumption, we have rAN

≪ N and rAN
≪ L . In our column-

space-decomposition model, we enforce part of the hidden matrix UN to be a fully 
observed matrix XN ∈ ℝ

N×d and denote the corresponding part in VN to be �∗ , 
where �∗ is just a different notation and still totally unspecified. Thus, the decompo-
sition could be written as AN = (XN ,U

∗
N
)(�∗,V∗

N
)T with B∗

N
= U∗

N
V∗

N

T . In a general 
setting, the only restriction for U∗

N
 is rank(XN ,U

∗
N
) = rAN

 , which means that each 
column of U∗

N
 cannot be fully expressed by the columns in XN . However, it allows 

for cor(XN ,U
∗
N
) ≠ 0 . Then, it is difficulty to identify the hidden matrix U∗

N
 under the 

general setting. Thus, we restrict the column space of U∗
N

 to be orthogonal to the 
column space of XN . Fortunately, the number of covariates d is usually fixed and 
d ≪ rAN

 , so we would not lose too much freedom for U∗
N

.

2.5 � Estimation of �j

After imputation, we can estimate �j by the Horvitz–Thompson estimator (3) applied 
to the imputed dataset. However, it is well known that the estimated low-rank matrix 
B̂
′

n
 is biased when n is finite due to regularization (Carpentier and Kim, 2018; Chen 

et al., 2019; Foucart et al., 2017; Mazumder et al., 2010). Therefore, the resulting 
imputation estimator is biased. Researchers have proposed different procedures to 
alleviate or eliminate the bias. Mazumder et al. (2010) suggested a post-processing 
step by re-estimating the estimated singular values without any theoretical guaran-
tee. Foucart et al. (2017) proposed an algorithm based on projection onto the max-
norm ball to de-bias the estimator under non-uniform and deterministic sampling 

(9)Ân = Xn�̂
�
+ D1∕2

n
B̂
�

n
.
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patterns. Carpentier and Kim (2018) considered an estimator using an iterative hard 
thresholding method and showed that the entry-wise bias is small when the sam-
pling design is Gaussian. More recently, Chen et al. (2019) developed a de-biasing 
procedure using a similar idea to de-biasing LASSO estimators and showed nearly 
optimal properties for the resulting estimator. Despite these advances in literature, 
the scenarios considered by the existing works are restricted to deterministic sam-
pling, Gaussian sampling or missing completely at random, which are not applicable 
under survey sampling.

We use a simple strategy borrowing the idea from the AIPW literature (Qin et al., 
2017; Robins et al., 1994) and consider an AIPW estimator of �j as

and it solves 
∑N

i=1
Ii�

−1
i
{rijp̂

−1
ij
(yij − �) − p̂−1

ij
(rij − p̂ij)(âij − �)} = 0 , where where 

N̂ =
∑N

i=1
Ii�

−1
i

 is the estimated population size, and p̂ij and âij are the (i,  j)th ele-
ment of P̂n and Ân , respectively. Under regularity conditions, it can be shown that

when the response model (7) is correctly specified. Since the leading term of (11) 
is unbiased for �j conditional on the estimated {âij ∶ i = 1,… , n;j = 1,… , L} if the 
response model is correctly specified, �̂j,AIPW is asymptotically unbiased. In the sim-
ulation study, we have compared the proposed estimator (10) with other estimators, 
and numerical results show that the proposed estimator is more efficient.

3 � Asymptotic properties

In this section, we first study the asymptotic properties of the estimator Ân in (9) 
under the logistic regression model (7). Then, we establish the average convergence 
rate of �̂j,AIPW − �j for j = 1,… , L.

For asymptotic inference, we follow the framework of Isaki and Fuller (1982) and 
assume that both the population size N and the sample size n diverge to infinity. Let 
‖M‖ = �max(M) and ‖M‖∞ = maxi,j �mij� be the spectral and the maximum norms 
of a generic matrix M = (mij) , respectively. We use “ ≍ ” to represent the asymptotic 
equivalence in order, that is, an ≍ bn is equivalent to an = O(bn) and bn = O(an) . The 
technical conditions are delegated to Appendix A.

For any 𝛿𝜎 > 0 , positive constants Cd , Cg , C and t ∈ (d + 3,+∞) , define

(10)�̂j,AIPW =
1

N̂

N∑
i=1

Ii

�i

{
rij(yij − âij)

p̂ij
+ âij

}
,

(11)�̂j,AIPW =
1

N

N∑
i=1

Ii

�i

{
rij(yij − âij)

pij
+ âij

}
+ op(1),
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and �n,L(�� , t) = 4∕(n + L) + 4Cdt exp{−t∕2} + 4∕L + C log−�� (n) , where pmin is 
positive constant satisfying pmin ≤ min{pi,j} ; see Condition  C6 in Appendix  A 
for details. We can verify that limt→∞{limn,L→∞ �n,L(�� , t)} = 0 , and we implicitly 
assume that L → ∞ in the following analysis. If n1∕2L−3∕2 log (n)p2

min
≥ (d + 3) , by 

choosing t such that

we can show supt Δ(�� , t) ≍ N1∕2n−1L−1 log1∕2(n)p
−1∕2

min
 , which is denoted by Δ(��) . 

The requirement n1∕2L−3∕2 log (n)p2
min

≥ (d + 3) is easy to fulfill as long as n is large 
enough. A similar condition is also considered by Robin et  al. (2020) and Zhang 
et al. (2020).

Theorem 1  Assume Conditions C1–C6 given Appendix A, p−1
min

= O(L log−1(n + L)) 
and the logistic model (7) hold. Choose t as (13), �1 ≍ N−1nL−1log−1∕2(n)Δ(��) , 
1 − � ≍ (nL)−1 , �2 ≍ p

−3∕2

min
N−1n1∕4L−1∕4 log1∕2(L) log��∕3(n) in (8) for any 𝛿𝜎 > 0 . 

