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Wildland fire smoke contains hazardous levels of fine particulate mat-
ter (PM2.5), a pollutant shown to adversely effect health. Estimating fire at-
tributable PM2.5 concentrations is key to quantifying the impact on air quality
and subsequent health burden. This is a challenging problem since only to-
tal PM2.5 is measured at monitoring stations and both fire-attributable PM2.5
and PM2.5 from all other sources are correlated in space and time. We propose
a framework for estimating fire-contributed PM2.5 and PM2.5 from all other
sources using a novel causal inference framework and bias-adjusted chemical
model representations of PM2.5 under counterfactual scenarios. The chemical
model representation of PM2.5 for this analysis is simulated using Commu-
nity Multiscale Air Quality Modeling System (CMAQ), run with and without
fire emissions across the contiguous U.S. for the 2008–2012 wildfire seasons.
The CMAQ output is calibrated with observations from monitoring sites for
the same spatial domain and time period. We use a Bayesian model that ac-
counts for spatial variation to estimate the effect of wildland fires on PM2.5
and state assumptions under which the estimate has a valid causal interpreta-
tion. Our results include estimates of the contributions of wildfire smoke to
PM2.5 for the contiguous U.S. Additionally, we compute the health burden
associated with the PM2.5 attributable to wildfire smoke.

1. Introduction. Wildfires are a leading contributor to unhealthy air quality in many
communities across the world. Among the pollutants found in smoke, fine particulate matter
(mixtures of particles smaller than 2.5 μm in diameter or PM2.5) associated with a number of
respiratory and cardiovascular outcomes, is of the largest public health concern (Dennekamp
and Abramson (2011), Dennekamp et al. (2015), Haikerwal et al. (2015, 2016), Johnston
et al. (2012), Rappold et al. (2011), Wettstein et al. (2018)). The objective of this study is
to estimate the wildland fire-attributable fraction of ambient PM2.5 in order to quantify the
related health burden. We introduce a potential outcomes framework to estimate the causal ef-
fect of wildland fires on ambient PM2.5 in the presence of spatial correlation. The framework
leverages numerical model simulations of air quality serving as biased representations of the
potential outcomes. A Bayesian spatial downscaling model is used to learn the relationship
between the spatially and temporally resolved numerical model output and the sparsely ob-
served PM2.5 from air quality monitors and to provide unbiased estimates of counterfactual
outcomes, quantification of uncertainty, and predictions that are both spatially and temporally
resolved.

To quantify the magnitude of the health burden attributable to the smoke from fire events,
we need to distinguish the PM2.5 composition mixture attributable to fire from the PM2.5
mixture due to all other sources. Total ambient PM2.5 concentrations are recorded at the
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monitoring sites across the country; however, these observations do not provide insight into
the potential composition of particles that would have formed had there been no wildfires.
The mixture of particles measured on any given day depends on multiple sources of emissions
and conditions of combustion by which particles were produced. Once released, particles and
gases coalesce and interact with those already present in the atmosphere through nonadditive
chemical and physical processes. Formation of PM2.5 is additionally confounded by external
factors, including fire weather conditions, vegetation, burned areas, and areas unable to burn
again as well as anthropogenic and other natural emissions (McKenzie et al. (2014), Stavros,
Mckenzie and Larkin (2014)). Finally, in the presence of fire, nonfire emissions themselves
can be altered through feedbacks. Together, these factors lead to complex dependencies of
PM2.5 concentrations across space and time.

To distinguish fire-contributed PM2.5 from total ambient concentrations, we utilize nu-
merical model representations of air quality. The model simulates chemical reactions and
transport of particle mixtures in the atmosphere using deterministic representations of chem-
ical processes under a set of input emissions and external forcings. By removing the forcing
for wildfire emissions, these models produce air quality simulations from the counterfactual
scenario, that is, PM2.5 composition that would have formed had there not been wildfires. In
this study we use the Community Multiscale Air Quality (CMAQ) numerical model to sim-
ulate air quality under observed and counterfactual forcings. The difference in PM2.5 under
CMAQ representations of air quality, with and without wildfire emissions, is considered to
be a modeled representation of fire-contributed PM2.5.

Numerical models have been used to simulate counterfactual environmental conditions in
other contexts, most notably to investigate future unobserved or distant past climate trajec-
tories (Allen and Stott (2003), Hammerling, Katzfuss and Smith (2017), Hegerl and Zwiers
(2011), Knutson et al. (2017), National Academies of Science (2016)). These studies, referred
to as detection and attribution (D&A) studies, use global climate models to detect changes
by varying an exogenous forcing while holding all else constant and to attribute the change
to the specific forcings. These studies have been linked to causal counterfactual theory in
Hannart et al. (2016) in which authors demonstrate the utility of deriving the probability of
necessary and sufficient causality in formulating causal claims. However, when outcomes are
not directly observable (e.g., future or paleo climates), causal inference is limited due to lack
of accounting for error and uncertainty.

Even when the outcomes are observable, such as in the case of air quality, numerical
models are subject to systematic bias arising from misspecification of inputs or processes
governing model behavior. To calibrate the CMAQ PM2.5 output in our study, we develop
a Bayesian statistical downscaling method that relates data at a lower observed resolution
to a spatially resolved, higher resolution of CMAQ model and allows for spatial prediction
at all locations. The calibration model is similar to the spatiotemporal downscaling method
introduced by Berrocal, Gelfand and Holland (2010) in that it uses spatially-varying coef-
ficients to estimate the relationship between sparse observations and numeric model output
where data is available (Berrocal, Gelfand and Holland (2010), Gelfand et al. (2003, 2004),
Schmidt and Gelfand (2003)). The method is computationally efficient and has high predic-
tive performance relative to other downscaling methods (Chilès and Delfiner (2012), Cressie
(1993), Fuentes and Raftery (2005)).

