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Abstract
Nonresponse is a common problem in survey sampling.
Appropriate treatment can be challenging, especially
when dealing with detailed breakdowns of totals. Often,
the nearest neighbour imputation method is used to
handle such incomplete multinomial data. In this arti-
cle, we investigate the nearest neighbour ratio imputa-
tion (NNRI) estimator, in which auxiliary variables are
used to identify the closest donor and the vector of pro-
portions from the donor is applied to the total of the
recipient to implement ratio imputation. To estimate the
asymptotic variance, we first treat the NNRI as a spe-
cial case of predictive matching imputation and build
on earlier work to linearize the imputed estimate. To
account for the non-negligible sampling fractions, para-
metric and generalized additive models are employed to
incorporate the smoothness of the imputation estimator,
which results in a valid variance estimator. We apply the
proposed method to estimate expenditures detail items
based on empirical data from the 2018 collection of the
Service Annual Survey, conducted by the United States
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Census Bureau. Our simulation results demonstrate the
validity of our proposed estimators and also confirm that
the derived variance estimators have good performance
even when the sampling fraction is non-negligible.
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1 INTRODUCTION

Sample surveys are often designed to estimate totals (e.g. revenue, earnings). However, in addition
to collecting this information, many surveys request and produce sets of compositional variables
(details) that sum to a total, such as a breakdown of total expenditures by type of expenditure
or a breakdown of total income by source. Examples from the United States Census Bureau
include the 2020 Current Population Survey’s Annual Social and Economic (ASEC) Supplement
which defines total household earnings as the sum of total wages and salaries, farm income, and
self-employment income and the 2018 Services Annual Survey (SAS) which requests detailed
breakdown of the sampled business’ reported total expenditures by expenditures on annual
payroll, fringe benefits for employees, and expenditures on software, among other categories.

This paper is concerned with the missing data treatment for these sets of detail items. In
contrast to collected totals items, reliable auxiliary variable data for all detail items are rarely avail-
able for all requested compositional variables. Furthermore, there are often true zeros that differ
across units. These limitations make it difficult to develop feasible parametric imputationmodels
for each individual detail item and motivate the usage of hot deck imputation instead. Hot deck
imputation—sometimes called ‘donor imputation’—obtains replacement values for nonrespond-
ing (or missing) data items bymatching a donor record containing valid data to a recipient record
containing invalid or missing data, imputing the missing values from the donor record (Andridge
& Little, 2010; Beaumont & Bocci, 2009). Kalton and Kaspryzk (1982) recommend using the same
donor to impute sets of compositional details to preserve inter-item relationships in the multi-
nomial data. To ensure additivity as well, it is sensible to use some form of hot deck imputation
to impute the vector of proportions from a matched respondent (donor), then derive the imputed
values for each imputed item by multiplying the (donated) proportion by the nonresponding
recipient’s total (Andridge & Thompson, 2015; Bankier et al., 2000; Little et al., 2008).

If the proportions associated with each detail item within a imputation class appear to be
approximately the same for each unit, then the donor can be selected at random within imputa-
tion cells. However, it is possible that the multinomial distribution of the details could be related
to unit size. In this case, the unit size should be incorporated into the hot deck matching proce-
dure. The simplest version selects the nearest donor using a suitable distance function such as
unit size or—as in this case—the total, assumed available for all donors and recipients. Since the
total is univariate, the absolute value of the difference is a natural distance function, yielding esti-
mates that are asymptotically unbiased (Yang &Kim, 2020). Hereafter, we refer to the imputation
process that selects the nearest neighbour as donor and imputes the sets of donor proportions as
the nearest neighbour ratio imputation (NNRI) method.

Consider the Service Annual Survey (SAS), the subject of the empirical application presented
in Section 4. This program collects aggregate and detailed revenues and expenses from a stratified
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sample of business firms with paid employees in selected industries in the services sector. Given
a lack of auxiliary data, weak historic reporting, and a high reported zero rate, developing good
predictive models for each individual detail item collected by the SAS is perhaps infeasible. That
said, there are verifiable predictors of the set of detail items, that is, the multinomial distribution,
specifically the industry in which the firm is classified, the tax-exempt status of the firm, and the
size of the firm as measured by total revenue or total expenses. For example, a finance business
will often report high proportions of total expenses in all three personnel cost categories, a sci-
entific business is unlikely to report costs from temporary or leased employees, and a full-service
restaurant would likely report most of its expenses from gross payroll and expensed equipment,
materials, costs or supplies. Consequently, imputation classes in the SAS are defined by indus-
try code and tax-exempt status. As regards unit size, larger businesses are more likely to expense
costs and track depreciation than a smaller business in the same industry. Accordingly, onewould
expect zero or nearly zero proportions of costs and depreciation values from smaller businesses,
and positively valued proportions for the same component items from the larger businesses. In
turn, the proportion of total expenses represented by gross annual payroll tends to decrease as
unit sizes increase.