Then, for some positive constant C1 and C2 , with probability at least 1 − �n,L(�� , t) , 
we have

A proof of Theorem  1 is given in Appendix C.1. Theorem  1 implies that as 
limt→∞{limn,L→∞ �n,L(�� , t)} = 0,

As we pointed out in Sect.  2.2, even with the knowledge of (�∗�,B∗�
n
) , we cannot 

recover (�∗,B∗
n
) exactly. Fortunately, we have Ân = Xn�̂

�
+ D1∕2

n
B̂
�

n
, which enables 

us to derive the asymptotic bound for (nL)−1‖Ân − An‖2F given in the following 
theorem.

Theorem 2  Assume that the conditions in Theorem 1 hold. For a positive constant 
C3 , with probability at least 1 − �n,L(�� , t) , we have

(12)
Δ
(
�� , t

)
= max

{
N1∕2n−1L−1 log1∕2 (n)p

−1∕2

min
,

N1∕2n−5∕4L−1∕4 log1∕2 (L) log��∕4 (n)t1∕2p
−3∕2

min

}
,

(13)d + 3 < t < n1∕2L−3∕2 log (n)p2
min

,

(mL)−1
‖‖‖�̂

�
− �∗�‖‖‖

2

F
≤ C1rBN

L−1 log (n)p−1
min

,

(nL)−1
‖‖‖B̂

�

n
− B∗�

n

‖‖‖
2

F
≤ C2rBN

Nn−1L−1 log (n)p−1
min

.

‖B̂�

n
− B∗�

n
‖2
F
= Op

�
rBN

Nn−1L−1 log(n)p−1
min

�
,

(mL)−1‖�̂�
− �∗�‖2

F
= Op

�
rBN

L−1 log(n)p−1
min

�
(nL)−1.
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A brief proof of Theorem  2 can be found in Appendix C.2. The term 

(nL)−1‖Ân − An‖2F has the same order with upper bound of (mL)−1‖�̂�
− �∗�‖2

F
 . To 

ensure the convergence of (nL)−1‖Ân − An‖2F , we only require that 

n = O{exp(r−1
BN

Lpmin)} which is quite mild. Under survey sampling, it is reasonable 

to assume that pmin ≍ 1 , especially when the participants are awarded. Thus, the 

assumption that p−1
min

= O(L log−1(n + L)) is easy to fulfill as long as L is large 

enough. Besides, the convergence rate for (nL)−1‖Ân − An‖2F can be simplified as 

rBN
L−1 log(n) if pmin ≍ 1.

Theorem 3  Assume that the conditions in Theorem 1 and Condition C7 in Appendix 
A hold and pmin ≍ 1 . Then, we have

A proof for Theorem  3 is given in Appendix C.3. By Theorem  3, the mean 
squared difference between �̂j,AIPW and �j among the L questions is bounded by 
Op{rBN

L−1 log (n)} . To ensure the convergence of L−1
∑L

j=1
(�̂j,AIPW − �j)

2 , similarly 
as before, we only require that n = o{exp(r−1

BN

L)} which is quite mild. Although we 
have discussed the average convergence rate for the AIPW estimator �̂j,AIPW for 
j = 1,… , L in Theorem 3, it is not easy to improve the convergence rate for each 
�̂j,AIPW . Up to our knowledge, there do not exist column-wise or element-wise con-
vergence results in the literature of matrix completion. Thus, it is hard to establish a 
limiting distribution for each �̂j,AIPW , and this topic will be pursued in the future. 
Besides, an unbiased variance estimator of �̂j,AIPW is also intractable, and we propose 
to use a plug-in variance estimator instead. For example, under Poisson sampling, a 
plug-in variance estimator for the AIPW estimator is

We also discuss the plug-in variance estimators for other commonly used sampling 
designs in Appendix D.

For the NHANES and other national surveys, a stratified multi-stage sampling 
design is used, and only the final weight is available. Then, it is impossible to derive 
the above plug-in variance estimator. For such a design, we consider the modified 

(nL)−1
‖‖‖Ân − An

‖‖‖
2

F
≤ C3rBN

L−1 log(n)p−1
min

.

L−1
L∑
j=1

(�̂j,AIPW − �j)
2 = Op{rBN

L−1 log(n)}.

V̂j,poi = N−2

N∑
i=1

Iirij(1 − pij)

�2
i
p2
ij

(yij − âij)
2

+ N−2

N∑
i=1

Iirij(1 − �i)

pij�
2
i

(yij − �̂j,AIPW)
2.
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balanced repeated replication (Rao and Shao, 1999) for the variance estimation; a 
brief discussion about this method is provided in Appendix E.

4 � Simulation

In this section, we compare the proposed estimator with its competitors under strati-
fied two-stage cluster sampling. The corresponding R code can be found in https://​
github.​com/​mxjki/​Matrix_​Compl​etion_​For_​Compl​ex_​Survey_​with_​Multi​varia​te_​
Missi​ngness. See Section  S1 of the Supplementary Material for simulation under 
single-stage sampling.

We use (1) and (2) to generate a finite population UN , consisting of H = 15 strata. 
For h = 1,… ,H , generate Nh ∼ Poi(10) + 20 and Nhi ∼ Poi{10(�h + �hi)} + 40 , 
where Nh is number of clusters of the hth stratum, Nhi is the size of the ith cluster 
for i = 1,… ,Nh , �h ∼ Exp(3) is the stratum effect, �hi ∼ Exp(3) is the cluster effect 
independent with the stratum effect, Poi(�) is a Poisson distribution with parameter 
� , and Exp(�) is the exponential distribution with rate parameter � . The population 
size is N =

∑H

h=1

∑Nh

i=1
Nhi = 19,658 in the simulation study.