The second challenge to estimating wildfire attributed PM2.5 concentrations within a
causal inference paradigm is the spatial interference between the observed PM2.5 at sites
according to whether or not the site (observation unit) is impacted by wildfires (treatment).
Indirect or spillover effects across spatial locations violates the stable unit treatment value as-
sumption (SUTVA) which is central to the potential outcomes framework for causal inference
(Rubin (1978)). Estimating valid causal effects in the presence of interference has previously
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been addressed in the context of vaccines and infectious diseases (Hong and Raudenbush
(2006), Hudgens and Halloran (2008), Rosenbaum (2007), Tchetgen Tchetgen and Vander-
Weele (2012)). Commonly, interference has been addressed using the less stringent partial
interference assumption, which assumes interference amongst units in the same group, but
not between groups (Halloran and Struchiner (1991), Hudgens and Halloran (2008), Sobel
(2006)).

There is a growing body of literature addressing spatial interference (Reich et al. (2021))
and which concerns air pollution in particular (Papadogeorgou, Mealli and Zigler (2019),
Zigler and Papadogeorgou (2021)), owing to the fact that causal methods are particularly rel-
evant in air pollution regulatory settings (Dominici, Greenstone and Sunstein (2014), Zigler,
Choirat and Dominici (2018)). For instance, Zigler, Dominici and Wang (2012) introduced
the first application of spatial models to predict unobserved potential outcomes and estimate
the causal effect of air-pollution regulations via principal stratification. To address the inter-
ference among units of observation, the authors rely on an assumption of partial interference.
However, the correlation between units observed under opposite treatments is unidentifiable
under their framework.

The main methodological contribution of this paper is to present a counterfactual frame-
work that utilizes bias-corrected numerical model output to produce valid causal inference
and to capture spatial spillover effects. The proposed framework estimates counterfactual
outcomes for each day and study site under two treatment regimes: an observed regime with
wildfires and an unobservable regime without wildfires. We specify a Bayesian model to fuse
the numerical model output with monitor data. We assume that, conditional on numerical
model output, observations in the areas not affected by smoke are representative of the coun-
terfactual regime without wildfires. This allows us to bias-correct the CMAQ output from the
counterfactual regimes with observed data, a limitation of previous studies. Additionally, by
running numerical model simulations under both regimes we are able to estimate correlation
between the units observed under different regimes. Finally, we clarify the assumptions re-
quired for the estimates to have a causal interpretation and show if these assumptions hold,
then the proposed method accounts for spillover effects and that all model parameters are
identified.

We apply our method to estimating the effect of wildfires on ambient PM2.5 during 2008–
2012 wildfire seasons in the contiguous U.S. We use these estimates to conduct a health-
burden analysis. Our Bayesian model provides full uncertainty quantification about the causal
effects and resulting health-burden assessment. While we apply the method to the example
of wildfire-contributed PM2.5, the approach is relevant to many applications.

2. Description of the PM2.5 data. The analysis of fire-contributed PM2.5 is conducted
over the 2008 to 2012 wildfire seasons (May 1–October 31) in the contiguous U.S. There are
two sources of PM2.5 data: monitor data from the Environmental Protection Agency’s (EPA)
Air Quality System (AQS) and simulated PM2.5 from the CMAQ model. Both data sources
cover the contiguous U.S., but because of the large size, we partition the data into nine regions
with similar climates and conduct the analysis separately by region (USEPA (2020)). In the
Supplementary Material (Section 1) (Larsen et al. (2022)), we show a sensitivity analysis to
demonstrate that model results are robust to blocking by region.

2.1. AQS monitor data. We use PM2.5 data from Federal Reference Method (FRM) mon-
itoring sites in the U.S. EPA’s AQS monitoring network. Monitors in the AQS network are
distributed according to population density, so there are more monitors in urban areas than
rural (USEPA (2015)). At each site, daily average concentrations of PM2.5 are measured ev-
ery one, three, or six days. Figure 1 shows the monitor locations and the PM2.5 observed
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FIG. 1. EPA Air Quality System (AQS) monitor data. The average daily PM2.5 concentrations (μg/m3) at EPA
AQS monitoring stations over the study period: 2008 to 2012 wildfire seasons. Breakpoints correspond to the 25th,
50th, and 75th percentiles of PM2.5. Region names: West (W), Northwest (NW), West North Central (WNC), East
North Central (ENC), Northeast (NE), Central (C), Southeast (SE), South (S), and Southwest (SW).

at each monitor in the network averaged over the study time period. The observed average
concentrations range from 3.69 to 16.8 μg/m3. The highest concentrations of PM2.5 are in
California and the Southeast, and the lowest are in the West North Central and Southwest
regions.

2.2. CMAQ numerical model output. CMAQ is a deterministic model of air quality
which represents the most important processes related to atmospheric chemistry using
cutting-edge scientific knowledge. The model utilizes emissions from a wide range of sources
and transport by winds to predict concentrations of ambient composition and deposition due
to precipitation. CMAQ characterizes production and loss of hundreds of particle and gas
phase pollutants (USEPA (2019)). In the case of wildfire emissions, hourly information on
fire location and size are determined using satellite information as well as on the ground
reports. Wildland fire emissions are estimated, based on the type, load, and conditions of
vegetation at the detected burning site, and uses vegetation-specific emission factors (US
Forest Service (2015)).

