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SUMMARY

Zero-inflated nonnegative outcomes are common in many applications. In this work, motivated by
freemium mobile game data, we propose a class of multiplicative structural nested mean models for zero-
inflated nonnegative outcomes, which flexibly describes the joint effect of a sequence of treatments in the
presence of time-varying confounders. The proposed estimator solves a doubly robust estimating equa- 15

tion, where the nuisance functions, namely, the propensity score and conditional outcome means given
confounders, are estimated parametrically or nonparametrically. To improve the accuracy, we leverage the
characteristic of zero-inflated outcomes by estimating the conditional means in two parts, that is, sepa-
rately modeling the probability of having positive outcomes given confounders and the mean outcome
conditional on its being positive and confounders. We show that the proposed estimator is consistent and 20

asymptotically normal as either the sample size or the follow-up time goes to infinity. Moreover, the typ-
ical sandwich formula can be used to estimate the variance of treatment effect estimators consistently,
without accounting for the variation due to estimating nuisance functions. Simulation studies and an ap-
plication to a freemium mobile game dataset are presented to demonstrate the empirical performance of
the proposed method and support our theoretical findings. 25

Some key words: Bidirectional Asymptotics; Timewise Randomization; Multiplicative Structural Nested Mean Model;
Zero-inflated Outcome.

1. INTRODUCTION

Due to the ubiquitous presence of smartphones and the transition of casual gaming to mobile devices,
mobile games are getting increasingly popular nowadays. As shown in a 2019 industry study by Golden 30

Casino News, mobile games make up 60% of revenue for the global video game market, becoming the
most significant segment of the video game industry. A common monetization strategy for mobile games
is the freemium business model (Anderson, 2009), which provides free download and basic gameplay
to attract customers, and then offers an option to pay for premium content such as in-game currency,
extra content, or customization. The free part helps to increase the size of the user base quickly while the 35

premium part generates revenue (Boudreau et al., 2019). It is shown that over 90% of mobile games begin
as free, and over 90% of the profits from mobile games come from games that began as free (Banerjee
et al., 2019). To retain users and stimulate consumption, developers offer promotions to players from
time to time, such as sales on the add-on components, more in-game rewards, and holiday promotions.
Understanding the effects of a sequence of promotion decisions on daily engagement, which usually refers 40
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to the amount of purchase, for heterogeneous users helps the game managers make improved/personalized
promotion strategies.

Freemium mobile game data has its unique characteristics, which lead to several challenges in statistical
inference. First, the outcomes, i.e., daily engagement, are zero-inflated. For active players, it is common to
remain free users and never engage in the premium part of freemium games. Moreover, the positive daily45

engagement is skewed to the right. A 2014 study of freemium mobile games by Swrve found that 50%
of mobile gaming revenue came from the top 10% of players making purchases, which only accounts for
0.15% of total players. Common distributional assumptions such as the normal or gamma are thereby no
longer appropriate for freemium mobile game data.

Second, players are followed over a period of time, during which a sequence of treatments, promotion50

or no promotion, are implemented. We are interested in estimating the joint effects of a sequence of treat-
ments on the outcomes rather than a one-time treatment. However, there exist time-varying confounders
with the following characteristics: they are (i) associated with the outcomes, (ii) affected by earlier treat-
ment, and (iii) predictive of subsequent treatments. For example, for estimating the promotion effects on
user daily engagement, daily activity time is likely to be a time-varying confounder. This is because play-55

ers with longer playing time are more likely to purchase in the game, players who received promotions
tend to spend more time playing games, and activity time may also be an important factor in making sub-
sequent promotion decisions. In the presence of time-varying confounders, standard regression methods,
whether or not adjusting for time-varying confounders, are inappropriate for estimating the causal effects
of a sequence of treatments (Robins & Hernán, 2009).60

Lastly, in practice, the promotion assignment over time can be personalized or uniform. We refer to the
treatment assignment that allocates the same treatment to all users at a given time as timewise randomiza-
tion, while the personalized treatment assignment is individual randomization. In timewise randomization,
since all users receive the same treatment at a given time, the convergence of the propensity score estimate
solely relies on the number of time points rather than the sample size. In this case, the standard asymp-65

totic framework requiring only the sample size to go to infinity is not sufficient to derive the large sample
results, increasing the difficulties in estimation of treatment effects.

Existing works for estimating the causal effect of one-time treatment with semicontinuous outcomes
with excessive zeros include two-part model (Duan et al., 1983), burden-of-illness model (Chang et al.,
1994), and tobit model or its variants (Tobin, 1958; Powell, 1986; Keele & Miratrix, 2019; Cheng & Small,70

2020). Estimating the causal effects of a sequence of treatments is considerably more challenging in the
presence of time-varying confounding. Structural nested mean models (Robins, 1994) have been proposed
to overcome this challenge by modeling treatment effects sequentially over time, and G-estimation can
be used to isolate treatment effects in the presence of time-varying confounding. See Vansteelandt &
Joffe (2014) for a review. However, existing structural nested mean models often require stringent model75

assumptions to handle zero-inflated outcomes. They require modeling (i) the probability of having positive
outcomes and (ii) the conditional mean given a positive outcome separately, which amounts to specifying
the treatment-specific conditional outcome means instead of the causal treatment effect functions directly.
Moreover, the model parameter in part (ii) may not have a causal interpretation because it specifies the
causal effect conditional on a post-treatment quantity. Besides, the standard asymptotic regime for G-80

estimation requires the sample size to increase to infinity and does not apply to the case when the number
of follow-up times increases while the sample size can be fixed.

In this paper, we propose a class of multiplicative structural nested mean models for zero-inflated non-
negative outcomes. Our contributions are from several aspects. First, our proposed model describes flexi-
bly and concisely the joint effects of a sequence of treatments in the presence of time-varying confounders85

based on the ratio of conditional means of outcomes, which can naturally accommodate zero-inflated non-
negative outcomes as demonstrated by the example given in the next section. Compared with the structural
nested mean models which use the difference of conditional means as the contrast function, our model
does not require the two potential outcome mean functions to be known. Second, for parameter estimation,
we propose a class of doubly robust estimating equations, where the nuisance functions, i.e., propensity90

score and conditional means of outcomes given confounders, are estimated parametrically or nonpara-
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metrically. We show that the resulting estimator is rate doubly robust (Kallus & Mao, 2020; Farrell et al.,
2021), that is, as long as the convergence rates of nonparametric estimators for nuisance functions are
sufficiently fast, the resulting estimator is asymptotically normal and the typical sandwich formula can be
used for consistent variance estimation without accounting for the variation due to the estimation of nui- 95

sance functions. Moreover, the conditional means of outcomes are estimated in two parts to leverage the
characteristic of zero-inflated outcomes. That is, we separately model the probability of having positive
outcomes and the mean outcome conditional on its being positive, both parts conditional on confounders.
This facilitates the derivation of the rate doubly robust estimator with the desired theoretical properties.
Third, in terms of theory development, we establish the consistency and asymptotic normality of the re- 100

sulting rate doubly robust estimator as either the sample size or the follow-up time goes to infinity, i.e.,
bidirectional asymptotics (Shi et al., 2021), under the setting for individual randomization of treatment
assignment. This task is nontrivial since individual data are dependent over time, and uniform consistency
and weak convergence results need to be established for general martingale processes. We also establish
similar results for the setting with timewise randomization as the follow-up time goes to infinity. However, 105

the convergence rate is slower than the setting of individual randomization since it is only determined by
the number of observations over time regardless of the sample size.

2. REVIEW OF MULTIPLICATIVE STRUCTURAL NESTED MEAN MODEL

The multiplicative structural nested mean model was proposed by Robins (1994) as an analogy to the
structural nested mean model. In this paper, we utilize it as the treatment effect model for zero-inflated 110

nonnegative outcomes. We start with a particular subject for simplicity. Suppose that measurements are
collected at T discrete time points. Let Lt be the time-varying covariates collected at time point t, At ∈
{0, 1} denote the treatment indicator (1 for promotion and 0 for no promotion) at time t, and Yt stand
for the observed outcome at time t (t = 1, . . . , T ). We presume that the observed data are ordered as
L1, A1, Y1, . . . , LT , AT , YT ; thus the covariates and treatments precede the observed outcomes and Yt 115

can be a part of Lt+1. We use the overline notation to denote a variable’s history, e.g.,At = (A1, . . . , At).
For notational convenience, let Vt = (At−1, Lt) and Ot = (Lt, At, Yt), then the information available
prior to treatment at time t is denoted by V t = (At−1, Lt) and a subject’s full record can be represented
as OT = {(Lt, At, Yt)}1≤t≤T .

We use the potential outcomes framework to define the causal effect of treatments. Let Y (aT )
t denote 120

the potential outcome that would be seen at time t, had the subject received the sequence of treatments
aT through time T . In particular, Y (0T )

t is the potential outcome at time t had the subjects never received
treatments. We are interested in estimating the causal effects of a sequence of treatments aT on a group
of users with covariates sequence lT , which can be defined as the ratio of the conditional expectation of
the potential outcomes had this group of subjects received aT and 0T , i.e., E(Y

(aT )
t | AT = aT , LT = 125

lT )/E(Y
(0T )
t | AT = aT , LT = lT ). Here we use the ratio rather than the difference of the conditional

mean outcomes to accommodate zero-inflated nonnegative outcomes.
We presume that the treatments and covariates after time t cannot affect the potential outcomes at times

up to t, i.e. Y (aT )
t = Y

(at)
t , and consider a class of multiplicative structural nested mean models in the

following form: 130

E(Y
(at)
t | AT = aT , LT = lT )

E(Y
(0t)
t | AT = aT , LT = lT )

=
E(Y

(at)
t | At = at, Lt = lt)

E(Y
(0t)
t | At = at, Lt = lt)

= exp{fθ0(vt)at} t = 1, . . . , T, (1)

where vt = (lt, at−1) and fθ(·) is a known function with a p-dimensional vector of parameters θ ∈ Θ ⊆
Rp with true parameter value θ0. Typically, the parameterization is chosen to be fθ(·) ≡ 0 for θ = 0,
so that θ0 = 0 encodes no treatment effects. The proposed multiplicative structural nested mean model
is semiparametric in nature because the conditional mean E(Y

(0t)
t | At = at, Lt = lt) is completely un- 135

specified.
Next, we use a toy example to illustrate the proposed treatment effect model.
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Example 1. Use the freemium mobile game data as an illustration. Suppose users’ potential daily pur-
chase amounts follow a zero-inflated log-normal distribution. Specifically, Y (at)

t has a probability pt to be
positive and follows a log-normal distribution log-normal (νt, σ

2
t ) and a probability (1− pt) to be zero,140

where pt and νt are functions of the covariates and potential treatments up to time t. Suppose pt follows
a log-linear model and νt is a linear model. Then, the conditional mean of the potential outcome is

E(Y
(at)
t | At = at, Lt = lt) = pt exp(νt +

1

2
σ2
t )

= exp(βTp l̃t + γTp l̃tat)× exp(βTν l̃t + γTν l̃tat +
1

2
σ2
t ),

where l̃t = (1, lTt )T and βp, γp, βν , γν are corresponding coefficients. Thus, the ratio of conditional means145

can be simplified as follows

E(Y
(at)
t | At = at, Lt = lt)

E(Y
(0t)
t | At = at, Lt = lt)

= exp{(γp + γν)T l̃tat},

which satisfies model (1).