We set the dimension of covariate to be d = 20 , number of questions to be L = 500 , 
and the rank of B∗

N
 to be m = 10 . The elements of xhij are independently generated by 

N(0.5, 12) + (�h + �hi)∕2 for j = 1,… ,Nhi , and the elements of �∗ are independently 
generated by N(0.5, 12) . To generate B∗

N
 , we first generate an N × m matrix BL and an 

m × L matrix BR , where the elements of BL is generated by N(1, 32) + (�h + �hi)∕3 for 
the row vector corresponds to xhij , and the elements of BR are independently generated 
by N(1, 32) . Then, B∗

N
= P

⟂

XN
BLBR . For the random errors in (1), we consider the fol-

lowing two scenarios. For Scenario I, we generate �ij ∼ N(0, 122) for i = 1,… ,N and 
j = 1,… , L . Scenario I corresponds to the case where the stratum and cluster effects of 
the study variable are explained by the covariates the random errors are randomly gen-
erated, and it corresponds to the model we have assumed in (1). For Scenario II, 
�kj = 10� �

h(k)
+ 9�hi(k) + �kj for k = 1,… ,N and j = 1,… , L , where h(k) and hi(k) are 

the stratum and cluster indexes for the kth element, respectively. Under the second sce-
nario, however, random errors involve additional stratum and cluster effects, so they are 
not independent. We consider the Scenario II to test the robustness of the proposed 
method.

Within each stratum, we consider a two-stage sampling design. In the first stage, 
two clusters are selected using probability-proportional-to-size sampling with selec-
tion probability proportional to the cluster size. Within each selected cluster, simple 
random sampling is conducted to draw a sample of size nc . We consider two differ-
ent sample sizes nc = 10 and nc = 20 for the second stage sampling. The following 
estimation methods are compared: 

	 I	 Hot deck imputation (HDI). For each item with rij = 0 , we use ykj as the imputed 
value, where xk is nearest to xj among {xl ∶ rlj = 1} in terms of the Euclidean 
norm. Treating the imputed values as observed ones, we estimate �j by (3).

https://github.com/mxjki/Matrix_Completion_For_Complex_Survey_with_Multivariate_Missingness
https://github.com/mxjki/Matrix_Completion_For_Complex_Survey_with_Multivariate_Missingness
https://github.com/mxjki/Matrix_Completion_For_Complex_Survey_with_Multivariate_Missingness
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	 II	 Multiple imputation (MI). We adopt the multivariate imputation by chained 
equations (MICE) by van Buuren and Groothuis-Oudshoorn (2011). MICE 
fully specifies the conditional distribution for the missing data and uses a pos-
terior predictive distribution to generate imputed values for the nonresponse 
items. However, it is impossible for MICE to impute all missing responses in 
Yn at the same time due to the computational issues. For comparison, we only 
use the first 20 items of Yn to specify the conditional distribution for MICE 
and generate imputed values for the corresponding nonresponse. Then, we can 
use (3) to estimate �j.

	 III	 Inverse probability weighting method (IPW). For j = 1,… , L , a logistic regres-
sion model (7) is fitted. Then, �j is estimated by �̂j,IPW = N−1

∑n

i=1
rijp̂

−1
ij
yij.

	 IV	 AIPW estimator using a linear regression model (AIPWLR). For j = 1,… , L , 
consider the following linear regression model:

and the parameters in (14) are estimated by

Then, we can use the AIPW estimator based on the linear model (14) to esti-
mate �j.

	 V	 AIPW estimator using the proposed method (IPWMC).

(14)yij = �0j + xT
i
�1j,

(�̂0j, �̂1j) = argmin
(�0j,�1j)

n∑
i=1

rij

�ip̂ij
(yij − �0j − xT

i
�1j)

2.

Table 1   Summary of MSE for different estimation methods under stratified two-stage sampling and dif-
ferent scenarios

Stat HDI MI IPW AIPWLR AIPWMC Full

I n
c
= 10 Mean 24.95 6.54 7.14 7.53 4.59 3.49

SE 10.84 2.00 2.69 2.91 1.58 1.24
n
c
= 20 Mean 23.91 3.06 3.49 3.55 2.25 1.72

SE 10.81 0.86 1.30 1.37 0.78 0.64
II n

c
= 10 Mean 25.14 6.28 7.26 7.65 5.55 3.71

SE 10.63 1.88 2.65 2.90 1.91 1.28
n
c
= 20 Mean 24.42 3.08 3.75 3.81 2.75 2.01

SE 10.47 0.80 1.36 1.43 0.89 0.66

Table 2   Mean and the standard 
error of the relative bias for the 
500 variance estimators using 
the modified balanced repeated 
replication method

Scenario I Scenario II

Mean SE Mean SE

n
c
= 10 0.01 0.12 0.09 0.16

n
c
= 20 0.04 0.09 0.07 0.13
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 For the response model (7), we use logit(pij) = �0 +
∑3

j=1
�jxij , where 

logit(p) = log(p) − log(1 − p) , �0 ∼ N(0.3, 0.12) and �j ∼ N(−0.1, 0.12) for 
j = 1,… , 3 . The response rate is about 0.53. We also consider the Horvitz–Thomp-
son estimator (Full) in (3) using the fully observed data for comparison.

We conduct 1000 Monte Carlo simulations. Table 1 summarizes the mean and 
standard error of MSEs of different questions for different methods. Under the strati-
fied two-stage sampling, the AIPW estimator using the proposed method performs 
best among the estimation methods since it has smallest mean and standard error 
of MSEs. Although the Horvitz–Thompson estimator is better than the AIPW esti-
mator using the proposed method, it cannot be used in practice in that the fully 
observed sample is not available. Besides, compared with the case under Scenario 
II, the AIPW estimator using the proposed method performs better under Scenario I.

We also test the modified balanced repeated replication method (Rao and Shao, 
1999) for variance estimation of the AIPW estimator using the proposed method, 
and the Monte Carlo mean and standard error of the relative bias for the 500 vari-
ance estimators is shown in Table 2. The mean of the relative bias of the variance 
estimators are reasonably small, and the standard error of the relative bias decreases 
as the sample size increases under both scenarios. Compared with Scenario II, the 
variance estimator has a smaller relative bias under Scenario I. In addition, the vari-
ance estimator is conservative regardless of the sample size and scenarios. Thus, the 
performance of the modified balanced repeated replication method is satisfactory for 
estimating the variance of the AIPW estimator using the proposed method.