As described below, our causal analysis assumes that CMAQ includes the variables re-
quired to explain the association between wildland fires and PM2.5. Successive iterations
of the model have included the main drivers, but uncertainties remain. The largest known
sources of uncertainty arise due to misspecification in characterizing variability in weather
patterns and anthropogenic emissions. In the case of wildfires, additional uncertainty arises
from misclassification of plume rise, fire weather conditions, and other factors.

The CMAQ-simulated PM2.5 data is the average PM2.5 concentrations for each day in the
2008 to 2012 wildfire seasons on a 12 × 12 km grid over the contiguous U.S.; see Rappold
et al. (2017) for details. The model is run with and without the forcing for wildland fire
emissions. The run without fire emissions is a CMAQ estimate of PM2.5 in the counterfac-
tual scenario where no wildland fires are possible. The difference in PM2.5 concentrations
between the two runs is a CMAQ estimate of fire-contributed PM2.5. CMAQ captures emis-
sions, topology, weather conditions, fate, and transport of air pollution among other factors.
However, there are many possible remaining determinants or knowledge gaps that lead to
either error and bias which motivates our statistical approach.

Figure 2 displays the PM2.5 modeled by CMAQ averaged over the 2008 to 2012 wildfire
seasons. The western half of the U.S. has predominantly low concentrations of PM2.5 (1.16–
2.21 μg/m3) when fire emissions are excluded, but higher concentrations, when fire emissions
are included (up to 6.78–30.4 μg/m3). This trend is particularly notable in the West and
Northwest regions, where wildfire frequency is high and fire-contributed PM2.5 comprises
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FIG. 2. CMAQ numerical model output. The average daily PM2.5 concentrations (μg/m3) over the 2008 to
2012 fire seasons from the CMAQ model. Clockwise from top left: Average daily PM2.5 from the model without
fire emissions, average daily PM2.5 from the model with fire emissions, and the difference between the models
reported as the percentage of the total. The spatial resolution is 12 × 12 km. Region names: West (W), Northwest
(NW), West North Central (WNC), East North Central (ENC), Northeast (NE), Central (C), Southeast (SE), South
(S), and Southwest (SW).

23.5–91.8% of the total PM2.5 in parts of these regions (i.e., central and northern California,
eastern Oregon and Washington, and central Idaho). In the South and Southeastern regions,
contribution of both wildland and prescribed fires is evident.

3. Methods.

3.1. Notation. We first establish some notation for the data. Let the observed monitor
data be Yt (s) for day t and location s ∈ R2 in spatial domain D. We denote CMAQ output
from the no-fire run as θ̂t (s) and the difference between the fire and no-fire runs as δ̂t (s).
We denote other environmental factors that are related to both fire activity and PM2.5 (con-
founders such as nonfire natural emissions, anthropogenic sources, wind, land type, etc.) as
Xt(s). The smoke plumes (i.e., the set of locations that is receiving particles emitted by a
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fire) associated with the fires determine which locations’ air quality are affected by the fires,
and so we define Ct(s) = 1 if site s is in a plume on day t and Ct(s) = 0 otherwise to cap-
ture spillover effects. The collection of data across space is denoted in bold, for example,
Ct = {Ct(s) : s ∈ D} for the plume indicators.

3.2. Fire regimes and potential outcomes framework. To estimate fire-attributable PM2.5,
that is, the amount of PM2.5 that would not have occurred were it not for wildland fires, we
use a potential outcomes framework (Rubin (1978)). Our objective is to estimate the average
difference in PM2.5 between the status quo where there are fires, and thus Ct(s) takes on
values of 0 and 1, following the fires that occur, with the counterfactual case of no fires and
Ct(s) = 0 for all s and t . Because our interest is in comparing these two cases rather than
all possible fire/plume combinations, we define regimes R = 1 and R = 0 to summarize the
plume distribution over the entire spatial domain D: the fire regime (R = 1), under which
wildfires occur in D, and the no-fire regime (R = 0) under which fires do not occur anywhere
in D. We also define the potential PM2.5 under regimes R = 0 and R = 1 as Yt (s,0) and
Yt (s,1), respectively, and model each as

Yt (s,0) = θt (s),

Yt (s,1) = θt (s) + δt (s),
(1)

where θt (s) and δt (s) are stochastic processes representing nonfire and fire-attributed PM2.5,
respectively.

Under regime R = 1, the data-generating process for the potential outcomes is to sample
Xt , Ct |Xt , and, finally, Yt (1)|Xt ,Ct in sequence. Similarly, under regime R = 0, the potential
outcome are generated by sampling Xt and then Yt (0)|Xt setting Ct = 0. Therefore, the
amount of PM2.5 caused by wildland fires is quantified by the average (over Xt and Ct )
difference in the potential outcomes (Hernán et al. (2008), Holland (1986), Rubin (1978)),

�(s) = E
[
Yt (s,1) − Yt (s,0)

] = E
[
δt (s)

]
.

In our analysis we average over time throughout the entire fire season and years of the study,
although this framework could be applied to estimate the causal effect annually, seasonally,
or even daily.

3.3. Assumptions. The fundamental problem in causal inference is that not all potential
outcomes are observed for each s and t (Holland (1986)). Therefore, the potential outcome
models and the causal effect, �(s), are not identifiable without satisfying SUTVA, the com-
ponents of which we discuss in the following.

We assume there exist bias-correction functions, B0 and B1, and we observe binary indi-
cator Ct(s) ∈ {0,1} where s is affected by wildfire smoke if and only if Ct(s) = 1 so that the
following hold.

ASSUMPTION 1 (Potential Outcomes Model). The counterfactual processes can be de-
composed as

θt (s) = B0
(
θ̂t (s), s

) + e0t (s) and δt (s) = B1
(
δ̂t (s), s

) + e1t (s),

where [e0t (s), e1t (s)] is a bivariate spatial process independent of Xt and Ct , given θ̂ t and δ̂t .