3. MAIN METHODOLOGY

3.1. Identification and Estimation

For the causal treatment effects to be estimable based on observed data, we require the following as-150

sumptions as widely used in the literature.

Assumption 1 (Consistency). The observed outcome is equal to the potential outcome under the se-
quence of actual treatments received; i.e., Yt = Y

(At)
t (t = 1, . . . , T ).

Assumption 2 (No unmeasured confounders). At ⊥⊥ Y (0t)
t | V t (t = 1, . . . , T ), which means that At

is conditionally independent of Y (0t)
t given V t.155

The consistency assumption links the observed data to the potential outcome, which implicitly makes the
stable unit treatment assumption that rules out multiple versions of treatment and interference.

We develop a G-estimator of the causal parameter θ0 in model (1). Define

Ht(θ0) = Yt exp
{
−fθ0(V t)At

}
.

Intuitively,Ht(θ0) mimics the potential outcome Y (0t)
t that would have been seen had the treatment never

been implemented. The following two lemmas establish the properties of Ht(θ0).160

LEMMA 1. Under model (1), Assumption 1 implies E{Ht(θ0) | At, V t} = E(Y
(0t)
t | At, V t), 1 ≤ t ≤

T.

LEMMA 2. Under model (1), Assumptions 1 and 2 imply E{Ht(θ0) | At, V t} = E{Ht(θ0) | V t}, 1 ≤
t ≤ T.

Let h0(vt) = E{Ht(θ0) | V t = vt} and π0(vt) = P (At = 1 | V t = vt) denote the conditional mean165

of Ht(θ0) and the propensity score, respectively. For any given propensity score π and conditional mean
h, we construct a class of doubly robust estimating functions for θ:

ψ(Ot; θ, π, h, c) = c(V t)
{
Ht(θ)− h(V t)

}{
I(At = 1)− π(V t)

}
(t = 1, . . . , T ), (2)

where c(·) is a p-dimensional function of the covariate and treatment history V t. It can be shown that under
Lemma 2 the expectation of (2) is zero for θ = θ0, regardless of c as long as π = π0 or h = h0. Suppose
n subjects are randomly sampled from a population, we introduce another subscript for each variable to170
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index subjects so that the observed dataO1,T , . . . , On,T are independent and identically distributed copies
of OT . The associated probability space is denoted by (Ω,F , P ). We consider the following estimating
equation for θ:

G(θ;π, h, c) ≡ 1

nT

n∑
i=1

T∑
t=1

ψ(Oi,t; θ, π, h, c) = 0.

The traditional definition of double robustness is applicable when the nuisance functions π0, h0 are es-
timated parametrically. A notion of rate double robustness is introduced for nonparametrically estimated 175

nuisance functions, which describes the asymptotic normality of the resulting estimator and the consis-
tent variance estimation of the typical sandwich formula when the convergence rates of nuisance function
estimators are sufficiently fast (Kallus & Mao, 2020; Farrell et al., 2021). We will show the rate double
robustness of the proposed estimator for θ0 in § 3.2.

In practice, π0 and h0 are unknown and need to be estimated from data. The propensity score model 180

can be estimated parametrically, such as with a logistic regression, or nonparametrically, such as with
random forest. In mobile game data applications, a treatment is usually randomly assigned using either
individual randomization or timewise randomization, where the propensity score can be estimated by
the sample proportion. However, we cannot directly estimate h0 by regressing Hi,t(θ0) on V i,t because
Hi,t(θ0) depends on the unknown parameters θ0. Thus, we consider representing h0 with other estimable 185

conditional means. Define µ0,0(vt) = E(Yt | At = 0, V t = vt) and µ1,0(vt) = E(Yt | At = 1, V t = vt).
Then, h0 can be represented as

h0(vt) = µ1,0(vt) exp{−fθ0(vt)}π0(vt) + µ0,0(vt){1− π0(vt)}.

Accordingly, we rewrite our estimating equation as

1

nT

n∑
i=1

T∑
t=1

ψ(Oi,t; θ, π̂, µ̂1, µ̂0, c) = 0, (3)

where π̂, µ̂1, µ̂0 are the estimators of π0, µ1,0, µ0,0 respectively, and
190

ψ(Oi,t; θ, π̂, µ̂1, µ̂0, c) = c(V i,t)
[
Hi,t(θ)− µ̂1(V i,t) exp{−fθ(V i,t)}π̂(V i,t)

− µ̂0(V i,t){1− π̂(V i,t)}
]
×
{
I(Ai,t = 1)− π̂(V i,t)

}
.

Taking into account that outcomes are zero-inflated, µ1,0 and µ0,0 can be represented as

µa,0(vt) = P(Yt > 0 | At = a, V t = vt)× E(Yt | Yt > 0, At = a, V t = vt) (a = 0, 1). (4)

To improve the estimation accuracy, we estimate µ1,0 and µ0,0 by modeling the probability part and the 195

mean part on the right-hand side of (4) separately, using some nonparametric regression techniques, such
as generalized additive models. We show the advantage of the two-part estimation method of conditional
outcome means compared with the one-part approach in terms of accuracy and efficiency in § B.1 of the
supplementary material. The two-part method is favorable when zero values account for a large proportion
of outcomes and the sample size is small. 200

The choice of function c(·) generally does not affect the consistency of the estimator but may make a
difference in the efficiency. Following Robins (1994) and Lok (2021), it can be shown that under certain
conditions, an efficient estimator of θ0 can be obtained by setting

c(vt) =
E
(
∂Ht(θ)
∂θ | At = 1, V t = vt

)
− E

(
∂Ht(θ)
∂θ | At = 0, V t = vt

)
var(Y

(0t)
t | V t = vt)

∣∣∣∣∣
θ=θ0

. (5)

The optimal c function depends on the conditional variance of Y (0t)
t , which may require an additional

working model and is difficult to estimate well based on observed data. The estimation of it also causes 205

efficiency loss of the proposed estimator. In practice, we can choose a simple function for c, such as
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c(vt) = ∂fθ(vt)/∂θ. We compare the empirical performance of the estimators constructed based on sim-
ple c and optimal c in our simulations; see § 4.

The proposed estimating equation (3) can be solved using the standard Newton-Raphson method. One
possible challenge is that the estimating equation may not converge if the initial value is not chosen210

appropriately. A common solution is to try different initial values and choose one that can lead to a proper
solution.

3.2. Asymptotic Distribution and Variance Estimation

Let θ̂ denote the proposed estimator by solving the estimating equation (3). Before delving into the
theoretical analysis of θ̂, we introduce more notation for simplicity of exposition. Define the triplet func-215

tion η = (π, µ1, µ0). The true value of η is η0 = (π0, µ1,0, µ0,0), and its estimator is η̂ = (π̂, µ̂1, µ̂0). Let
ψi,t(θ, η) = ψ(Oi,t; θ, π, µ1, µ0, c) and

Pg{ψ(θ, η)} =
1

T

T∑
t=1

E [g{ψ1,t(θ, η)}] , (6)

Png{ψ(θ, η)} =
1

nT

n∑
i=1

T∑
t=1

g{ψi,t(θ, η)}, (7)

where g is any given function or operator of ψi,t, e.g., g{ψi,t(θ, η)} = ∂ψi,t(θ, η)/∂θ. In formula220

(6), we assume T ∈ N+ ∪ {∞} and define T−1
∑T
t=1 = limT→∞ T−1

∑T
t=1 when T =∞. De-

note the Euclidean norm by ‖ · ‖2 and the L2(P ) norm by ‖ · ‖2,P with the definition ‖η‖22,P =

T−1
∑T
t=1

∫
‖η(V t)‖22 dP (V t). Define a function set Gη0 = {η : ||η − η0||2,P < δ} for some δ > 0 and

a Cartesian product U = {(θ, η) : θ ∈ Θ, η ∈ Gη0}.
To establish the asymptotic normality of θ̂ under individual randomization, we require the following225

conditions.

Condition 1. The solution to Pψ(θ, η0) = 0 is unique. ‖Pψ(θn, η0)‖2 → 0 implies ‖θn − θ0‖2 → 0
for any sequence of {θn} ∈ Θ.

Condition 2. There exists a finite ε-net Uε of U for any ε > 0. In addition, Gη0 has uniformly integrable
entropy. That is,

∫∞
0

supQ
√

logN(ε‖F‖2,Q,Gη0 , ‖ · ‖2,Q) dε <∞, where F : Ω→ R3 is a square in-230

tegrable envelop for Gη0 , and the covering number N(ε,Gη0 , ‖ · ‖) is the minimum number of balls
{η′ : ‖η′ − η‖ < ε} of radius ε needed to cover Gη0 .

Condition 3. (i) |fθ(V t)| (t = 1, . . . , T ) is bounded almost surely for all θ ∈ Θ. (ii) |Yt|, ‖c(V t)‖2,
σ2
0,0(V t) and σ2

1,0(V t) (t = 1, . . . , T ) are bounded almost surely, where σ2
a,0(vt) = var(Yt | At =

a, V t = vt) (a = 0, 1). (iii) ‖η(V t)‖2 < b0 (t = 1, . . . , T ) almost surely for all η ∈ Gη0 for some con-235

stant b0. (iv) ‖∂ψ1,t(θ, η)/∂ηT ‖2 = ‖(∂ψ1,t(θ, η)/∂π, ∂ψ1,t(θ, η)/∂µ1, ∂ψ1,t(θ, η)/∂µ0)‖2 < b∗ (t =
1, . . . , T ) almost surely for all θ ∈ Θ, η ∈ Gη0 for some constant b∗.

Condition 4. As nT →∞, ‖η̂ − η0‖2,P
P−→ 0, and

(‖µ̂1 − µ1,0‖2,P + ‖µ̂0 − µ0,0‖2,P + ‖π̂ − π0‖2,P )‖π̂ − π0‖2,P = oP {(nT )−1/2}.

Condition 5. For each η ∈ Gη0 ,

1

nT

n∑
i=1

T∑
t=1

E
{
mi,t(η)mT

i,t(η) | V i,t
} P−→ Σ(η) as nT →∞, (8)

where mi,t(η) = ψi,t(θ0, η)− E
{
ψi,t(θ0, η) | V i,t

}
and Σ(η) is a constant positive definite matrix for240

each η.
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Condition 6. For j = 1, . . . , p, there exists a constant M such that as nT →∞

P

 sup
η,η′∈Gη0

1
nT

∑n
i=1

∑T
t=1 E

[{
m

(j)
i,t (η)−m(j)

i,t (η′)
}2

| V i,t
]

‖η − η′‖22,P
≥M

→ 0,

where mi,t(η) is defined in Condition 5 and m(j)
i,t (η) is the jth component of mi,t(η).