Remark 3  The simulation shows that the proposed AIPWMC estimator outperforms 
the IPW counterpart numerically in terms of the mean squared error. However, theo-
retically, it is hard to compare the asymptotic efficiency of the two estimators in our 
context. First, even for a parametric model, Qin et  al. (2017) pointed out in their 
Theorem 1 that there are no general results for comparing the asymptotic variance 
between the IPW and AIPW estimators. Besides, the AIPWMC estimator relies on 
semiparametric matrix completion, and no theoretical results exist for column-wise 
or element-wise analysis in the literature of matrix completion, as we have men-
tioned in the preceding section. Therefore, we will leave the research question as a 
future research topic.

5 � Application

NHANES is a well-structured program to assess the health and nutrition status of 
children and adults in the United States. The survey combines physical examinations 
and questionnaires and, therefore, can provide a thorough and detailed health status 
assessment. Moreover, analyzing annual data provides the trend of health status of 
the entire population over time, so it is important for policy makers.

A stratified multi-stage sampling has been conducted to obtain the NHANES 
samples. There are about 15 strata, formed by state-level health-related variables 
such as death rate and infant mortality rate. The primary sampling unit consists 
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of counties and is selected by probability-proportional-to-size sampling, and some 
primary sampling units with large measure of size are selected with certainty. The 
second stage is conducted by selecting area segments, consisting of census blocks 
based on the 2000 census data. The third stage selects dwelling units, and the fourth 
one is a selection of eligible members. See Chen et al. (2020) for details about the 
sampling design. Thus, participants are nationally representative. Data are released 
in a two-year cycle to guarantee statistically stable estimates, and there are two PSUs 
selected within each stratum in every two-year sample. The available Questionnaire 
Data dates back to 1999, and the most updated one is the 2015–2016 cycle. This 
data contains family-level information including food security status as well as indi-
vidual level information including dietary behavior and alcohol use. The question-
naire has evolved since 1999, and new questions have been added subsequently.

Unfortunately, the analysis of the NHANES is challenging due to the complex 
study designs and multivariate missingness, and almost all of the health-related 
questions suffer from missingness. In the 2015–2016 Questionnaire Data, for exam-
ple, there are 245 questions, which can be answered by all participants. There are 
47 demographic questions, among which 21 fully answered, including age, gender, 
race-ethnicity and education. There are 198 health-related questions, and 136 ques-
tions have nonresponse. Moreover, the response rates of 53 questions are less than 
0.95.

Remark 4  In the NHANES Questionnaire Data, some questions are skipped. For 
example, if the response of “Had at least 12 alcohol drinks in any one year?” is 
“Yes”, the participant may skip the question “Had at least 12 alcohol drinks in the 
entire lifetime?”. If a question is skipped, it is not regarded as an item non-response. 
However, it is not the main topic of our study to investigate missingness of “skipped 
questions”, so we omit them in our analysis. We have carefully reviewed all ques-
tions for the NHANES 2015–2016 Questionnaire Data and picked 198 health-
related questions, which should not be skipped. We focus ourselves on those ques-
tions in this paper, and it would be an interesting topic to study the missingness 
incorporating the “skipped questions” in the future.

Based on the 198 selected questions from the 2015–2016 cycle, Table 3 shows 
the number of questions among them and the percentage of questions with response 
rates less than 0.95 since 1999. Although the number of “non-skipped” questions 
has increased since 1999, there are more of them with low response rates. Thus, 
ignoring the missingness may result in more questionable inference.

Table 3   Number of questions (No. qn) among the 198 selected ones from the 2015–2016 cycle and the 
percent (Pct) of questions with response rates less than 0.95 since 1999

“99–00” represents the 1999–2000 cycle

99–00 01–02 03–04 05–06 07–08 09–10 11–12 13–14 15–16

No. qn 81 108 101 153 167 147 149 175 198
Pct 0.09 0.09 0.12 0.20 0.18 0.23 0.20 0.29 0.27
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We apply the proposed method to analyze the longitudinal NHANES Question-
naire Data. The goal is two-fold. First, we are interested in estimating the popula-
tion mean of health-related questions, such as immunization and diabetes, based on 
the most updated NHANES 2015–2016 Questionnaire Data. Second, we analyze the 
longitudinal trend for some selected questions, and the results are shown in Sec-
tion S2 of the Supplementary Material. We focus on the age group from 20 to 59 
since the corresponding participants should answer all of the 198 selected questions. 
Covariates, including age, gender, marital status, ethnic group and education, are 
used in the analysis.

For estimating the population mean of each question, we consider estimation 
methods in Sect. 4, and the covariates are standardized. Since the population size is 
unavailable, we use N̂ =

∑n

i=1
wi instead, where wi is the sampling weight of the ith 

subject incorporating the sampling design as well as calibration (Fuller, 2009).
Table 4 shows estimation results for three representative items with response 

rates 0.99, 0.94 and 0.86, respectively so the selected questions are representative 
in terms of response rates. We apply the modified balanced repeated replication 
method to estimate the variance of the corresponding estimators except for the 
multiple imputation and hot deck imputation. The variance of the multiple impu-
tation is not estimated due to computational complexity. The variance estimation 
method is not applicable for the hot deck imputation since the imputed values are 
not affected by the repetition procedure.

When the response rate is high, different estimators are similar. As the response 
rate decreases, multiple imputation performs similarly as the AIPW estimator 
using linear regression, and they are different from the remaining three. Com-
pared with others, the estimator by the hot deck imputation is different from the 
other four, especially when the response rate is below 90%. Besides, the variance 
of the inverse probability weighting method is similar with the AIPW estimator 
using linear regression, and the AIPW estimator using the proposed method is 
more efficient than these two estimators regardless of the response rate.