This assumption relates the CMAQ estimates θ̂t (s) and δ̂t (s) with the true processes θt (s)
and δt (s). The bias correction functions B0 and B1 can be flexible nonlinear functions (e.g.,
splines) and vary by spatial location, and the discrepancy terms e0t and e1t account for model
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misspecification and are modeled as spatial processes (Kennedy and O’Hagan (2001)). To
allow for learning where the model is underperforming, relative to the truth, we model
CMAQ bias function Bj to be a flexible spatially varying surface. As such, this bias func-
tion enables us to gain insights into possible spatially-varying confounding by examining
the residual variation. If it is suspected that model error depends on Xt (or a subset of
Xt ), then this assumption could be relaxed by including Xt in the model as, for example,
δt (s) = B1(δ̂t (s),Xt , s) + e1t (s).

Equation (1) and Assumption 1 specify the full joint model between counterfactual out-
comes Yt (s,0) and Yt (s,1), given [θ̂t (s), δ̂t (s)]. Under Assumption 1, [Yt(s,0), Yt (s,1)] are
independent of Xt , given [θ̂t (s), δ̂t (s)]. Therefore, [θ̂t (s), δ̂t (s)] can be called the prognos-
tic score of Hansen (2008) which is the prognostic analogue of the propensity score. Also,
Assumption 1 implies that all confounders with the regime realizations and potential out-
comes are captured through CMAQ output, since Assumption 1 implies [θt (s), δt (s)], and
thus [Yt (s,0), Yt (s,1)] are independent of Ct , given [θ̂ t (s), δ̂t (s)]. This is similar to the un-
confounded network influence assumption of Kao (2017) under the social network frame-
work. Although Assumption 1 is key for identification and dramatically simplifies the anal-
ysis, compared to modeling the effect of Xt , it cannot be verified from the observed data.
Because CMAQ uses most important meteorological and environmental factors for fire ac-
tivity, smoke transportation, and PM2.5 as well as state-of-the-art computer simulations (see
Section 2.2), this assumption is plausible.

ASSUMPTION 2 (Consistency). Ignoring measurement errors, the observation at s equals
the potential outcome at s under regime given by Ct(s),

Yt (s) =
{
Yt (s,0) if Ct(s) = 0,

Yt (s,1) if Ct(s) = 1.

Assumption 2 links the potential outcomes with the observed outcomes. In particular, it
allows for partial realizations of Yt (s,0), removing the need to actualize a situation under the
counterfactual no-fire regime. For example, this assumption implies that a set of monitors far
removed from fires and plumes on day t can be assumed to follow the potential outcomes dis-
tribution under the no fires regime and thus be used to identify parameters in this distribution,
such as those that determine B0 and the spatial covariance of e0t (s). As long as an appropriate
variable Ct(s) can be identified from the observed data, this assumption is plausible. In our
analysis we use CMAQ output to estimate Ct(s). Namely, we set C = 1(δ̂ > τ), where τ is a
fixed threshold chosen through cross-validation and sensitivity analysis.

Theorem 1 gives the main identification result with the proof deferred to the Appendix.

THEOREM 1. Under Assumptions 1 and 2 and further assuming that Ct is not degener-
ate, the parameters in the potential outcome models are identifiable via the distribution of the
observed data, that is, the distribution of Yt , given (θ̂ t , δ̂t ,Ct ).

While we never observe complete Yt (i.e., for all s) under the no fires regime, Assumptions
1 and 2, along with the nondegeneracy of Ct , are sufficient for identification. By Theorem 1,
causal parameter estimation only requires inspecting the implied model for Yt (s) and con-
firming parameter identification. In Section 3.4 we specify parametric models for the bias
correction functions B0 and B1 and the spatial process et (s) = [e0t (s), e1t (s)]T . We then ar-
gue in Section 3.5 that all parameters, including the correlation between counterfactuals, are
identifiable in our spatial setting. This setup serves as a basis for using a Bayesian approach
to estimating the causal effect, �(s).
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Defining the intervention as the fire regime instead of individual fires (Ct(s)) is key for two
reasons. First, this is parallel to how the numerical model simulates fire and no-fire PM2.5.
Second, the amount of fire-contributed PM2.5 at any site in the spatial domain depends on
the fire status at other sites, because the smoke from fires at neighboring sites is transported.
This is called interference or spillover, and it is problematic because we could not reasonably
claim that changes in PM2.5 at site s were only due to fire presence or absence at site s, that
is, Yt (s,Ct (s)) is not well defined. There would be a different potential outcome for every
possible Ct , resulting in 2n potential outcomes per site for a spatial domain containing n

sites.

3.4. Bayesian hierarchical model. Assumption 1 and the addition of measurement error
give the following model for the observed PM2.5:

(2) Yt (s) = θt (s) + Ct(s)δt (s) + εt (s),

where εt (s)
iid∼ N (0, σ 2) are measurement errors. To separate background PM2.5 from fire-

contributed PM2.5, we assign priors to θt (s) and δt (s) based on bias-adjusted CMAQ runs, as
per Assumption 1. We model the means of both processes as

Bj(z, s) = αj (s) + βj (s)z

for j = 0,1, where αj (s) is the additive bias and βj (s) is the multiplicative bias. The
bias terms have Gaussian process priors with means E[αj (s)] = μαj

and E[βj (s)] =
μβj

and covariances Cov[αj (s), αj (s′)] = σ 2
αj

exp(−‖s − s′‖/φ2) and Cov[βj (s), βj (s′)] =
σ 2

βj
exp(−‖s − s′‖/φ2).