Condition 1 is the identifiability condition, which is commonly assumed to ensure the consistency of
Z-estimators (see Theorem 2.10 of Kosorok (2007)). Condition 2 controls the complexity of the function 245

set Gη0 to show the uniform convergence (Lemma A1) and weak convergence (Lemma A2) of a function-
indexed martingale difference sequence. Similar conditions are used in Theorem 2.3 of Kosorok (2007)
and Theorem 2 of Bae et al. (2010). In fact, many important classes of functions, such as VC graph classes,
have uniformly integrable entropy. See § 2.6 of Van Der Vaart & Wellner (1996) for details. Condition 3
is standard, which generally holds when the covariates L, outcomes Y , and parameters are bounded. 250

Condition 4 provides the required convergence rates for the estimators of the nuisance functions un-
der individual randomization. The first part helps to establish the consistency of the estimator θ̂, while
the second part is used to derive the asymptotic distribution of θ̂. This condition is widely used in the
causal inference literature to derive the asymptotic distribution of doubly robust estimators when nui-
sance functions are estimated parametrically or nonparametrically with proper rates (see e.g. Kallus & 255

Mao, 2020; Farrell et al., 2021). For example, if π is estimated based on a correctly specified paramet-
ric model so that ‖π̂ − π0‖2,P = OP {(nT )

−1/2}, then we only need µ̂0 and µ̂1 to be consistentOn the
other hand, if all the nuisance functions are estimated nonparametrically, we require ‖π̂ − π0‖2,P =
oP {(nT )−1/4}, ‖µ̂0 − µ0,0‖2,P = oP {(nT )−1/4}, and ‖µ̂1 − µ1,0‖2,P = oP {(nT )−1/4}. Many non-
parametric/semiparametric estimators can satisfy the convergence rate of oP {(nT )−1/4}, such as single- 260

index models, generalized additive models, and partially linear models (Horowitz, 2009).
Conditions 5 and 6 are imposed to derive the weak convergence (Lemma A2). Their validity is discussed

in Remarks 1 and 2 below, respectively.

Remark 1 (Discussion of Condition 5). The left-hand side of (8) can be calculated as

1

nT

n∑
i=1

T∑
t=1

{
c(V i,t)c

T (V i,t)
(
{1− π(V i,t)}2π0(V i,t) exp{−2fθ0(V i,t)}σ2

1,0(V i,t) 265

+ π2(V i,t){1− π0(V i,t)}σ2
0,0(V i,t) + π0(V i,t){1− π0(V i,t)}

×
[
µ1,0(V i,t) exp{−fθ0(V i,t)}π0(V i,t) + µ0,0(V i,t){1− π0(V i,t)}

− µ1(V i,t) exp{−fθ0(V i,t)}π(V i,t) + µ0(V i,t){1− π(V i,t)}
]2)}

.

When n→∞ and T is finite, Condition 5 holds under mild conditions by applying the law of large
numbers. When T →∞ and n is finite, letting 270

Xt =
1

n

n∑
i=1

E
{
mi,t(η)mT

i,t(η) | V i,t
}

(t = 1, . . . , T ),

{Xt}t≥1 forms a stochastic process. If {Xt}t≥1 is uniformly integrable and α-mixing, by Theorem 1 of

Andrews (1988), we have T−1
∑T
t=1Xt

P−→ T−1
∑T
t=1 E(Xt). Thus, Condition 5 also holds under this

setting.

Remark 2 (Discussion of Condition 6). Let ηi,t = η(V i,t). Then, we have

E
[{
m

(j)
i,t (ηi,t)−m(j)

i,t (η′i,t)
}2

| V i,t
]

275
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= E

{∂m(j)
i,t (ηi,t)

∂ηi,t
|η=η̃

}T (
ηi,t − η′i,t

) (
ηi,t − η′i,t

)T {∂m(j)
i,t (ηi,t)

∂ηi,t
|η=η̃

}
| V i,t


= E

(ηi,t − η′i,t)T
{
∂m

(j)
i,t (ηi,t)

∂ηi,t
|η=η̃

}{
∂m

(j)
i,t (ηi,t)

∂ηi,t
|η=η̃

}T (
ηi,t − η′i,t

)
| V i,t


=
(
ηi,t − η′i,t

)T E

{∂m(j)
i,t (ηi,t)

∂ηi,t
|η=η̃

}{
∂m

(j)
i,t (ηi,t)

∂ηi,t
|η=η̃

}T
| V i,t

(ηi,t − η′i,t) ,
where ‖η̃ − η‖2 < ‖η′ − η‖2. If the largest eigenvalue of the expectation term in the above quadratic form
is uniformly bounded over i, t by some constant M , we can get280

sup
η,η′∈Gη0

1
nT

∑n
i=1

∑T
t=1 E

[{
m

(j)
i,t (ηi,t)−m(j)

i,t (η′i,t)
}2

| V i,t
]

‖η − η′‖22,P

= sup
η,η′∈Gη0

1
nT

∑n
i=1

∑T
t=1

(
ηi,t − η′i,t

)T E

[{
m

(j)
i,t (ηi,t)

∂ηi,t
|η=η̃

}{
m

(j)
i,t (ηi,t)

∂ηi,t
|η=η̃

}T
| V i,t

] (
ηi,t − η′i,t

)
‖η − η′‖22,P

≤M sup
η,η′∈Gη0

1
nT

∑n
i=1

∑T
t=1 ‖ηi,t − η′i,t‖22

‖η − η′‖22,P
.

If we can show (nT )
−1∑n

i=1

∑T
t=1 ‖ηi,t − η′i,t‖22

P−→ ‖η − η′‖22,P as nT →∞, we are able to derive
Condition 6. The proof of the above convergence can be similarly derived as given in Remark 1.285

In timewise randomization, because the convergence rate of the estimator for propensity score depends
only on the length of follow-up time, we replace Condition 4 with Condition 7 below.

Condition 7. As T →∞, ‖η̂ − η0‖2,P
P−→ 0, and

(‖µ̂1 − µ1,0‖2,P + ‖µ̂0 − µ0,0‖2,P + ‖π̂ − π0‖2,P )‖π̂ − π0‖2,P = oP (T−1/2).

Conditions 5 and 6 also need to be modified. Specifically, define m̃t(η) = n−1
∑n
i=1 ψi,t(θ0, η)−

E
{
n−1

∑n
i=1 ψi,t(θ0, η) | V ·,t

}
(t = 1, . . . , T ), where V ·,t = (V 1,t, . . . , V n,t). We require the follow-290

ing modified conditions.

Condition 8. For each η ∈ Gη0 , T−1
∑T
t=1 E

{
m̃t(η)m̃T

t (η) | V ·,t
} P−→ Σ1(η) as T →∞, where

Σ1(η) is a constant positive definite matrix for each η.

Condition 9. For j = 1, . . . , p, there exists a constant M such that as T →∞

P

 sup
η,η′∈Gη0

1
T

∑T
t=1 E

[{
m̃

(j)
t (η)− m̃(j)

t (η′)
}2

| V ·,t
]

‖η − η′‖22,P
≥M

→ 0,

where m̃(j)
t (η) is the jth component of m̃t(η).295

We establish the bidirectional asymptotics of θ̂ under individual randomization in Theorem 1 and the
asymptotic distribution of θ̂ under timewise randomization in Theorem 2.

THEOREM 1 (BIDIRECTIONAL ASYMPTOTICS). If the treatment assignment is individual random-
ization, under model (1) and Conditions 1–6, as either n→∞ or T →∞, we have

√
nT (θ̂ − θ0)

d−→
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MVN
(
0, BΣBT

)
, where B =

{
Pψ̇θ(θ0, η0)

}−1
, ψ̇θ(θ, η) = ∂ψ(θ, η)/∂θT , and

Σ = Σ(η0) = lim
nT→∞

1

nT

n∑
i=1

T∑
t=1

E
{
ψi,t(θ0, η0)ψTi,t(θ0, η0) | V i,t

}
.

In addition, B and Σ can be estimated by

B̂ =

{
1

nT

n∑
i=1

T∑
t=1

∂ψi,t(θ, η̂)

∂θT

∣∣∣
θ=θ̂

}−1
, Σ̂ =

1

nT

n∑
i=1

T∑
t=1

ψi,t(θ̂, η̂)ψTi,t(θ̂, η̂).

THEOREM 2. If the treatment assignment is timewise randomization, under model (1) and Conditions
1–3 and 7–9, as T →∞, we have

√
T (θ̂ − θ0)

d−→MVN
(
0, BΣ1B

T
)
, where B is defined as the same 300

as in Theorem 1 and

Σ1 = Σ1(η0) = lim
T→∞

1

T

T∑
t=1

E

{ 1

n

n∑
i=1

ψi,t(θ0, η0)

}{
1

n

n∑
i=1

ψi,t(θ0, η0)

}T
| V ·,t

 .
In addition, Σ1 can be estimated by

Σ̂1 =
1

T

T∑
t=1

{
1

n

n∑
i=1

ψi,t(θ̂, η̂)

}{
1

n

n∑
i=1

ψi,t(θ̂, η̂)

}T
.

The proofs of Theorems 1 and 2 are given in the Supplementary Material. Both theorems state that the
asymptotic variance of the proposed estimator θ̂ can be consistently estimated by the typical sandwich
formula without accounting for the variation of η̂. This is mainly due to the rate double robustness for η̂ 305

that satisfies Condition 4 or 7.

4. SIMULATION STUDY

We conduct Monte Carlo simulations to examine the finite sample performance of the proposed esti-
mator. We consider three covariates, which are generated as below:

L
(1)
i,t = log(t), L

(2)
i,t = log(K

(2)
i,t + 1), L

(3)
i,t = L

(3)
t (i = 1, . . . , n; t = 1, . . . , T ),

where K
(2)
i,t ∼ (1− qi,t)I(K

(2)
i,t = 0) + qi,t log-normal (wi,t, 0.5

2) and L
(3)
t ∼ Ber (0.5), with qi,t = 310

{1 + exp(1.1− 0.5l
(2)
i,t−1 − l

(3)
i,t − 0.5ai,t−1)}−1 and wi,t = 0.8l

(2)
i,t−1 + 0.6l

(3)
i,t + 0.25ai,t−1. The first

covariate is to model the time trend effect of treatment; the second covariate is a log transformation
of Ki,t, which mimics the daily activity time in mobile game data and follows a zero-inflated log-normal
distribution; the third covariate gives the daily effect of treatment, such as weekday vs. weekend.