We analyze the result in Table 4 based on the estimators by the AIPW estima-
tor using the proposed method, and we would analyze the trend with respect to 

Table 4   Estimation results for three questions

“I” is about the self-reported greatest weights in pounds. “II” is about the money spent on eating out. 
“III” is about the monthly family income

Items Res Stat Estimation methods

MI HDI IPW AIPWLR AIPWNI AIPWMC

I 0.99 Mean 198.79 198.86 197.38 198.79 198 198.60
SE – – 4.10 4.10 – 3.79

II 0.94 Mean 207.79 200.13 198.40 207.83 207.83 201.50
SE – – 28.63 28.68 – 21.94

III 0.86 Mean 7.86 7.16 7.77 7.86 0.40 7.79
SE – – 1.63 1.63 – 1.48



	 X. Mao et al.

1 3

these three questions in the next section. Question I, “Up to the present time, 
what is the most {you have/SP has} ever weighed?”, is about the self-reported 
greatest weight in pounds, and the response ranges from 75 to 559. The esti-
mated self-reported greatest weight is about 198.6 pounds for the people in the 
age group from 20 to 59, and the corresponding standard error is 3.79 pounds. 
Question II, “During the past 30 days, how much money {did your family/did 
you} spend on eating out? Please include money spent in cafeterias at work or 
at school or on vending machines, for all family members. (You can tell me per 
week or per month.)”, is about the money spent on eating out, and the response 
value ranges from $0 to $3000. The estimated average is $201.5 with standard 
error $21.94. It indicates that people spent about $201.5 on eating out. The third 
question, “Monthly family income (reported as a range value in dollars)”, is about 
the monthly family income, and the response rate of this question is quite low. 
Instead of reporting the actual income, there are 12 levels for the response: level 
1 corresponds to $0–$399, and level 12 to more than $8400. The estimated aver-
age is about level 8. Thus, the monthly family income is about $3750–$4599.

6 � Concluding remarks

We have proposed a new imputation method for survey sampling by assum-
ing a low-rank structure for the super-population model and incorporating fully 
observed auxiliary information. Asymptotic properties of the proposed method 
are investigated. One of the major advantages of the proposed method is that we 
can impute all nonresponse simultaneously for the whole sample data matrix 
consisting of complex missingness patterns. Two different variance estimators 
are suggested. Simulation studies demonstrate that the proposed method is more 
accurate than some commonly used alternatives, including inverse probability 
weighting method and multiple imputation, for estimating all items, and the vari-
ance estimator is satisfactory when the sample size is large.

Our framework can also be extended in the following directions. First, we have 
considered missingness at random; however, in some situations, the missingness 
of yij may depend on its own value, leading to missingness not at random (Rubin, 
1976); that is, yij is also involved in the response probability (7). In this case, we 
will consider the instrumental variable approach (Wang et  al., 2014; Yang et  al., 
2019) or stringent parametric model assumptions (Chang and Kott, 2008; Kim and 
Yu, 2011; Tang et al., 2003) for identification and estimation. Second, even though 
we have proposed an efficient estimator using matrix completion and derived the 
asymptotic bounds, its asymptotic distribution is not completely developed, which 
will be our future work. Third, because causal inference of treatment effects can be 
viewed as a missing data problem, it is intriguing to develop matrix completion to 
deal with a partially observed confounder matrix, which is ubiquitous in practice but 
has received little attention in the literature (Yang et al., 2019).
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Appendix

A Technical conditions

The technical conditions needed for our analysis are given as follows. 

C1	 (a) The random errors {�ij ∶ i = 1,… ,N;j = 1,… , L} in (2) are independently 
distributed random variables such that E(�ij) = 0 and E(𝜖2

ij
) = 𝜎2

ij
< ∞ for all i, j. 

(b) For some finite positive constants c� and � , maxi,jE|�ij|l ≤ 1

2
l!c2

�
�l−2 for any 

positive integer l ≥ 2.
C2	 The inclusion probability satisfies �i ≍ nN−1 for i = 1,… ,N.
C3	 The population design matrix XN is of size N × d such that N > d . Moreover, 

there exists a positive constant ax such that ‖XN‖∞ ≤ ax and XT
N
DNXN is invertible, 

where DN is a diagonal matrix with �i as its (i, i)th entry. Furthermore, there exists 
a symmetric matrix SX with �min(SX) ≍ 1 ≍ ‖SX‖ such that n−1

0
XT
N
DNXN → SX as 

N → ∞ , where n0 =
∑N

i=1
�i is the expected sample.

C4	 There exists a positive constant a such that max{‖XN�
∗‖∞, ‖AN‖∞} ≤ a.

C5	 The indicators of observed entries {rij ∶ i = 1,… ,N;j = 1,… , L} are mutually 
independent, rij ∼ Bern(pij) for pij ∈ (0, 1) and are independent of {�ij}

N,L

i,j=1
 given 

XN . Furthermore, for i = 1,… ,N and j = 1,… , L , Pr(rij = 1|xi, yij) = Pr(rij = 1|xi) 
follows the logistic regression model (7).

C6	 There exists a lower bound pmin ∈ (0, 1) such that mini,j{pij} ≥ pmin > 0 , where 
pmin is allowed to depend on n and L. The number of questions L ≤ n.

C7	 The sampling design satisfies that N−1
∑N

i=1
yi�

−1
i

= Op(n
−1∕2) if N−1

∑N

i=1
y2
i
 is 

asymptotically bounded.

Condition C1(a) is a common regularity condition for the measurement errors in �N , 
and C1(b) is the Bernstein condition (Koltchinskii et al., 2011). Condition C2 is widely 
used in survey sampling and regulates the inclusion probabilities of a sampling design 
(Fuller, 2009). In Condition C3, the requirement N > d is easily met as the number of 
questions in a survey is usually fixed, and the population size is often larger than the 
number of questions. As the dimension of n−1

0
XT
N
DNXN is fixed at d × d , it is mild to 

assume XT
N
DNXN to be invertible, and there exists a symmetric matrix SX as the limit of 

n−1
0
XT
N
DNXN . Please notice that we do not assume randomness for generating XN , and 

it is a common assumption for design-based framework. Furthermore, the sample size 
is often larger than the number of questions, that is, n > d , and it is not hard to show 
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that together with Condition C2, the probability limit of n−1XT
n
Xn is also SX under reg-

ularity conditions. The order of �min(SX) and ‖SX‖ equals to 1 is due to ‖XN‖∞ < ∞ . 
Condition C4 is also standard in the matrix completion literature (Cai and Zhou, 2016; 
Koltchinskii et al., 2011; Negahban and Wainwright, 2012). Especially, it is reasonable 
to assume all the responses are bounded in survey sampling. Condition C5 describes 
the independent Bernoulli model for the response indicator of observing yij , where the 
probability of observation pij follows the logistic model (7). In Condition C6, the lower 
bound pmin is allowed to go to 0 with n and L growing. This condition is more general 
than we need for a typical survey, and pmin ≍ 1 suffices. Typically, the number of ques-
tions L grows slower than the number of participants n in survey sampling. Thus, the 
assumption that L ≤ n is quite mild. Condition C7 is a mild restriction on the estimator 
for the population mean, and it can be satisfied under general sampling designs. To 
get general results, we do not make any assumptions for the asymptotic relationship 
between the population size N and the sample size n; see Theorem 1 for details. We can 
make further assumptions for the sample sizes to guarantee certain convergence prop-
erties; see the discussion of Theorem 3.