The background and fire-contributed PM2.5 then have the following form:

θt (s) = α0(s) + β0(s)θ̂t (s) + e0t (s),

δt (s) = α1(s) + β1(s)δ̂t (s) + e1t (s),
(3)

where et (s) = [e0t (s), e1t (s)]T is a bivariate spatial process with mean E[ejt (s)] = 0 and sep-
arable exponential covariance Cov[et (s), et (s′)] = � exp(−‖s − s′‖/φ1). The 2 × 2 cross-
covariance matrix � has diagonal elements σ 2

1 and σ 2
2 , and off-diagonal element σ12 =

σ1σ2γ , so γ gives the correlation between counterfactual outcomes.
Our Bayesian analysis requires prior distributions for the model parameters which are

given in the Supplementary Material (Section 2) along with a sensitivity analysis that suggests
the results are not sensitive to prior specification. Exploration of the spatial model goodness
of fit and assumption of temporal independence are provided in the Supplementary Material
(Section 3 and 4).

3.5. Estimability. In this section we argue that all parameters in the joint model specified
above are estimable.

First, consider the parameters in the mean,

(4) E
[
Yt (s)

] = μt(s) = α0(s) + β0(s)θ̂t (s) + α1(s)Ct (s) + β1(s)
[
Ct(s)δ̂t (s)

]
.

Assuming the four covariates (1, θ̂t (s),Ct (s),Ct (s)δ̂t (s)) are not linearly dependent at s,
then the four parameters α0(s), α1(s), β0(s), and β1(s) are estimable. For example, ordinary
least squares would provide an unbiased and consistent estimator (as the number of days in-
creases). This result clearly relies on Assumption 1, or it would not be possible to identify
both α0(s) and α1(s).
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Under the model Yt (s) = μt(s) + e0t (s) + Ct(s)e1t (s) + εt (s), the covariance is

Cov
[
Yt (s), Yt

(
s′)|θ̂t (s), δ̂t (s)

]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ 2
1 exp(−h/φ1) Ct (s) = Ct

(
s′) = 0,

σ 2
1

(
1 + σ2

σ1
γ

)
exp(−h/φ1) Ct (s) �= Ct

(
s′),(

σ 2
1 + 2σ1σ2γ + σ 2

2
)

exp(−h/φ1) Ct (s) = Ct

(
s′) = 1,

(5)

where h = ‖s − s′‖. By examining the spatial correlation between pairs of points separately,
according to their values of Ct(s), the parameters σ 2

1 , σ 2
2 , γ , and φ1 are estimable. For ex-

ample, simple variogram-based methods could be used to estimate these parameters. More
importantly, under the full Bayesian model, Cov[Yt (s,0), Yt (s,1)|Yt (s)] = σ 2

1 (1 + σ2
σ1

γ ) is
estimable, although Yt (s,0) and Yt (s,1) are never jointly observed at one location. In our
analysis we use Bayesian modeling to jointly estimate the mean and covariance parameters.

3.6. Posterior inference. The causal effect at s is approximated as

(6) �(s) ≈ 1

T

T∑
t=1

Ct(s)δt (s).

Our fully Bayesian analysis produces the entire posterior distribution of the causal effect,
including the posterior mean �̄(s) = 1

T

∑T
t=1 Ct(s)δ̄t (s), where δ̄t (s) is the posterior mean of

δt (s). The estimate, δ̄t (s), includes both bias-corrected CMAQ, B0(θ̂t (s), s), and B1(δ̂t (s), s),
and observed data, Yt (s), allowing us to account for any daily variation in fire-attributable
PM2.5 not captured by CMAQ. Finally, δ̄t (s) is based on estimable parameters, defined in the
previous section, making �̄(s) an estimable quantity as well.

We multiply δ̄t (s) by Ct(s) because, given Assumption 2, this relates the observations to
the potential outcomes, thereby imparting the causal interpretation on �̄(s). Multiplying by
Ct(s) also allows the model to only identify δt (s) as a causal quantity if Ct(s) = 1, which is
important, as we are not interested in the PM2.5 if there were fires affecting s every day, but
the causal estimate if the fires we observed were removed.

Assuming conditional independence of Ct(s) and δt (s), given Yt (s), θ̂t (s), δ̂t (s) over time,
�̄(s) satisfies

E
[
�̄(s)

] = E
[
Ct(s)δ̄t (s)

]
= E

[
Ct(s)E

[
δt (s)|Yt (s), θ̂t (s), δ̂t (s)

]]
= E

[
Ct(s)δt (s)

]
.

Hence, it is reasonable to use �̄(s) to approximate the causal effect.

3.7. Computation. To approximate the posterior of the causal effect �(s), we implement
the spatial Bayesian analysis using a Markov chain Monte Carlo sampling. The missing val-
ues of observed PM2.5 are imputed, and every model parameter is iteratively updated by
the algorithm, conditional on all other parameters. The spatial range parameters, φ1 and φ2,
are estimated empirically using variograms. All other model parameters have conditionally-
conjugate priors and are accordingly updated with Gibbs steps where each step samples
from their respective full conditional distributions (see Supplementary Material Section 5 for
derivations of the full conditional distributions). We use Gaussian Kriging to estimate smooth
spatial surfaces across each study region for both the posterior means and standard deviations
of each model parameter. We Kriged each estimate to the centroids of the 12×12 km CMAQ
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grid. Our MCMC has a burn-in period of length 5000, after which we collect samples ev-
ery 100 iterations until a total of 30,000 iterations have been completed. To verify that the
MCMC algorithm converged, we computed the effective sample size of the causal effect esti-
mate, �(s), for each s. We also monitored convergence using visual inspection of trace plots
for several representative parameters. Summary statistics and figures of the effective sample
sizes and trace plots are included in the Supplementary Material (Section 6).