The treatment Ai,t is generated from a Bernoulli distribution by two means: (i) individual randomiza- 315

tion; (ii) timewise randomization, i.e., Ai,t = Aj,t for any i, j. In the first scenario, we consider a con-
stant propensity score π0 = 0.5 and a covariates-dependent propensity score π0(vi,t) = {1 + exp(0.5−
0.5l

(2)
i,t − 0.8l

(3)
i,t )}−1. We consider various sample sizes n with a fixed follow-up time T . In the second

scenario, we only consider a constant propensity score π0 = 0.5, with a fixed n and increasing T .
We generate the potential outcomes Y (ai,t)

i,t from a zero-inflated log-normal distribution 320

(1− p(ai,t)i,t )I(Y
(ai,t)
i,t = 0) + p

(ai,t)
i,t log-normal (ν

(ai,t)
i,t , 0.52),

where p(ai,t)i,t = exp(βTp l̃i,t + γTp l̃i,tai,t) and ν(ai,t)i,t = βTν l̃i,t + γTν l̃i,tai,t with l̃i,t = (1, lTi,t)
T . Here, we

choose small βp, γp to ensure p(ai,t)i,t < 1. Then, the true fθ0(·) in model (1) is fθ0(vi,t) = θT0 l̃i,t with
θ0 = γp + γν . In practice, the treatment may have opposite effects on the proportion of users with positive
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outcomes and the conditional mean of positive outcomes. For example, sales on the add-on components
in the game may increase the proportion of players purchasing them, but it also decreases the average cost325

for the users who pay for them. In our simulation, we consider two scenarios: (i) the treatment effect has
the same direction on the probability of having positive outcomes and the conditional mean of positive
outcomes, i.e., γp ≥ 0, γν ≥ 0 or γp ≤ 0, γν ≤ 0, where ≥ or ≤ stands for the point-wise comparison;
(ii) the treatment effect has the opposite direction on the probability of having positive outcomes and the
conditional mean of positive outcomes, i.e., γp ≥ 0, γν ≤ 0 or γp ≤ 0, γν ≥ 0. The settings are described330

as below:

same direction: βp = (−0.8,−0.3, 0, 0)T , βν = (0, 0, 0.3, 0.5)T , γp = (0.2, 0.15, 0, 0)T ,

γν = (0.1, 0, 0.05, 0.08)T , θ0 = (0.3, 0.15, 0.05, 0.08)T ;

opposite direction: βp = (−0.6,−0.15, 0, 0)T , βν = (0, 0, 0.3, 0.5)T , γp = (−0.2,−0.15, 0, 0)T ,

γν = (0.1, 0, 0.05, 0.08)T , θ0 = (−0.1,−0.15, 0.05, 0.08)T .335

The observed outcome is Yi,t = Y
(Ai,t)
i,t (i = 1, . . . , n; t = 1, . . . , T ).

The parameters θ0 are estimated by solving the estimating equation (3), where the propensity score π0 is
nonparametrically estimated by fitting a generalized additive model for covariates-dependent propensity
score and by sample proportion for constant propensity score. The conditional means of outcomes µ0

and µ1 are estimated nonparametrically by building a generalized additive model on the probability of340

being positive and the conditional mean for positive outcomes, respectively. In addition, we consider two
choices of function c in the estimating equation: an optimal function c(vi,t) in (5) computed based on the
true model, denoted by Opt. c, and a simple function c(vi,t) = (1, l

(1)
i,t , l

(2)
i,t , l

(3)
i,t )T , denoted by Sim. c.

For each simulation setting, we conduct 1000 replicates and report the average (Mean) and standard
deviation (SD) of the estimates, the average of the estimated standard error (SE) of the estimator using345

the sandwich formula given in Theorems 1 and 2, and the empirical coverage probability (C.P.%) of the
95% Wald-type confidence interval. Due to limited space, we only show point estimation results in the
main paper by boxplot, and leave tables with variance estimation results in § B.3 of the supplementary
material. Fig. 1 and 2 (Tables A5 and A6 in § B.3) respectively show the results for the settings with the
same and opposite direction of treatment effects under individual randomization. Based on the results, we350

can see that the proposed estimators are nearly unbiased, the average of estimated standard errors is close
to the standard deviation of the estimates, and the empirical coverage probability is close to the nominal
level. In addition, the estimators obtained using the simple c function show comparable performance
compared with those obtained using the optimal c function under our considered settings, with slightly
larger standard deviations. Note that in our simulations the optimal c is computed based on the true model.355

In practice, we should take into account the efficiency loss due to the estimation of the optimal c. We also
considered cases with a fixed n = 100 and increasing T from 60 to 1000. The results are similar, which
are omitted here.

Next, we consider settings with timewise randomization. Fig. 3 (Tables A7 and A8 in § B.3) shows the
results under timewise randomization. We observe that the proposed estimator is nearly unbiased even360

with T = 60. However, when T = 60, the average of the estimated standard errors is smaller than the
standard deviation of the estimators for some parameters, like intercept and time trend effect. As such, the
empirical coverage probability is lower than the nominal level for these parameters. But as T increases,
the average of the estimated standard errors gets much closer to the standard deviation of estimates and the
resulting empirical coverage probability is close to the nominal level. The estimators obtained using the365

simple c function and optimal c function show comparable efficiency as in the individual randomization
settings. These results demonstrate the validity of our inference procedure for both individual randomiza-
tion and timewise randomization settings.

In the simulation, we have showed the rate double robustness of the proposed estimator where both
conditional means and propensity score are estimated semiparametrically or nonparametrically. The tradi-370

tional double robustness does not apply to our method since the estimation of h0 depends on the estimation
of the propensity score and h0 is misspecified when the propensity score is misspecified. Nonetheless, the
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Propensity
score Opt. c Sim. c

constant

covariates
dependent

Fig. 1: Boxplots of estimators with same directional treatment effect and T = 60 under individual ran-
domization. Left plots and right plots have different choices of function c. Top plots and bottom plots have
different types of propensity scores.

other side of the traditional double robustness is shown by simulations in § B.1 of the supplementary
material, where the conditional outcome means are estimated using misspecified parametric models while
the propensity score is fitted nonparametrically. 375

5. APPLICATION TO FREEMIUM MOBILE GAME DATA

We apply our method to a real dataset from a freemium mobile game (Banerjee et al., 2019), where
players fight each other to earn rewards and can purchase items to improve their chances to win and/or
the general user experience. Apart from the direct in-app purchase, there are several indirect ways of
monetizing freemium games by engaging their free users in promoting the games through social media, 380

for example, inviting friends on Facebook. As in Banerjee et al. (2019), the daily engagement of a player
is defined as the combination of his/her in-app purchase (direct) and varied involvement with the game on
social media (indirect) during the day. Daily activity is another metric of interest in mobile games, which
measures the time a player spends playing the game during the day. Generally speaking, positive daily
activity does not always imply positive daily engagement, but positive and high daily engagement often 385

follows the persistent and incremental positive daily activity (Banerjee et al., 2019).
There are 38,860 players in the dataset whose daily engagement and daily activity were tracked for

60 consecutive days starting from the release date of the game. Approximately 51.8% of the players
have positive daily engagement (direct or indirect) during the follow-up period. All players received the
same history of promotion decisions (timewise randomization), which alternatively include 40 days of 390

promotions and 20 days of no promotions. We want to model the effect of a sequence of promotion
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Propensity
score Opt. c Sim. c

constant

covariates
dependent

Fig. 2: Boxplots of estimators with opposite directional treatment effect and T = 60 under individual
randomization. Left plots and right plots have different choices of function c. Top plots and bottom plots
have different types of propensity scores.

decisions on the daily engagement in the presence of other time-varying variables, for example, daily
activity.

We consider three covariates at time t: the number of days t in the study, the daily activity on the
previous day l(2)i,t , and the weekend indicator l(3)t . We fit model (1) with the function fθ(·) given by395

fθ0(vi,t) = θ
(0)
0 + θ

(1)
0 log t+ θ

(2)
0 log(l

(2)
i,t + 1) + θ

(3)
0 l

(3)
t .

Our proposed estimator of θ0 is θ̂ = (−0.77, 0.50,−0.26, 0.05)T , which is obtained based on the simple
c function. Its standard error estimate is (0.121, 0.057, 0.031, 0.166)T , which is obtained using the pro-
posed sandwich formula in Theorem 2. Based on the results, we make a few observations. First, with a
significance level of 0.05, promotions have a significant positive interaction effect with the log of time on
daily engagement. In general, users may lose interest in the game over time. This implies that promotions400

over time are able to provide incentives and grab their attention again. Second, promotions have smaller
effects in terms of increasing the engagement for active users (i.e., those with large daily activity) than
for less active users, because the estimator of θ(2)0 is negative with a p-value less than 0.05. This finding
is coherent with the literature since active users tend to be less sensitive to the promotion compared with
less active users in terms of engagement. Last, there is no significant difference between the promotion405

effects on weekends and weekdays with a significance level of 0.05.
To visualize the treatment effects, we plot the estimated log-ratio treatment effect fθ̂(vi,t) as a function

of time t and log of daily activity plus 1 log(l
(2)
i,t + 1), stratified by the weekend vs. weekdays (Fig. 4a and

Fig. 4b). Here, fθ̂(vi,t) > 0 indicates a positive treatment effect of promotions on daily engagement, while
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Treatment
effect Opt. c Sim. c

same
direction

opposite
direction

Fig. 3: Boxplots of estimators with n = 400 under timewise randomization. Left plots and right plots have
different choices of function c. Top plots and bottom plots have different directions of treatment effects.

fθ̂(vi,t) < 0 implies a negative effect. In addition, we consider the curve with fθ̂(vi,t) = 0 and computed 410

its 95% point-wise confidence intervals based on the variance estimates of θ̂. We plot this curve and its
95% point-wise confidence intervals in Fig. 4c and Fig. 4d for weekends and weekdays, respectively.

6. CONCLUDING REMARKS

The multiplicative structural nested mean model describes the treatment effect on the mean shift of
potential outcomes, where the shift can result from (i) the change of the probability of having positive 415

outcomes or/and (ii) the change of the conditional mean given a positive outcome. However, the proposed
model cannot distinguish and quantify these two pathways of treatment effects. In the point treatment
setting, two-part models are used to model the treatment effect on (i) and (ii) separately; however, con-
troversy exists regarding the causal interpretation of (ii) since it involves conditioning on a post-treatment
variable, i.e., the potential outcome being positive. Although the proposed model only provides a coarsen 420

description of the treatment effect, it avoids the controversy associated with the two-part model.
It is important to note that the proposed structural nested mean models are designed to address the

causal effects of a series of treatments. We must add a caveat that our identification strategy assumes that
all time-varying confounders are measured, which however is not verifiable based on the observed data
but rely on subject matter experts to assess their plausibility. If some confounders have not been captured 425

in our data, it can distort the causal interpretation. In these cases, one can conduct sensitivity analyses
(Yang & Lok, 2018) to assess the impact of possible uncontrolled confounding.
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(a) The treatment effects fθ̂(vi,t) (z-axis) on weekends. (b) The treatment effects fθ̂(vi,t) (z-axis) on weekdays.

(c) The curve for fθ̂(vi,t) = 0 (middle line) and its 95%
point-wise confidence intervals (outside lines) for week-
ends. The ”+” / ”-” indicates the area where the treatment
effect is significantly positive/negative with a significance
level of 0.05.