B Lemmas

Under the logistic model (7), together with the results in Mao et  al. (2019) and 
Sweeting (1980), it can been shown that for all t > d + 3 , there exist some positive 
constants Cg , C and Cd such that Pr{

∑
ij(1∕p̂ij − 1∕pij)

2 ≥ Cgp
−3
min

t} ≤ Cdt exp{−t∕2}

exp{−t∕2} + Lmaxj supt �Pr{∑i(1∕p̂ij − 1∕pij)
2 ≥ t} − Pr(�2

d+1
≥ Cgp

−3
min

t)� . Then, 
maxj supt �Pr{∑i(1∕p̂ij − 1∕pij)

2 ≥ t} − Pr(�2
d+1

≥ Cgp
−3
min

t)� ≤ L−2 and Cdt exp{−t∕2} 
is a function independent of n and L such that limt→∞ t exp{−t∕2} = 0.

Write Jij = ei(n1)e
⊺

j
(n2) , where ei(n) ∈ ℝ

n is the standard basis vector with the 
i-th element being 1 and the rest being 0. Now we present several lemmas.

Lemma 1  Under Conditions C2 and C3 and Poisson sampling, we have

Proof of Lemma 1  Denote ei to be a column vector of length d with jth element being 
1 and others being 0. Recall that n0 =

∑N

k=1
�k is the expected sample size. For 

i = 1,… , d and j = 1,… , d , consider

where the expectation is take with respect to the sampling design, and xi is the ith 
row of XN.

Under Poisson sampling, we have

(15)n−1XT
n
Xn = SX + op(1).

(16)
E(n−1

0
eT
i
XT
n
Xnej) = n−1

0
E

(
N∑
k=1

Ikxkixkj

)
= n−1

0

N∑
i=1

xki�kxkj

= n−1
0
eT
i
XT
N
DNXNej,
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By a similar argument in Wang et al. (2019), we can show that n∕n0 → 1 in prob-
ability as N → ∞ under Condition  C2. By Condition  C3, (16) and (17), we have 
proved Lemma 1. 	�  ◻

Lemma 2  Let Ψ(1) =
∑

ij rij�ijJij∕(nLp̂ij�
1∕2

ij
) . Under Conditions C1, C5 and C6 and 

Poisson sampling, for some positive constants C1 , c� , � , �� and all t > d + 3 , we have

holds with probability at least 1 − 1∕(n + L) − C
d
t exp{−t∕2} − 1∕L − 12c2

�
�2 log−�� (n).

Lemma 3  Let Ψ(2) =
∑

ij aij(rij∕pij − 1)Jij∕(nL�
1∕2

ij
) . Under Conditions C4–C6 and 

Poisson sampling, for some positive constants C2 , we have

holds with probability at least 1 − 1∕(n + L).

Lemma 4  Let Ψ(3) =
∑

ij aij(rij∕p̂ij − rij∕pij)Jij∕(nL�
1∕2

ij
) . Under Conditions C4 and 

C6 and Poisson sampling, for some positive constants C3 , �� and all t > d + 3 , we 
have

holds with probability at least 1 − Cdt exp{−t∕2} − 1∕L.

It is easy to show Lemma 2–4 by the proof of Lemma S4.1–S4.3 in the supplemen-
tary material of Mao et al. (2019).

C Proofs

C.1 Proof of Theorem 1

With the definition of Δ(�� , t) in (12), under Conditions C1–C6 and Poisson sampling, 
together with Lemmas 2–4, We have for a positive constant C0,

(17)

var(n−1
0
eT
i
XT
n
Xnej) = n−2

0

N∑
k=1

𝜋k(1 − 𝜋k)xk,ixk,j

< n−2
0

N∑
k=1

𝜋kxk,ixk,j

= n−1
0

(
n−1
0
eT
i
XT
N
DNXNej

)
.

‖‖‖Ψ
(1)‖‖‖
≤ C1 max

{
N1∕2n−1L−1 log1∕2 (n)p

−1∕2

min
,N1∕2n−5∕4L−1∕4 log1∕2 (L) log��∕4 (n)t1∕2p

−3∕2

min

}

‖‖‖Ψ
(2)‖‖‖ ≤ C2N

1∕2n−1L−1 log1∕2 (n)p
−1∕2

min

‖‖‖Ψ
(3)‖‖‖ ≤ C3N

1∕2n−5∕4L−1∕4 log1∕2 (L) log��∕4 (n)t1∕2p
−3∕2

min
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with probability at least 1 − 2∕n − 2Cdt exp{−t∕2} − 2∕L − 12c2
�
�2 log−�� (n).

Let X�
n
= D−1∕2

n
Xn and �

n,L(�� , t) = 4∕(n + L) + 4C
d
t exp{−t∕2} + 4∕L + C log−�� (n) 

for a positive constant C. By choosing t as (13), �1 ≍ N−1nL−1 log−1∕2(n)Δ(��) and 
�2 ≍ �

−1∕2
g N−1n1∕4L−1∕4 log1∕2(L) log��∕3(n) , where Δ(��) = N

1∕2
n
−1
L
−1 log1∕2(n)p

−1∕2

min
 

and 1 − � ≍ (nL)−1 in (8) for any 𝛿𝜎 > 0 , together with Condition C2 and Poisson sam-
pling, it follows the same proof with the proof of Corollary 1 in Mao et al. (2019) that, 
for some constants C1 and C2 , with probability at least 1 − �n,L(�� , t),

Thus it is easy to obtain that

under Condition C3. 	�  ◻

C.2 Proof of Theorem 2

Due to the observations that

together with Theorem 1, it is easy to obtain the result under Condition C2 and Pois-
son sampling.	�  ◻

C.3 Proof of Theorem 3

Denote

for j = 1,… , L . The difference between �̂j,AIPW in (10) and 𝜃j,AIPW in (18) is that we 
use estimators N̂ , p̂ij and âij for �̂j,AIPW but use true values N, pij and aij for 𝜃j,AIPW . 