4. Fire-contributed PM2.5 estimates. We let Ct(s) = I [δ̂t (s) > τ ], where δ̂t (s) is the
CMAQ estimate of fire-attributed PM2.5 and τ is a fixed threshold. To select the threshold,
we ran several models for a range of values of τ and used five-fold cross-validation to eval-
uate each model’s ability to predict total PM2.5. We found little variation between the pre-
diction metrics between each model. For example, mean-squared error (MSE) ranged from
12.58 μg/m3 (τ = 1 μg/m3) to 12.71 μg/m3 (τ = 5 μg/m3) (Supplementary Material, Sec-
tion 7). We also examined variation in the causal effect when estimated with different values
of τ and found the differences to be negligible except if τ is selected to be extreme (e.g., 0 or
10 μg/m3) (Supplementary Material, Section 7). Based on these findings, we concluded that
the model is robust to moderate choices for the threshold, and we let τ = 1 μg/m3 for the
remaining analysis.

We display the posterior mean and standard deviation of the bias parameter estimates for
each region in the analysis in the Supplementary Material (Section 8). For the multiplicative
bias parameter in the fire-contribution process, β1(s), the highest second percent of β1(s)
values reached (0.991, 2.01 μg/m3), meaning that the strongest estimated association be-
tween CMAQ estimates and the monitor data occurs in the Northwest and West North Cen-
tral (WNC) regions, along with parts of the East North Central region, the Southwest, and
parts of the Southeast region. The lowest values (−0.39, −0.018 μg/m3) in the northern part
of the East North Central region, the South, and parts of the Northeast region. These have
fewer wildfires (Figure 2), and thus it is more difficult for CMAQ to estimate the relation-
ship between model-estimated contribution and observed PM2.5. This is neither surprising
nor problematic because these regions rarely experience fire smoke.

The posterior mean of the correlation between the counterfactual processes is summarized
in the Supplementary Material (Section 9). Observing a positive correlation in a given region
is indicative of fire smoke occurring in areas where nonfire PM2.5 emissions are present.
A negative correlation indicates the converse. The highest estimated correlation is in the
West region (0.44 ± 0.05), followed by the WNC region (0.31 ± 0.15), and then the South,
Central and Southeast regions (0.26 ± 0.08,0.26 ± 0.06,0.25 ± 0.02). The Northeast region
exhibits low correlation (0.16 ± 0.04). The correlation estimate for the Southwest region
(−0.21 ± 0.06) is negative, and the only areas for which the correlation was plausibly zero
were the ENC and the Northwest regions. To further illustrate the spatial correlation between
observations, we also provide plots of equation (5) evaluated at the posterior mean of the
model parameters for each region and combination of Ct(s) in the Supplementary Material
(Section 9).

Figure 3 displays the causal effect estimates (Panel a), posterior standard deviation (Panel
b), and the causal effect as percent of total estimated PM2.5 (Panel c). The largest estimates
occur in the West, Northwest, and WNC regions, where wildfires are most prevalent. In these
areas, between 29.5% and 72.9% of PM2.5 is attributable to wildfire smoke (Figure 3c). Mod-
erate effects are estimated in areas of the South and Southeast, where prescribed burning is
prevalent. The causal estimates in the East North Central region are in both the top and bot-
tom two percent of fire-contributed PM2.5. This area is typically only effected by long-range
smoke transport from the western U.S. or from Canadian wildland fires further north. Large
areas of the Northeast region have estimates near zero (some locations have very small nega-
tive values, likely due to statistical uncertainty).
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FIG. 3. Estimates of the causal effect, �(s). Clockwise from top left: Posterior mean, posterior standard de-
viation, fire-contributed PM2.5 as a percent of total PM2.5. Estimates are average daily concentrations over the
2008 to 2012 wildfire seasons at a 12 × 12 km spatial resolution. Region names: West (W), Northwest (NW), West
North Central (WNC), East North Central (ENC), Northeast (NE), Central (C), Southeast (SE), South (S), and
Southwest (SW).

Figure 3 shows Bayesian model estimates of background and total PM2.5, CMAQ-
simulated background,and total PM2.5 as well as observed PM2.5 during the 2008 wildfire
season. Although the spatial pattern of the causal estimates resembles the CMAQ estimates,
there are notable differences in the range of the estimates. Figure 4 illustrates these differ-
ences at one site on Northern California. The estimates from the Bayesian causal model tend
to fit closely to the observed values of PM2.5 from the monitor rather than to the CMAQ-
simulated total PM2.5 and that the CMAQ model estimates are, on average, much higher.

We also compare the estimates from the Bayesian causal model to those from CMAQ for
all monitoring sites (Figure 5) and the prediction sites (Supplementary Material, Section 10).
As in Figure 4, the Bayesian model generally produces lower estimates of fire-contributed
PM2.5 than CMAQ at all regions, both at monitoring sites (Figure 5) and prediction sites.
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FIG. 4. PM2.5 data and estimates at a monitoring site in Northern California during the 2008 wildfire season.
The site in Northern California (−121.8◦, 39.8◦) was impacted by a wildfire episode in the summer of 2008. Data
and estimates include observed station measurements, total and background estimates from CMAQ (θ̂t (s)+ δ̂t (s),
θ̂t (s)), total and background estimates from the Bayesian model (posterior means of θt (s)+Ct (s)�t (s), and θt (s),
respectively).

The 95% credible intervals are longer at the prediction locations than at the monitoring sites
which is to be expected in an interpolation analysis. Additionally, only in regions where fires
are prevalent (e.g., West, Northwest, WNC) do we see causal-effect estimates significantly
different from zero.