(d) The curve for fθ̂(vi,t) = 0 (middle line) and its 95%
point-wise confidence intervals (outside lines) for week-
days. The ”+” / ”-” indicates the area where the treatment
effect is significantly positive/negative with a significance
level of 0.05.

Fig. 4: Results of the multiplicative structural nested mean model in Freemium Mobile Game Data

In our current work, the ratio of conditional means of potential outcomes at time t is assumed to depend
only on the current treatment at. We can also consider an elaborate model that accommodates not only
the current but also previous treatments in the following form430

exp{f (t)θ0 (vt−0)at + · · ·+ f
(t−K)
θK

(vt−K)at−K},

where f (t−k)θk
(·) (k = 0, . . . ,K) are known functions and θ = (θT0 , . . . , θ

T
K)T are the parameters of inter-

est. Our framework requires the multiplicative structural nested mean model to be correctly specified, thus
model assessment is critically important. The key insight is that we have a larger number of estimating
functions than the number of parameters by varying c in equation (3), leading to the over-identification
of model parameters. A goodness-of-fit test can be developed based on over-identification restrictions for435

model diagnosis (Yang & Lok, 2016). Another future direction is to extend the discrete-time setting in this
work to continuous-time scenarios (Lok, 2008; Yang, 2021) that allow irregularly-spaced observations.

In practice, each promotion may not be identical. To extend our model to multiple categories of treat-
ment, we define the treatment at time t as a dummy variable at = (at,1, . . . , at,K)T , where at = 0 means
no treatment. Our model can be adjusted in the following form440

exp{f (1)θ1
(vt)at,1 + · · ·+ f

(K)
θK

(vt)at,K},
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where f (k)θk
(·) (k = 1, . . . ,K) are known functions and θ = (θT1 , . . . , θ

T
K)T are the parameters of interest.

However, it requires a long enough follow-up time to collect sufficient data and get reliable estimation
results.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes theorem proofs and additional simula- 445

tion results. The R codes for conducting the simulations reported in the paper can be downloaded from
https://www4.stat.ncsu.edu/˜lu/programcodes.html.
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The Supplementary Material contains two sections. § A provides the proof of the theories in
the paper and § B gives additional simulation results.

A. PROOFS

A.1. Proof of Theorem 1
Before proving Theorem 1, we introduce the following two lemmas. The proofs of them are given at 15

the end of the Supplementary Material.

LEMMA A1. Assume Conditions 2 and 3 hold. Then, as nT →∞, we have

sup
θ∈Θ,η∈Gη0

‖Pnψ(θ, η)− Pψ(θ, η)‖2
P−→ 0

and

sup
θ∈Θ,η∈Gη0

‖Pnψ̇θ(θ, η)− Pψ̇θ(θ, η)‖2
P−→ 0,

where ψ̇θ(θ, η) = ∂ψ(θ, η)/∂θT .

LEMMA A2. Assume Conditions 2–3 and 5–6 hold. Then, as nT →∞, we have 20

√
nT (Pn − P)ψ(θ0, η) Z as random elements in l∞(Gη0),

where ” ” represents the weak convergence of a stochastic process, and l∞(Gη0) is the collection of all
bounded functions f : Gη0 → Rp. The limiting process Z = {Z(η) : η ∈ Gη0} is a mean zero multivariate
Gaussian process and the sample paths of Z belong to the set UC(Gη0 , ‖ · ‖2,P )={z ∈ l∞(Gη0) : z is
uniformly continuous with respect to ‖ · ‖2,P }.

First, we prove the consistency of θ̂ by showing ‖Pψ(θ̂, η0)‖2
P−→ 0. Since we have 25

‖Pψ(θ̂, η0)‖2 ≤ ‖Pψ(θ̂, η0)− Pψ(θ̂, η̂)‖2 + ‖Pψ(θ̂, η̂)‖2
= ‖Pψ(θ̂, η0)− Pψ(θ̂, η̂)‖2 + ‖Pψ(θ̂, η̂)− Pnψ(θ̂, η̂)‖2
≤ ‖Pψ(θ̂, η0)− Pψ(θ̂, η̂)‖2 + sup

θ∈Θ,η∈Gη0
‖Pnψ(θ, η)− Pψ(θ, η)‖2, (A1)

C© 2021 Biometrika Trust
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it only needs to show that both terms in (A1) are negligible. By Taylor’s expansion,

‖ψ0,t(θ̂, η̂)− ψ0,t(θ̂, η0)‖2 =
∥∥∥∂ψ0,t(θ, η)

∂ηT
∣∣
η=η̃,θ=θ̂

(η̂ − η0)
∥∥∥

2
30

≤
∥∥∥∂ψ0,t(θ, η)

∂ηT
∣∣
η=η̃,θ=θ̂

∥∥∥
2
‖η̂ − η0‖2,

where ‖η̃ − η0‖2 < ‖η̂ − η0‖2. It follows that by the Cauchy-Schwartz inequality

‖Pψ(θ̂, η̂)− Pψ(θ̂, η0)‖2
≤ P‖ψ(θ̂, η̂)− ψ(θ̂, η0)‖2

≤ P
{∥∥∥∂ψ(θ, η)

∂ηT
∣∣
η=η̃,θ=θ̂

∥∥∥
2
‖η̂ − η0‖2

}
35

≤ 1

T

T∑
t=1

([
E
{∥∥∥∂ψ0,t(θ, η)

∂ηT
∣∣
η=η̃,θ=θ̂

∥∥∥2

2

}]1/2 [
E
{
‖η̂(V 0,t)− η0(V 0,t)‖22

}]1/2)

≤

[
1

T

T∑
t=1

E
{∥∥∥∂ψ0,t(θ, η)

∂ηT
∣∣
η=η̃,θ=θ̂

∥∥∥2

2

}]1/2 [
1

T

T∑
t=1

E
{
‖η̂(V 0,t)− η0(V 0,t)‖22

}]1/2

≤ b∗‖η̂ − η0‖2,P = oP (1). (A2)

By Lemma A1, we have

sup
θ∈Θ,η∈Gη0

‖Pnψ(θ, η)− Pψ(θ, η)‖2
P−→ 0 as nT →∞.

Combining with (A1) and (A2), it yields that ‖Pψ(θ̂, η0)‖2 = oP (1). Then, by the identification condition40

(Condition 1), we have θ̂ P−→ θ0 as nT →∞.
Next, we prove the asymptotic distribution of θ̂. By Taylor expansion, we have

0 =
√
nTPnψ(θ̂, η̂) =

√
nTPnψ(θ0, η̂) + Pnψ̇θ(θ̃, η̂)

√
nT (θ̂ − θ0),

where ‖θ̃ − θ0‖2 < ‖θ̂ − θ0‖2. By Lemma A1, we have

sup
θ∈Θ,η∈Gη0

‖Pnψ̇θ(θ, η)− Pψ̇θ(θ, η)‖2
P−→ 0 as nT →∞.

It follows that

Pnψ̇θ(θ̃, η̂)
P−→ Pψ̇θ(θ0, η0) as nT →∞,

because θ̃ P−→ θ0 and η̂ is also consistent by Condition 4. Therefore,45

√
nT (θ̂ − θ0) = −

{
Pψ̇θ(θ0, η0)

}−1√
nTPnψ(θ0, η̂) + oP (1)

= −
{
Pψ̇θ(θ0, η0)

}−1√
nT {(Pn − P)ψ(θ0, η̂) + Pψ(θ0, η̂)}+ oP (1). (A3)

Moreover, we have

Pψ(θ0, η̂)

=
1

T

T∑
t=1

E
(
c(V 0,t)

[
Y0,t exp

{
−fθ0(V 0,t)A0,t

}
− µ̂1(V 0,t) exp{−fθ0(V 0,t)}π̂(V 0,t)50

−µ̂0(V 0,t){1− π̂(V 0,t)}
]
×
{
I(A0,t = 1)− π̂(V 0,t)

})
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=
1

T

T∑
t=1

E
(
c(V 0,t)

[
µ1,0(V 0,t) exp{−fθ0(V 0,t)}π0(V 0,t) + µ0,0(V 0,t){1− π0(V 0,t)}

−µ̂1(V 0,t) exp{−fθ0(V 0,t)}π̂(V 0,t)− µ̂0(V 0,t){1− π̂(V 0,t)}
]
×
{
π0(V 0,t)− π̂(V 0,t)

})
=

1

T

T∑
t=1

E
(
c(V 0,t)

[
µ1,0(V 0,t) exp{−fθ0(V 0,t)}π0(V 0,t)− µ1,0(V 0,t) exp{−fθ0(V 0,t)}π̂(V 0,t)

+µ1,0(V 0,t) exp{−fθ0(V 0,t)}π̂(V 0,t)− µ̂1(V 0,t) exp{−fθ0(V 0,t)}π̂(V 0,t) 55

+µ0,0(V 0,t){1− π0(V 0,t)} − µ0,0(V 0,t){1− π̂(V 0,t)}
+µ0,0(V 0,t){1− π̂(V 0,t)} − µ̂0(V 0,t){1− π̂(V 0,t)}

]
×
{
π0(V 0,t)− π̂(V 0,t)

})
.

Applying the Cauchy-Schwartz inequality, after some calculations we have

‖Pψ(θ0, η̂)‖2

≤ 1

T

T∑
t=1

E
(
‖c(V 0,t)

[
µ1,0(V 0,t) exp{−fθ0(V 0,t)}π0(V 0,t)− µ1,0(V 0,t) exp{−fθ0(V 0,t)}π̂(V 0,t) 60

+µ1,0(V 0,t) exp{−fθ0(V 0,t)}π̂(V 0,t)− µ̂1(V 0,t) exp{−fθ0(V 0,t)}π̂(V 0,t)

+µ0,0(V 0,t){1− π0(V 0,t)} − µ0,0(V 0,t){1− π̂(V 0,t)}
+µ0,0(V 0,t){1− π̂(V 0,t)} − µ̂0(V 0,t){1− π̂(V 0,t)}

]
×
{
π0(V 0,t)− π̂(V 0,t)

}
‖2
)

≤ 1

T

T∑
t=1

E
[
‖c(V 0,t)‖2|µ1,0(V 0,t) exp{−fθ0(V 0,t)}π0(V 0,t)− µ1,0(V 0,t) exp{−fθ0(V 0,t)}π̂(V 0,t)

+µ1,0(V 0,t) exp{−fθ0(V 0,t)}π̂(V 0,t)− µ̂1(V 0,t) exp{−fθ0(V 0,t)}π̂(V 0,t) 65

+µ0,0(V 0,t){1− π0(V 0,t)} − µ0,0(V 0,t){1− π̂(V 0,t)}
+µ0,0(V 0,t){1− π̂(V 0,t)} − µ̂0(V 0,t){1− π̂(V 0,t)}| × |π0(V 0,t)− π̂(V 0,t)|