���Ψ
(1)��� + ‖Ψ(2)‖ + ���Ψ

(3)��� ≤ C0Δ(�� , t),

both
1

nL

‖‖‖Xn�̂
�
− Xn�

∗�‖‖‖
2

F
and

1

nL

‖‖‖B̂
�

n
− B∗�

n

‖‖‖
2

F
≤ C1rBN

Nn−1L−1 log (n)p−1
min

.

1

mL

‖‖‖�̂
�
− �∗�‖‖‖

2

F
≤ C2rBN

L−1 log (n)p−1
min

,

‖‖‖Ân − An
‖‖‖
2

F
≤
‖‖‖Xn�̂

�
− Xn�

∗�‖‖‖
2

F
+
‖‖‖D

−1∕2
n

B̂
�

n
− D−1∕2

n
B∗�
n

‖‖‖
2

F
,

(18)𝜃j,AIPW = N−1

N∑
i=1

Ii

𝜋i

{
rij(yij − aij)

pij
+ aij

}
,

(19)�†
j,AIPW

= N−1

N∑
i=1

Ii

�i

{
rij(yij − âij)

pij
+ âij

}
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The difference between �̂j,AIPW and �†
j,AIPW

 in (19) is that we use N̂ for �̂j,AIPW , but use 
N for �†

j,AIPW
.

First, we prove

Consider

where the first equality holds due to E(rij) = pij . Next, we derive the variance of 
𝜃j,AIPW . Specifically, we have

where S = {Ii ∶ i = 1,… ,N}.
Because E(rij) = pij , we have

Thus, we have

where the last equality holds by Conditions C1, C2 and the strong law of large num-
bers (Athreya and Lahiri, 2006). Notice that

By the models (1)–(2) and Condition C4, we can show that N−1
∑N

i=1
y2
i
 is asymp-

totically bounded. Thus, by Condition C7, we have

By (21)–(24), we have shown (20).
Next, we show that

(20)𝜃j,AIPW − 𝜃j = Op(n
−1∕2).

(21)E(𝜃j,AIPW) = E{E(𝜃j,AIPW ∣ {Ii})} = N−1

N∑
i=1

E(Ii)

𝜋i
(yij) = 𝜃j,

(22)

var(𝜃j,AIPW) =
1

N2
E

(
var

[
N∑
i=1

Ii

𝜋i

{
rij(yij − aij)

pij
+ aij

}
∣ S

])

+
1

N2
var

(
E

[
N∑
i=1

Ii

𝜋i

{
rij(yij − aij)

pij
+ aij

}
∣ S

])
= V1,j + V2,j,

var

[
N∑
i=1

Ii

�i

{
rij(yij − aij)

pij
+ aij

}
∣ S

]
=

N∑
i=1

Ii(1 − pij)

�2
i
pij

(yij − aij)
2.

(23)V1,j =
1

N2

N∑
i=1

1 − pij

�i
(yij − aij)

2 = Op(n
−1),

E

[
N∑
i=1

Ii

�i

{
rij(yij − aij)

pij
+ aij

}
∣ S

]
=

N∑
i=1

Iiyij

�i
.

(24)V2,j = Op(n
−1)
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Consider

Consider

where the asymptotic order in (28) holds due to Condition C7 and N−1
∑N

i=1
(yij − aij)

2 
is asymptotically bounded in probability since {�ij ∶ j = 1,… ,N} are independent 
and their variances are uniformly bounded. By (27) and (28), we have

Because the response model (7) for pij is assumed to be correctly specified, and pij is 
bounded away from 0 by Condition C6, we have p̂−1

ij
(pij − p̂ij) = Op(1) uniformly for 

i = 1,… ,N . Thus, by (29), we have

By (26) and (30), we have

Since p̂ij = pij + op(1) , we have

Since pij ≥ pmin > 0 by Condition C6, we have

(25)
1

L

L∑
j=1

(𝜃†
j,AIPW

− 𝜃j,AIPW)
2 = Op{rBN

L−1 log (n)}.

(26)

𝜃†
j,AIPW

− 𝜃j,AIPW =
1

N

N∑
i=1

Ii

𝜋i

{
rij(yij − aij)(pij − �pij)

pij�pij
+

(rij − �pij)(aij − �aij)

�pij

}
.

(27)E

{
1

N

∑
i∈S

�−1
i

rij(yij − aij)

pij

}
=

1

N

N∑
i=1

(yij − aij) = Op(N
−1∕2),

(28)var

{
1

N

∑
i∈S

�−1
i

rij(yij − aij)

pij

}
= Op(n

−1),

(29)1

N

N∑
i=1

Ii

�i

rij(yij − aij)

pij
= Op(n

−1∕2).

(30)N−1

N∑
i=1

Ii

�i

rij(yij − aij)(pij − p̂ij)

pijp̂ij
= Op(n

−1∕2).

(31)𝜃†
j,AIPW

− 𝜃j,AIPW = Op(n
−1∕2) +

1

N

N∑
i=1

Ii

𝜋i

(rij − �pij)(aij − �aij)

�pij
.

(32)
rij − p̂ij

p̂ij
= {1 + op(1)}

rij − pij

pij
.
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uniformly for i = 1,… ,N.
Thus, by Condition C2, (31) and (33), we have

where �i ≥ C−1
6
nN−1 for C6 > 0 by Condition C2, and we have assumed that the first 

n subjects are sampled. By (20), (34) and Theorem 2 and the fact that L ≤ n , we 
have proved (25).