5. Health burden analysis. We use a log-linear concentration-response function to de-
scribe the relationship between PM2.5 and the number of hospitalizations due to respiratory
illness. This analysis is conducted at the county level as well as by age group, a. We define
�c as the integrated causal effect �(s) for s in county c. The health impact function relating
fire-contributed PM2.5 to changes in the incidence rate of hospitalizations due to respiratory
illness is

Rac = r0
anc

(
era�c − 1

)
,

where nc is the population of county c based on the July 2010 U.S. Census and r0
a is the

incidence rate of hospitalizations for respiratory illness by county and age group (BenMAP
(2017)). Using ra , we calculate cumulative daily burden over all days in the study (May–
October, 2008–2012) by county and age group (Supplementary Material, Section 11) (Delfino
et al. (2009)). Cumulative Rac over all counties in each region is summarized in Table 1,
based on both the Bayesian and the CMAQ estimate of fire-contributed PM2.5. We compute
95% Bayesian credible intervals for each cumulative Rac using Monte Carlo sampling over
the uncertainty distribution of ra implied by the standard errors of the relative risk estimates
in Delfino et al. (2009) and the posterior distribution of the PM2.5 effects �c. We note that
these estimates have a causal interpretation only if the estimates in Delfino et al. (2009) have
a causal interpretation. While Delfino et al. (2009) account for many known confounders
for fire-contributed PM2.5 and respiratory illness and the U.S. EPA (2010) declares that the
adverse effects of short-term PM2.5 exposure on respiratory outcomes is likely to be causal
(using the Hill criteria), this remains an important caveat.
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FIG. 5. Causal estimates and credible intervals at monitoring stations. Fire-contributed PM2.5 from the
Bayesian model (�(s)) vs. the CMAQ model (δ̂(s)) at the AQS monitoring sites. Vertical error bars denote 95%
credible intervals. The dashed lines represent x = y and y = 0.

The Bayesian estimate yields more conservative estimates of the impact of fire-contributed
PM2.5 on hospital admission rates for respiratory illness than the CMAQ-only analysis. The
highest estimated burden is observed in the West region, notably in Southern California with
upwards of 300 hospitalizations estimated cumulatively over the 2008 to 2012 fire seasons
in some counties (Supplementary Material, Section 11). In Table 1 the highest estimated
burden for any region is in the West with 1513.9 hospitalizations over the 2008–2012 fire
seasons, using the Bayesian estimate of the causal effect. If the CMAQ estimate for the causal
effect is used, the cumulative burden in the West is estimated to be 3500.4 hospitalizations
per day. Most counties in the rest of the country exhibit lower burden with less than five
hospitalizations per county over the 2008–2012 fire seasons.
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TABLE 1
Number of hospitalizations in each region. Cumulative number of hospitalizations for respiratory illness due to wildland fires over the 2008–2012 fire seasons in each region,

calculated using the Bayesian and the CMAQ model estimates of the causal effect, �t(s), by region. 95% confidence intervals are provided. Model 1 is the Bayesian model; model 2
is the CMAQ model. C = Central, ENC = East North Central, S = South, SE = Southeast, SW = Southwest, NE = Northeast, NW = Northwest, W = West, WNC = West North

Central

Age group (years)

Reg. Mod. 0–1 2–34 35–64 65–99 0–99

C 1 150.5 (33.9,270.6) 60.1 (−19.5,146.6) 159.8 (33.5,290.7) 283.7 (104.8,460.1) 654.1 (152.7,1168.0)

2 612.8 (137.7,1103.6) 242.3 (−77.9,592.1) 663.5 (139.1,1208.7) 1161.1 (428.4,1884.9) 2679.8 (627.4,4789.3)

ENC 1 26.7 (6.0,48.2) 10.4 (−3.4,25.4) 28.5 (6.0,52.0) 56.3 (20.8,91.4) 121.9 (29.3,217.1)

2 95.4 (21.4,172.3) 37.1 (−12.0,91.1) 103.7 (21.7,189.1) 207.7 (76.6,337.5) 443.9 (107.7,790.0)

S 1 134.9 (30.4,242.1) 47.8 (−15.4,116.2) 127.3 (26.7,231.5) 248.9 (92.0,403.4) 558.9 (133.8,993.1)

2 604.0 (135.1,1093.7) 211.0 (−67.2,518.7) 562.1 (117.5,1027.1) 1102.0 (405.4,1794.2) 2479.1 (590.8,4433.7)

SE 1 279.3 (62.4,506.0) 118.7 (−37.1,290.9) 324.8 (67.9,593.3) 565.6 (208.2,920.5) 1288.3 (301.4,2310.6)

2 642.5 (144.1,1160.6) 272.7 (−86.8,667.4) 746.6 (156.4,1361.3) 1284.4 (473.4,2087.2) 2946.1 (687.1,5276.5)

SW 1 113.6 (25.5,205.1) 33.8 (−13.1,85.4) 49.1 (10.3,89.4) 85.6 (31.6,139.1) 282.1 (54.2,519.2)

2 183.6 (41.2,330.8) 57.3 (−21.7,144.0) 89.3 (18.7,162.7) 157.0 (58.0,254.9) 487.3 (96.2,892.4)

NE 1 116.5 (26.1,210.1) 51.1 (−18.0,127.0) 118.4 (24.8,215.7) 231.6 (85.4,376.2) 517.6 (118.4,929.1)

2 209.9 (47.3,377.1) 93.2 (−32.2,229.6) 231.0 (48.5,420.2) 456.2 (168.5,739.6) 990.3 (232.1,1766.5)