]
� 1

T

T∑
t=1

E
[{
|π0(V 0,t)− π̂(V 0,t)|+ |µ1,0(V 0,t)− µ̂1(V 0,t)|+ |µ0,0(V 0,t)− µ̂0(V 0,t)|

}
×|π0(V 0,t)− π̂(V 0,t)|

]
� 1

T

T∑
t=1

{(
E
[{
|π0(V 0,t)− π̂(V 0,t)|+ |µ1,0(V 0,t)− µ̂1(V 0,t)|+ |µ0,0(V 0,t)− µ̂0(V 0,t)|

}2
])1/2

70

×
(
E
[{
π0(V 0,t)− π̂(V 0,t)

}2
])1/2

}

�

(
1

T

T∑
t=1

E
[{
|π0(V 0,t)− π̂(V 0,t)|+ |µ1,0(V 0,t)− µ̂1(V 0,t)|+ |µ0,0(V 0,t)− µ̂0(V 0,t)|

}2
])1/2

×

(
1

T

T∑
t=1

E
[{
π0(V 0,t)− π̂(V 0,t)

}2
])1/2

= ‖|π̂ − π0|+ |µ̂1 − µ1,0|+ |µ̂0 − µ0,0|‖2,P × ‖π̂ − π0‖2,P
≤ (‖π̂ − π0‖2,P + ‖µ̂1 − µ1,0‖2,P + ‖µ̂0 − µ0,0‖2,P ) ‖π̂ − π0‖2,P = oP {(nT )−1/2}, 75

where we use the notation � to represent the left-hand side is bounded by a constant times the right-hand
side. The last equality is due to Condition 4. This shows

√
nTPψ(θ0, η̂) = op(1). (A4)
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In addition, by Lemma A2, we have
√
nT (Pn − P)ψ(θ0, η) Z in l∞(Gη0) as nT →∞.

Since η̂ P−→ η0 in the semimetric space Gη0 relative to the metric ‖ · ‖2,P , it follows that

(
√
nT (Pn − P)ψ(θ0, η), η̂) (Z, η0) in the space l∞(Gη0)× Gη0 as nT →∞.

Define a function s : l∞(Gη0)× Gη0 7→ Rp by s(z, η) = z(η)− z(η0). Notice that the function s is con-80

tinuous at every point (z, η) such that η 7→ z(η) is continuous. By Lemma A2, almost all sample paths
of Z are continuous on Gη0 . Thus the function s is continuous at almost every point (Z, η0). By the
continuous-mapping theorem,

√
nT (Pn − P) {ψ(θ0, η̂)− ψ(θ0, η0)} = s(

√
nT (Pn − P)ψ(θ0, η), η̂) s(Z, η0) = 0.

Thus, we have
√
nT (Pn − P)ψ(θ0, η̂) =

√
nT (Pn − P)ψ(θ0, η0) + oP (1).85

Combining it with (A3) and (A4), we have
√
nT (θ̂ − θ0) = −

{
Pψ̇θ(θ0, η0)

}−1√
nT (Pn − P)ψ(θ0, η0) + oP (1).

Lastly, we only need to show
√
nT (Pn − P)ψ(θ0, η0)

d−→MVN (0,Σ) as nT →∞. (A5)

For any integer 1 ≤ g ≤ nT , let i(g) be the quotient of g + T divided by T , and t(g) be the integer that
satisfies

g = {i(g)− 1}T + t(g) and 1 ≤ t(g) ≤ T.

Then proving (A5) is equivalent to proving

nT∑
g=1

(nT )−1/2Σ−1/2ψi(g),t(g)(θ0, η0)
d−→MVN(0, I) as nT →∞. (A6)

Let F0 = {L1,1} and iteratively define {Fg}1≤g≤nT as follows:

Fg = Fg−1 ∪
{
Ai(g),t(g), Yi(g),t(g), Li(g),t(g)+1

}
, if t(g) < T

Fg = Fg−1 ∪
{
Ai(g),T , Yi(g),T , Li(g)+1,1

}
, otherwise.90

By Proposition 2, we have E
{
ψi(g),t(g)(θ0, η0) | Fg−1

}
= 0. Hence, the left-hand side of (A6) forms a

martingale difference sequence with respect to the filtration {σ(Fg)}g≥1, where σ(Fg) stands for the σ-
algebra generated byFg . To show the asymptotic normality, we apply the martingale central limit theorem
for triangular arrays (Theorem 2.3 of McLeish et al. (1974)), which requires to verify the following two
conditions:95

Condition A1. max1≤g≤nT ‖(nT )−1/2Σ−1/2ψi(g),t(g)(θ0, η0)‖2
P−→ 0 as nT →∞.

Condition A2. 1
nT

∑nT
g=1 Σ−1/2ψi(g),t(g)(θ0, η0)ψTi(g),t(g)(θ0, η0)(Σ−1/2)T

P−→ I as nT →∞.

First, we have

max
1≤g≤nT

‖(nT )−1/2Σ−1/2ψi(g),t(g)(θ0, η0)‖2

≤ (nT )−1/2‖Σ−1/2‖2 max
1≤g≤nT

‖ψi(g),t(g)(θ0, η0)‖2100

≤ (nT )−1/2‖Σ−1/2‖2 max
1≤g≤nT

{
‖c(V i(g),t(g))‖2|I(Ai(g),t(g) = 1)− π0(V i(g),t(g))|
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×|Yi(g),t(g) exp{−fθ0(V i(g),t(g))Ai(g),t(g)} − µ1,0(V i(g),t(g)) exp{−fθ0(V i(g),t(g))}π0(V i(g),t(g))

−µ0,0(V i(g),t(g)){1− π0(V i(g),t(g))}|
}

= Op{(nT )−1/2},

which completes the proof of Condition A1. 105

To verify Condition A2, we have∥∥∥(nT )−1
nT∑
g=1

Σ−1/2ψi(g),t(g)(θ0, η0)ψTi(g),t(g)(θ0, η0)(Σ−1/2)T − I
∥∥∥

2

=
∥∥∥Σ−1/2

{
(nT )−1

nT∑
g=1

ψi(g),t(g)(θ0, η0)ψTi(g),t(g)(θ0, η0)− Σ

}
(Σ−1/2)T

∥∥∥
2

≤ ‖Σ−1/2‖22
∥∥∥(nT )−1

nT∑
g=1

ψi(g),t(g)(θ0, η0)ψTi(g),t(g)(θ0, η0)− Σ
∥∥∥

2
.

It suffices to show 110∥∥∥ 1

nT

nT∑
g=1

ψi(g),t(g)(θ0, η0)ψTi(g),t(g)(θ0, η0)− Σ
∥∥∥

2
= oP (1).

Define Mg = ψi(g),t(g)(θ0, η0)ψTi(g),t(g)(θ0, η0)− E
{
ψi(g),t(g)(θ0, η0)ψTi(g),t(g)(θ0, η0) | Fg−1

}
. Then

{Mg}g≥1 forms a martingale difference sequence with respect to the filtration {σ(Fg)}g≥1. Since

E
(
MgM

T
g′

)
= 0 for g 6= g′ and E

(
MgM

T
g

)
is bounded for all g, we have ‖(nT )−1

∑nT
g=1Mg‖2

P−→ 0 as
nT →∞. That is,∥∥∥ 1

nT

nT∑
g=1

[
ψi(g),t(g)(θ0, η0)ψTi(g),t(g)(θ0, η0)− E

{
ψi(g),t(g)(θ0, η0)ψTi(g),t(g)(θ0, η0) | Fg−1

}]∥∥∥
2

P−→ 0.

This proves Condition A2. The proof of Theorem 1 is hence completed.

A.2. Proof of Theorem 2
In the case of timewise randomization, we can establish similar results as for Lemmas A1 and A2 under

modified conditions. The remaining proof is similar to that of Theorem 1, which is omitted here.

A.3. Proof of Lemma A1 115

For any integer 1 ≤ g ≤ nT , let i(g) be the quotient of g + T divided by T , and t(g) be the integer that
satisfies

g = (i(g)− 1)T + t(g) and 1 ≤ t(g) ≤ T.

Let F0 = {L1,1}, and {Fg}1≤g≤nT iteratively defined as follows:

Fg = Fg−1 ∪
{
Ai(g),t(g), Yi(g),t(g), Li(g),t(g)+1

}
, if t(g) < T

Fg = Fg−1 ∪
{
Ai(g),T , Yi(g),T , Li(g)+1,1

}
, otherwise.

For any (θ, η) ∈ U , define

mg(θ, η) = ψi(g),t(g)(θ, η)− E{ψi(g),t(g)(θ, η) | Fg−1}.

Then for any fixed (θ, η), mg(θ, η) is a martingale difference sequence adapted to {σ(Fg)}g≥1. By the
continuousness of mg(·) in θ and η and Condition 2, we have that for any δ > 0, there exists a finite ε-net 120
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Uε such that

sup
(θ,η)∈U

1

nT

∥∥∥ nT∑
g=1

mg(θ, η)
∥∥∥

2
≤ sup

(θ,η)∈Uε

1

nT

∥∥∥ nT∑
g=1

mg(θ, η)
∥∥∥

2
+ δ. (A7)

For any (θ, η) ∈ Uε, define

Wcol,nT =

nT∑
g=1

E
{
mg(θ, η)mT

g (θ, η) | Fg−1

}
and

Wrow,nT =

nT∑
g=1

E
{
mT
g (θ, η)mg(θ, η) | Fg−1

}
.125

By Condition 3, we can show that for any (θ, η) ∈ U

max {‖Wcol,nT ‖2, ‖Wrow,nT ‖2} ≤ nTσ2 a.s.

‖mg(θ, η)‖2 ≤ r a.s.

for some constant σ2 and r. Then by the martingale concentration inequality (Tropp et al., 2011), we have

P

{∥∥∥ nT∑
g=1

mg(θ, η)
∥∥∥

2
≥ τ

}
≤ (1 + p) exp

(
−τ2

σ2nT + rτ/3

)
.

Setting τ =
√
nT log nT , we can show that the following event occurs with a probability of at least130

1−O(1/nT ) for any (θ, η) ∈ U , ∥∥∥ nT∑
g=1

mg(θ, η)
∥∥∥

2
�
√
nT log nT .

Since Uε is finite, we have

sup
(θ,η)∈Uε

∥∥∥ nT∑
g=1

mg(θ, η)
∥∥∥

2
�
√
nT log nT ,

and hence

sup
(θ,η)∈Uε

∥∥∥ 1

nT

nT∑
g=1

mg(θ, η)
∥∥∥

2
= OP (

√
log nT

nT
) = oP (1).

By (A7), we obtain

sup
θ∈Θ,η∈Gη0

‖Pnψ(θ, η)− Pψ(θ, η)‖2 = oP (1).

In a similar way, we can show135

sup
θ∈Θ,η∈Gη0

‖Pnψ̇θ(θ, η)− Pψ̇θ(θ, η)‖2 = oP (1).