By Condition C4 and the fact that E(𝜖2
ij
) < 𝜎2

0
 uniformly, �j is uniformly bounded for 

j = 1,… , L in probability. Thus, by (20) and (25), we conclude that

By Condition C7, we conclude that N̂N−1 = 1 + Op(n
−1∕2) . Consider

where the first equality holds since N̂N−1 = 1 + Op(n
−1∕2) uniformly for 

j = 1,… , L , and the second equality holds by (35). Thus, by (34) and (36), we have 
proved Theorem 3. 	�  ◻

D Plug‑in variance estimators

When deriving the plug-in variance estimator, we ignore the variability for estimat-
ing âij . First, we consider the plug-in variance estimator under Poisson sampling. For 
j = 1,… , L , let

be the estimating function for the AIPW estimator with âij replaced by aij . Let 𝜃j,AIPW 
solves gj(�) = 0 , and we use a variance estimator of 𝜃j,AIPW to approximate that of 
�̂j,AIPW.

(33)
rij − p̂ij

p̂ij
= Op(1)

(34)

1

L

L∑
j=1

(𝜃†
j,AIPW

− 𝜃j,AIPW)
2 ≤ Op(n

−1) +
C6Op(1)

Ln2

L∑
j=1

{
n∑
i=1

(aij − �aij)

}2

,

≤ Op(n
−1) +

Op(1)

Ln

L∑
j=1

n∑
i=1

(aij − �aij)
2

= Op(n
−1) +

Op(1)

nL

‖‖‖�An − An
‖‖‖
2

F
,

(35)
1

L

L∑
j=1

(�†
j,AIPW

)2 = Op{rBN
L−1 log (n)}

(36)
1

L

L∑
j=1

(�̂j,AIPW − �†
j,AIPW

)2 =
Op(n

−1)

L

L∑
j=1

(�†
j,AIPW

)2 = op{rBN
L−1 log (n)},

gj(�) =
1

N

N∑
i=1

Ii

�i

{
rij(yij − aij)

pij
+ aij − �

}
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It can be shown that 𝜃j,AIPW − 𝜃j = Op(n
−1∕2) , so we have

where g�
j
(�) = −N−1

∑N

i=1
Ii�

−1
i

 is the derivative of gj(�) . By a similar argument for 
(27)–(28), we can show that g�

j
(�j) → −1 in probability. Besides, by (37), we have

Thus, the variance of 𝜃j,AIPW can be estimated by the one of gj(�j).
Consider

Since E(rij) = pij , we have

Thus, we have

and it can be estimated by

Notice that

Under Poisson sampling,

Thus,

(37)0 = gj(𝜃j,AIPW) = gj(𝜃j) + g�
j
(𝜃j)(𝜃j,AIPW − 𝜃j) + op(n

−1∕2),

(𝜃j,AIPW − 𝜃j) = −{g�
j
(𝜃j)}

−1gj(𝜃j) + op(n
−1∕2) = gj(𝜃j) + op(n

−1∕2).

(38)

var{gj(�j)} = N−2E

(
var

[
N∑
i=1

Ii

�i

{
rij(yij − aij)

pij
+ aij − �j

}
∣ S

])

+ N−2var

(
E

[
N∑
i=1

Ii

�i

{
rij(yij − aij)

pij
+ aij − �j

}
∣ S

])

= V1,j + V2,j.

var

[
N∑
i=1

Ii

�i

{
mij(yij − aij)

pij
+ aij − �j

}
∣ S

]
=

N∑
i=1

Ii(1 − pij)

�2
i
pij

(yij − aij)
2.

(39)V1,j = N−2

N∑
i=1

1 − pij

�ipij
(yij − aij)

2,

(40)V̂1,j = N−2

N∑
i=1

rij(1 − pij)

�2
i
p2
ij

(yij − aij)
2.

E

[
N∑
i=1

Ii

�i

{
rij(yij − aij)

pij
+ aij − �j

}
∣ S

]
=

N∑
i=1

Ii

�i
(yij − �j).

var

(
E

[
N∑
i=1

Ii

�i

{
rij(yij − aij)

pij
+ aij − �j

}
∣ S

])
=

N∑
i=1

1 − �i
�i

(yij − �j)
2.
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and it can be estimated by

By (38)–(42) and plugging in âij and �̂j,AIPW for aij and �j , respectively, the plug-in 
variance estimator for �̂j,AIPW is

under Poisson sampling.
Use a similar argument, we can show that the plug-in variance estimator is

under simple random sampling, and the one is

under probability-proportional-to-size sampling, where S is the index set of the sam-
ple, and qi is the selection probability of the ith element.

E Balanced repeated replication method

Consider a stratified multi-stage sampling design with two clusters selected per 
stratum for the first stage. Denote whik to be the survey weight associated with yhik , 
the kth sample element in the ith cluster of the hth stratum. The basic idea of the 

(41)V2,j = N−2

N∑
i=1

1 − �i
�i

(yij − �j)
2,

(42)V̂2,j = N−2

N∑
i=1

Iirij(1 − �i)

pij�
2
i

y2
ij
.

V̂j,poi = N−2

N∑
i=1

Iirij(1 − pij)

�2
i
p2
ij

(yij − âij)
2

+ N−2

N∑
i=1

Iirij(1 − �i)

pij�
2
i

(yij − �̂j,AIPW)
2

V̂j,srs = n−2
n�
i=1

Iirij(1 − p̂ij)

p̂2
ij

(yij − �aij)
2 + n−1(1 − nN−1)

⎡⎢⎢⎣
n−1

N�
i=1

Iirij(yij −
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modified balanced repeated replication is to use the same estimation method based 
on the “reconstruct” the survey weight, that is,

where � ∈ (0, 1) is a predefined constant, and �rh = 1 or �rh = −1 for the rth rep-
etition. A set of R repetitions is said to be balanced if 

∑R

r=1
�rh�rh� = 0 for h ≠ h′ . 

The R × H matrix (�rh)R×H can be obtained from a Hadamard matrix. Please check 
Rao and Shao (1999) for details about the modified balanced repeated replication 
method. In the simulation study and real data application, we choose � = 1∕2 and 
R = H.
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