NW 1 101.8 (22.6,185.2) 40.5 (−11.6,98.6) 116.0 (24.2,212.5) 217.0 (79.7,354.2) 475.3 (114.9,850.6)

2 184.1 (40.4,340.9) 72.6 (−20.0,179.5) 213.3 (44.1,394.3) 401.5 (146.1,661.3) 871.5 (210.6,1575.9)

W 1 391.9 (86.3,722.1) 142.5 (−51.0,365.2) 312.8 (64.7,578.4) 666.7 (242.7,1097.7) 1513.9 (342.7,2763.3)

2 906.3 (195.9,1712.1) 330.5 (−116.0,873.2) 714.8 (145.9,1342.5) 1548.9 (556.3,2589.3) 3500.4 (782.1,6517.0)

WNC 1 50.4 (11.3,91.2) 33.5 (−8.9,80.2) 24.8 (5.2,45.3) 30.6 (11.3,49.7) 139.3 (18.9,266.4)

2 93.8 (20.7,171.8) 61.0 (−15.9,148.4) 45.3 (9.4,83.2) 57.9 (21.3,94.3) 258.0 (35.5,497.7)
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6. Discussion. We present a novel potential outcomes framework that leverages numer-
ical model output to estimate fire-contributed PM2.5 while taking spatial correlation into ac-
count and modeling interference between sites. Using a Bayesian spatial downscaling model
and monitoring data, we bias-correct CMAQ-estimated counterfactual outcomes for PM2.5
under fire and no-fire regimes and model correlation between potential outcomes. Assuming
consistency between the potential outcomes and the observations based on a CMAQ-derived
treatment indicator and that confounding is accounted for conditional on CMAQ data, we
show that the resulting estimate of fire-contributed PM2.5 has a valid causal interpretation.

We provide a spatially-resolved estimate for fire-contributed PM2.5 and uncertainty across
the contiguous U.S. We found that the causal estimate of wildland fires on PM2.5 reached the
highest levels in the West, Northwest, and Southeast regions. The western parts of the U.S. are
impacted by large wildfires, and frequent prescribed and agricultural burns are observed in
the Southeast. The number of estimated hospitalizations, due to exposure to fire-contributed
PM2.5, also reached a maximum in these regions, particularly in central California. Our es-
timates are lower than those produced by CMAQ. This particular application can be used
by health professionals and environmental managers to better understand the health burden
associated with fire events in their communities. Equipped with health burden estimates and
uncertainty, they would be able to better anticipate the number of patients to expect and to
plan accordingly. In this analysis we estimated the number of cumulative respiratory hospi-
talizations per county; it is possible to compute other outcomes related to PM2.5 exposure,
including all-cause mortality, cardiovascular outcomes, etc.

The study has limitations and strengths. The CMAQ model appears to be biased. While we
account for this bias in the estimation procedure, understanding this bias could improve ac-
curacy. Future extensions of the proposed causal framework method for deterministic model
data fusion could consider characterizing uncertainties associated with CMAQ inputs. Such
research efforts would be costly, as they would require multiple CMAQ runs under multiple
conditions but could provide valuable insights for CMAQ performance in wildfire scenarios.
We take a model-based approach that relies on relatively simple separable stationary Gaus-
sian processes. Given the size of the data for this particular study, this approach is warranted
but could be revisited if used for smaller spatial regions. The approach is, however, gener-
alizable to related research questions concerning how fire-contributed PM2.5 depends on the
specific features of wildland fires, such as their location, strength, etc. or attribution of PM2.5
to a single fire in which case CMAQ model would be run with corresponding forcings. These
questions are critical in the environmental management context when it has to be shown that
a specific fire caused exceedances of regulatory air quality standards. The proposed causal
inference framework can also be generalized to wider range of attribution studies where po-
tential outcomes can be represented using numerical modeling approaches, for example, in
climate science, forestry, materials science, etc. In each case the potential outcomes would
differ by the factor of attribution whose impact is the objective of inference. Under the given
assumptions and with bias correction, we show that the resulting inference has a valid causal
interpretation.

APPENDIX

PROOF OF THEOREM 1. To relate the potential outcome processes to the induced model
of the observed outcome process, consider Y miss

t (s) as the observation of the potential out-
come that is missing under each regime, that is,

Yt (s,0) =
{
Yt (s) if Ct(s) = 0,

Y miss
t (s) if Ct(s) = 1,

and Yt (s,1) =
{
Y miss

t (s) if Ct(s) = 0,

Yt (s) if Ct(s) = 1.
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Hence, the joint distribution of the potential outcomes, Yt (s,0) and Yt (s,1), is the joint
distribution of the observed and missing observations Yt (s) and Y miss

t (s).
Denoting � as all parameters in the potential outcomes model, the likelihood function of

� is

(7)

T∏
t=1

∫
f

(
Yt ,Ymiss

t |θ̂ t , δ̂t ,�
)
dYmiss

t

=
T∏

t=1

∫
f

(
Yt ,Ymiss

t |θ̂ t , δ̂t ,Ct ,�
)
dYmiss

t

=
T∏

t=1

[∫
f

(
Ymiss

t |Yt , θ̂ t , δ̂t ,Ct ,�
)
dYmiss

t

]
f (Yt |θ̂ t , δ̂t ,Ct ,�)

=
T∏

t=1

f (Yt |θ̂ t , δ̂t ,Ct ,�),

where the second line follows by Assumption 1. By equation (7), � depends only on the
observed processes which completes the proof. �
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merical model output—REVISED” (DOI: 10.1214/22-AOAS1610SUPP; .pdf). The sup-
plemental materials available online include technical details and derivations pertaining to
the Bayesian model, sensitivity tests, MCMC convergence diagnostics and additional results.
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