A.4. Proof of Lemma A2
We prove this lemma by applying the uniform central limit theorem for function-indexed martingale

difference arrays (Theorem 2 of Bae et al. (2010)). Specifically, proving Lemma A2 is equivalent to
proving

1√
nT

nT∑
g=1

mg(η) Z in l∞(Gη0) as nT →∞.
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Note that for any fixed η, mg(η) is a martingale difference sequence adapted to {σ(Fg)}g≥1. Let m(j)
g (η) 140

denote the jth component of mg(η). To show the weak convergence, we need to verify the following
conditions:

Condition A3. Gη0 has uniformly integrable entropy.

Condition A4. For j = 1, . . . , p, there exists a constant M such that as nT →∞

P

 sup
η,η′∈Gη0

(nT )−1
∑nT
g=1 E

[{
m

(j)
g (η)−m(j)

g (η′)
}2

| V g
]

‖η − η′‖22,P
≥M

→ 0. 145

Condition A5. For j = 1, . . . , p, (nT )−1
∑nT
g=1 E

[
{m(j)

g (F )}21
{

(nT )−1/2m
(j)
g (F ) > ε

}]
P−→ 0 as

nT →∞, where F is an envelope function for the class of functions {η : η ∈ Gη0}.

Condition A6. (nT )−1
∑nT
g=1 E

{
mg(η)mT

g (η) | Fg−1

} P−→ Σ(η) as nT →∞ for each η ∈ Gη0 ,
where Σ(η) is a positive definite matrix.

Here, Conditions A3, A4, and A6 are provided by Conditions 2, 6, and 5, respectively, and their validity
is discussed after introducing these conditions. So we only need to show Condition A5. An envelop func-
tion F can be chosen as a constant vector (b0, b0, b0)T due to Condition 3(iii). Moreover, we can show
that ‖mg(F )‖2 is bounded almost surely. Therefore, for j = 1, . . . , p,

E
[
{m(j)

g (F )}21
{

(nT )−1/2m(j)
g (F ) > ε

}]
� P

{
(nT )−1/2m(j)

g (F ) > ε
}

P−→ 0,

which completes the proof of Condition A5. 150

B. ADDITIONAL SIMULATIONS

B.1. Comparison of Condition Outcome Means Estimation Methods
In the proposed method, the conditional outcome means µ0,0, µ1,0 are nonparametrically estimated in

two parts using generalized additive models. We want to see how the proposed method compares with
the approach where the conditional outcome means are nonparametrically estimated in one part and the 155

approach where the conditional outcome means are modeled parametrically in two parts with incorrect
function forms. We consider the setting of individual randomization and the covariates-dependent propen-
sity score π0(vi,t) = {1 + exp(0.5− 0.5l

(2)
i,t − 0.8l

(3)
i,t )}−1. We generate the potential outcomes Y (ai,T )

i,t

from a zero-inflated log-normal distribution

(1− p(ai,T )
i,t )I(Y

(ai,T )
i,t = 0) + p

(ai,T )
i,t log-normal (ν

(ai,T )
i,t , 0.52),

where p(ai,T )
i,t = exp(βTp l̃i,t + γTp l̃i,tai,t) and ν

(ai,T )
i,t = βTν l̃i,t + γTν l̃i,tai,t with l̃i,t = (1, lTi,t)

T . Then, 160

fθ0(vi,t) = θT0 l̃i,t with θ0 = γp + γν . The parameters are chosen as below such that the zero proportion
of the observed outcomes is around 90%.

βp = (−0.6,−0.8,−0.5,−1)T , βν = (0, 0.3, 0.5, 0.5)T ,

γp = (0.5, 0.5, 0, 0)T , γν = (0.1, 0, 0.4, 0.5)T ,

θ0 = (0.6, 0.5, 0.4, 0.5)T . 165

The propensity score is nonparametrically fitted by a generalized additive model in all three methods.
In the one-part nonparametric method, the conditional outcome means are estimated by a generalized
additive model, while in the two-part parametric method the two parts of the conditional outcome means
are respectively modeled by logistic regression and linear regression. The results in Table A1 show that
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the proposed estimators are more accurate and efficient compared with the others when the sample size is170

small. The advantage becomes small when the sample size gets large.

Table A1: Simulation results with nonparametric propensity score and T = 60 under individual
randomization

Estimation
method

for µ0, µ1

n Parameter
Opt. c Sim. c

Mean SD SE C.P. Mean SD SE C.P.

two-parts,
nonparametric

1000 θ
(0)
0 = 0.6 0.599 0.055 0.054 95.2 0.601 0.087 0.088 94.8

θ
(1)
0 = 0.5 0.501 0.024 0.024 95.7 0.501 0.035 0.036 95.3

θ
(2)
0 = 0.4 0.406 0.066 0.065 94.4 0.404 0.087 0.081 92.8

θ
(3)
0 = 0.5 0.502 0.114 0.113 94.8 0.504 0.135 0.126 93.9

400 θ
(0)
0 = 0.6 0.600 0.086 0.088 96.3 0.599 0.123 0.116 93.9

θ
(1)
0 = 0.5 0.500 0.041 0.042 96.0 0.499 0.054 0.052 94.6

θ
(2)
0 = 0.4 0.410 0.106 0.103 93.9 0.417 0.133 0.125 92.1

θ
(3)
0 = 0.5 0.507 0.172 0.172 96.3 0.523 0.243 0.223 93.0

200 θ
(0)
0 = 0.6 0.594 0.124 0.123 95.1 0.607 0.215 0.205 93.9

θ
(1)
0 = 0.5 0.504 0.065 0.066 95.8 0.498 0.074 0.075 95.1

θ
(2)
0 = 0.4 0.404 0.154 0.149 93.6 0.433 0.197 0.166 89.5

θ
(3)
0 = 0.5 0.533 0.265 0.263 94.8 0.531 0.290 0.271 93.8

one-part,
nonparametric

1000 θ
(0)
0 = 0.6 0.601 0.054 0.055 95.9 0.599 0.113 0.114 95.1

θ
(1)
0 = 0.5 0.501 0.026 0.027 96.5 0.501 0.037 0.037 95.7

θ
(2)
0 = 0.4 0.399 0.063 0.063 95.0 0.402 0.088 0.082 92.5

θ
(3)
0 = 0.5 0.501 0.100 0.103 94.4 0.509 0.122 0.123 95.0

400 θ
(0)
0 = 0.6 0.605 0.137 0.142 95.5 0.588 0.273 0.261 93.0

θ
(1)
0 = 0.5 0.501 0.056 0.057 96.0 0.504 0.078 0.076 94.0

θ
(2)
0 = 0.4 0.406 0.106 0.103 94.4 0.416 0.131 0.122 92.3

θ
(3)
0 = 0.5 0.497 0.147 0.149 96.2 0.514 0.219 0.208 93.6

200 θ
(0)
0 = 0.6 0.594 0.298 0.299 94.9 0.585 0.421 0.380 91.8

θ
(1)
0 = 0.5 0.505 0.092 0.092 95.2 0.511 0.123 0.113 91.9

θ
(2)
0 = 0.4 0.417 0.158 0.144 93.0 0.420 0.186 0.161 90.0

θ
(3)
0 = 0.5 0.527 0.250 0.238 93.8 0.517 0.298 0.287 93.8

two-parts,
misspecified
parametric

1000 θ
(0)
0 = 0.6 0.600 0.108 0.110 95.2 0.598 0.156 0.156 96.5

θ
(1)
0 = 0.5 0.501 0.037 0.037 94.9 0.501 0.050 0.050 95.2

θ
(2)
0 = 0.4 0.402 0.068 0.069 94.9 0.406 0.088 0.083 94.1

θ
(3)
0 = 0.5 0.503 0.111 0.108 94.4 0.507 0.133 0.128 94.1

400 θ
(0)
0 = 0.6 0.578 0.212 0.211 96.2 0.579 0.242 0.241 95.2

θ
(1)
0 = 0.5 0.507 0.067 0.067 96.6 0.506 0.075 0.074 94.5

θ
(2)
0 = 0.4 0.411 0.112 0.111 95.4 0.421 0.138 0.124 90.1

θ
(3)
0 = 0.5 0.521 0.172 0.176 95.5 0.514 0.197 0.201 94.3

200 θ
(0)
0 = 0.6 0.561 0.332 0.318 96.3 0.580 0.374 0.358 95.9

θ
(1)
0 = 0.5 0.515 0.120 0.113 96.3 0.509 0.107 0.105 96.0

θ
(2)
0 = 0.4 0.432 0.171 0.177 96.6 0.424 0.198 0.172 90.7

θ
(3)
0 = 0.5 0.519 0.241 0.245 95.7 0.524 0.311 0.286 93.6
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B.2. Simulations under Incorrect Treatment Effect Model
Our framework requires that the treatment effect model is correctly specified. We want to test how the

proposed method performs when the treatment effect model is misspecified. We consider two cases of
misspecified treatment effect model. In both cases, the treatment is generated from a constant propensity 175

score of 0.5.
In the first case, treatment ai,t−1 is involved in the true treatment effect function as an additional

covariate, i.e.

E(Y
(ai,t)
i,t | Ai,t = ai,t, Li,t = li,t)

E(Y
(0i,t)
i,t | Ai,t = ai,t, Li,t = li,t)

= exp{fθ(vi,t)ai,t} t = 1, . . . , T ; i = 1, . . . , n (A1)

where

fθ0(vi,t) = θT0 l̃i,t + 0.2ai,t−1.

When the treatment effect model is correctly specified, our proposed estimator is still unbiased and the
resulting variance estimation is consistent (Table A2). However, if we do not consider the term ai,t−1 in 180

constructing the treatment effect model, we will have a biased estimator for the intercept (Table A3).
In the second case, we generate the potential outcomes from a zero-inflated log-normal distribution

(1− p(ai,t)
i,t )I(Y

(ai,t)
i,t = 0) + p

(ai,t)
i,t log-normal (ν

(ai,t)
i,t , 0.52),

where p(ai,t)
i,t = exp(βTp l̃i,t + 0.4ai,t + 0.2ai,t−1) and ν(ai,t)

i,t = βTν l̃i,t + 0.3ai,t + 0.1ai,t−1 with l̃i,t =

(1, lTi,t)
T , so the true treatment effect model should be

E(Y
(ai,t)
i,t | Ai,t = ai,t, Li,t = li,t)

E(Y
(0i,t)
i,t | Ai,t = ai,t, Li,t = li,t)

= exp{0.7ai,t + 0.3ai,t−1} t = 1, . . . , T ; i = 1, . . . , n

However, we consider an incorrect treatment effect function fθ(vi,t) = θ(0). Interestingly, Table A4 shows
that we have a nearly unbiased estimator of the treatment effect for ai,t, but we add the caveat that this
robustness may not extend to general settings and that an incorrect treatment effect model obfuscates the 185

interpretation.

B.3. Variance Estimation Simulation Results
In the main paper, we showed point estimation results by boxplots. Here we provide the variance

estimation results of the proposed estimator under the same settings. Tables A5–A8 correspond to the
same setting as Fig.1–3 in § 4. 190
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Table A2: Simulation results with correct treatment effect function (case 1)

n Parameter Mean SD SE C.P.

1000 θ
(0)
0 = 0.6 0.596 0.151 0.150 95

θ
(1)
0 = 0.5 0.502 0.042 0.043 95

θ
(2)
0 = 0.4 0.403 0.068 0.066 94

θ
(3)
0 = 0.5 0.504 0.116 0.111 94

θ
(4)
0 = 0.5 0.201 0.105 0.106 96

400 θ
(0)
0 = 0.6 0.605 0.113 0.113 95

θ
(1)
0 = 0.5 0.499 0.051 0.052 95

θ
(2)
0 = 0.4 0.410 0.107 0.108 96

θ
(3)
0 = 0.5 0.501 0.181 0.182 95

θ
(4)
0 = 0.2 0.198 0.142 0.142 95

200 θ
(0)
0 = 0.6 0.603 0.211 0.206 94

θ
(1)
0 = 0.5 0.504 0.080 0.079 96

θ
(2)
0 = 0.4 0.412 0.159 0.141 93

θ
(3)
0 = 0.5 0.518 0.235 0.232 95

θ
(4)
0 = 0.2 0.196 0.228 0.225 95

Table A3: Simulation results with incorrect treatment effect function (case 1)

n Parameter Mean SD

1000 θ
(0)
0 = 0.6 0.666 0.170

θ
(1)
0 = 0.5 0.509 0.048

θ
(2)
0 = 0.4 0.418 0.066

θ
(3)
0 = 0.5 0.500 0.119

400 θ
(0)
0 = 0.6 0.642 0.145

θ
(1)
0 = 0.5 0.516 0.050

θ
(2)
0 = 0.4 0.426 0.104

θ
(3)
0 = 0.5 0.515 0.159

200 θ
(0)
0 = 0.6 0.690 0.281

θ
(1)
0 = 0.5 0.509 0.089

θ
(2)
0 = 0.4 0.423 0.158

θ
(3)
0 = 0.5 0.499 0.243

Table A4: Simulation results with incorrect treatment effect function (case 2)

n Parameter Mean SD

1000 θ
(0)
0 = 0.7 0.704 0.062

400 θ
(0)
0 = 0.7 0.702 0.097

200 θ
(0)
0 = 0.7 0.705 0.117
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Table A5: Simulation results with same directional treatment effect and T = 60 under individual
randomization

Propensity
score n Parameter

Opt. c Sim. c

Mean SD SE C.P. Mean SD SE C.P.

constant

1000 θ
(0)
0 = 0.30 0.300 0.053 0.052 94 0.299 0.057 0.056 94

θ
(1)
0 = 0.15 0.150 0.016 0.016 95 0.150 0.017 0.017 95

θ
(2)
0 = 0.05 0.050 0.017 0.017 96 0.050 0.019 0.019 96

θ
(3)
0 = 0.08 0.081 0.035 0.035 95 0.081 0.038 0.037 95

400 θ
(0)
0 = 0.30 0.302 0.087 0.082 94 0.302 0.093 0.089 95

θ
(1)
0 = 0.15 0.150 0.026 0.025 95 0.149 0.028 0.027 95

θ
(2)
0 = 0.05 0.050 0.027 0.027 96 0.051 0.029 0.030 96

θ
(3)
0 = 0.08 0.080 0.057 0.055 94 0.081 0.061 0.059 94

200 θ
(0)
0 = 0.30 0.299 0.116 0.117 95 0.304 0.127 0.126 94

θ
(1)
0 = 0.15 0.150 0.035 0.036 97 0.149 0.038 0.038 96

θ
(2)
0 = 0.05 0.052 0.039 0.039 95 0.052 0.043 0.043 95

θ
(3)
0 = 0.08 0.078 0.079 0.078 95 0.077 0.084 0.083 94

covariates
dependent

1000 θ
(0)
0 = 0.30 0.302 0.053 0.056 96 0.302 0.063 0.063 94

θ
(1)
0 = 0.15 0.150 0.016 0.017 97 0.150 0.018 0.018 96

θ
(2)
0 = 0.05 0.050 0.020 0.019 95 0.050 0.022 0.022 95

θ
(3)
0 = 0.08 0.079 0.038 0.037 95 0.080 0.044 0.043 96

400 θ
(0)
0 = 0.30 0.297 0.081 0.078 95 0.297 0.093 0.096 96

θ
(1)
0 = 0.15 0.151 0.027 0.026 95 0.150 0.030 0.029 95

θ
(2)
0 = 0.05 0.052 0.036 0.036 95 0.051 0.034 0.034 94

θ
(3)
0 = 0.08 0.078 0.061 0.062 95 0.083 0.066 0.067 96

200 θ
(0)
0 = 0.30 0.295 0.136 0.130 94 0.301 0.144 0.140 94

θ
(1)
0 = 0.15 0.151 0.039 0.038 95 0.150 0.043 0.042 94

θ
(2)
0 = 0.05 0.050 0.047 0.045 94 0.052 0.048 0.048 95

θ
(3)
0 = 0.08 0.088 0.085 0.085 95 0.079 0.093 0.093 96
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Table A6: Simulation results with opposite directional treatment effect and T = 60 under indi-
vidual randomization

Propensity
score n Parameter

Opt. c Sim. c

Mean SD SE C.P. Mean SD SE C.P.

constant

1000 θ
(0)
0 = −0.10 −0.102 0.053 0.052 94 −0.100 0.060 0.059 94

θ
(1)
0 = −0.15 −0.149 0.016 0.016 95 −0.150 0.018 0.018 95

θ
(2)
0 = 0.05 0.051 0.018 0.017 95 0.050 0.020 0.019 94

θ
(3)
0 = 0.08 0.080 0.035 0.035 95 0.079 0.038 0.038 95

400 θ
(0)
0 = −0.10 −0.099 0.082 0.083 94 −0.099 0.094 0.094 95

θ
(1)
0 = −0.15 −0.150 0.026 0.026 95 −0.150 0.028 0.028 95

θ
(2)
0 = 0.05 0.050 0.027 0.028 95 0.049 0.031 0.030 95

θ
(3)
0 = 0.08 0.082 0.053 0.056 95 0.082 0.057 0.060 96

200 θ
(0)
0 = −0.10 −0.095 0.114 0.117 95 −0.090 0.130 0.133 95

θ
(1)
0 = −0.15 −0.152 0.034 0.036 96 −0.153 0.038 0.040 96

θ
(2)
0 = 0.05 0.051 0.038 0.039 95 0.050 0.043 0.043 94

θ
(3)
0 = 0.08 0.081 0.080 0.079 94 0.080 0.086 0.084 95

covariates
dependent

1000 θ
(0)
0 = −0.10 −0.104 0.051 0.052 95 −0.103 0.056 0.056 96

θ
(1)
0 = −0.15 −0.149 0.016 0.016 95 −0.149 0.018 0.018 95

θ
(2)
0 = 0.05 0.051 0.018 0.018 96 0.050 0.018 0.018 95

θ
(3)
0 = 0.08 0.082 0.036 0.036 95 0.081 0.036 0.037 95

400 θ
(0)
0 = −0.10 −0.105 0.101 0.099 94 −0.096 0.089 0.090 96

θ
(1)
0 = −0.15 −0.150 0.028 0.026 94 −0.152 0.028 0.028 95

θ
(2)
0 = 0.05 0.051 0.026 0.026 95 0.052 0.027 0.028 95

θ
(3)
0 = 0.08 0.085 0.060 0.060 96 0.078 0.059 0.059 95

200 θ
(0)
0 = −0.10 −0.099 0.115 0.114 95 −0.098 0.129 0.131 96

θ
(1)
0 = −0.15 −0.150 0.039 0.038 94 −0.151 0.039 0.039 96

θ
(2)
0 = 0.05 0.051 0.038 0.037 95 0.052 0.037 0.039 96

θ
(3)
0 = 0.08 0.080 0.078 0.081 96 0.085 0.087 0.083 93
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Table A7: Simulation results with same directional treatment effect and n = 400 under timewise
randomization

T Parameter
Opt. c Sim. c

Mean SD SE C.P. Mean SD SE C.P.

1000 θ
(0)
0 = 0.30 0.300 0.057 0.055 93 0.301 0.053 0.052 95

θ
(1)
0 = 0.15 0.150 0.009 0.009 92 0.150 0.009 0.009 94

θ
(2)
0 = 0.05 0.050 0.011 0.011 95 0.050 0.012 0.012 95

θ
(3)
0 = 0.08 0.080 0.020 0.021 96 0.079 0.021 0.022 96

250 θ
(0)
0 = 0.30 0.298 0.089 0.075 86 0.300 0.080 0.072 90

θ
(1)
0 = 0.15 0.151 0.018 0.016 88 0.150 0.017 0.015 91

θ
(2)
0 = 0.05 0.050 0.020 0.020 94 0.050 0.021 0.020 94

θ
(3)
0 = 0.08 0.080 0.035 0.035 95 0.079 0.037 0.036 94

60 θ
(0)
0 = 0.30 0.293 0.136 0.098 81 0.296 0.121 0.098 87

θ
(1)
0 = 0.15 0.150 0.038 0.028 81 0.150 0.034 0.029 89

θ
(2)
0 = 0.05 0.052 0.038 0.036 92 0.052 0.038 0.036 92

θ
(3)
0 = 0.08 0.085 0.060 0.060 95 0.083 0.064 0.061 93

Table A8: Simulation results with opposite directional treatment effect and n = 400 under time-
wise randomization

T Parameter
Opt. c Sim. c

Mean SD SE C.P. Mean SD SE C.P.

1000 θ
(0)
0 = −0.10 −0.100 0.053 0.052 95 −0.099 0.055 0.054 95

θ
(1)
0 = −0.15 −0.150 0.009 0.009 95 −0.150 0.009 0.009 94

θ
(2)
0 = 0.05 0.050 0.011 0.011 95 0.050 0.012 0.012 95

θ
(3)
0 = 0.08 0.080 0.020 0.021 96 0.080 0.022 0.022 95

250 θ
(0)
0 = −0.10 −0.102 0.083 0.073 90 −0.100 0.080 0.075 94

θ
(1)
0 = −0.15 −0.150 0.017 0.015 92 −0.150 0.017 0.016 93

θ
(2)
0 = 0.05 0.050 0.021 0.020 94 0.050 0.021 0.020 94

θ
(3)
0 = 0.08 0.080 0.035 0.035 95 0.079 0.037 0.037 94

60 θ
(0)
0 = −0.10 −0.097 0.140 0.100 81 −0.096 0.132 0.103 86

θ
(1)
0 = −0.15 −0.151 0.040 0.029 84 −0.151 0.037 0.030 88

θ
(2)
0 = 0.05 0.052 0.037 0.036 94 0.050 0.038 0.036 93

θ
(3)
0 = 0.08 0.077 0.061 0.060 93 0.076 0.066 0.062 92
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