In practice, it is often extremely difficult—if not impossible—to delineate exactly where the
changes in multinomial distributions occur. However, using nearest neighbour donor selection
procedure implicitly accounts for these subtle shifts.

The primary purpose of imputation is to ‘fill in the blanks with plausible (i.e. realistic) and
consistent values’ (Sande, 1982). From a bias reduction perspective, there are advantages in pre-
serving reported and previously imputed totals as is done with NNRI. Auxiliary data are often
available for direct substitution of missing or invalid totals (Beaumont et al., 2011) or for mod-
elling. Consequently, reported totals are generally validated (edited) and imputedwhen necessary
early in the editing process, and missing values are imputed with very strong models. Not only
are they made available for all units for subsequent hot deck imputation, such totals are usually
‘goldplated’ against further changes (Sigman &Wagner, 1997).

Fundamentally, totals are considered to be more reliably reported than sets of compositional
details in the survey methodology literature, especially when the totals have accounting or finan-
cial record-keeping definitions (e.g. income, total sales, total expenses). In contrast, the queried
sets of compositional details are generally collected for statistical reporting purposes, not account-
ing purposes, and are therefore not readily available (Willimack & Snijkers, 2013). Indeed, it is
likely that the reported percentage distributions are more reliably reported than the values them-
selves. For example, when interviewing a non-probability sample of large businesses, Willimack
and Nichols (2010) learned that ‘company reporters resorted (sic) to estimation strategies rather
than leaving items unreported (i.e. blank). Moreover, they only used estimation schemes when
company data did not include the type of detail requested on the report’. This dovetails with the
findings presented in Andridge and Thompson (2015) via a proxy pattern-mixture model analy-
sis of selected items collected by the SAS: when annual payroll was used as the single predictor
of total sales in a ratio imputation model, the fraction of missing information (FMI) values were
close to zero, indicative of extremely accurate imputation models, whereas the FMI values for
collected detail items using total sales as the sole predictor were near one (the maximum value).
Finally, deriving hot deck imputed values by multiplying the recipient’s total by the correspond-
ing nearest-neighbour ratio is frequently used in business surveys (Beaumont & Bocci, 2009). In
such positively skewed distributions, donating a ratio instead of a total guards against substitution
of an overly large or small value from the respondent ‘nearest neighbour’. Of course, this phe-
nomena is not confined to business surveys. For example, the 2019 ASEC reports the U.S. median
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income as $68,703 ± ($904); the 95th percentile is $270,002 ± ($4,831). See https://www.census.
gov/content/dam/Census/library/publications/2020/demo/p60-270.pdf.

Estimation fromnearest neighbour ratio imputed data is straightforward. Variance estimation
is less so, in part because the donor selection procedure is deterministic. The variance estima-
tion is further complicated in our setting due to the potential shift in multinomial distributions
as described above. Andridge et al. (2021) investigates multiple imputations of proportions with
nearest neighbour ratio hot deck imputation using the Approximate Bayesian Bootstrap, finding
consistent underestimation of the variance. As in the cited reference, we assume that the set of
details is reported or is missing; in practice, detail components that do not sum to their associated
total and are not within a small raking tolerance are often treated as missing, and all detail items
are imputed, regardless of their original reporting status.

Statistical inference under nearest neighbour imputation in survey sampling has been dis-
cussed by Chen and Shao (2001), Shao andWang (2008), Kim et al. (2011), Yang and Kim (2019),
among others. In this paper, we discuss statistical inference under NNRI in survey sampling. To
make statistical inference, we derive the asymptotic linearization of the NNRI estimator, which
allows us to decompose the asymptotic variance of the NNRI estimator into two components
accounting for sampling and matching. Based on the asymptotic variance formula, we propose
an alternative variance estimator by approximating these components by parametric or nonpara-
metric approaches. We show the theoretical guarantees for the plug-in variance estimator. The
proposed variance estimator is easily applied to a variety of probability sampling designs and
accounts for non-negligible sampling fractions.

The rest of the paper is organized as follows. Section 2 introduces the basic setup and the
NNRI procedure in detail, including asymptotic properties. Section 3 derives variance estima-
tion for the NNRI estimator. In Section 4, we apply the proposed variance estimator to empirical
expenditures data for reference year 2018 from a subset of industries surveyed in the SAS. The
studied data are typical of many business surveys, in that many units report a total but may
not provide the associated detail items, especially when the item definitions are complex or
the number of requested detail items is large (Willimack et al., 2000). The SAS uses a strati-
fied simple random sample without replacement (SRS-WOR) design with high sampling rates in
several strata. The empirical application highlights the differences between our proposed vari-
ance estimator from a naive variance estimator but does not provide insight into its statistical
properties. Consequently, Section 5 investigates the finite-sample performance of the proposed
over repeated stratified SRS-WOR samples via a simulation study patterned off of Andridge et al.
(2021). We close in Section 6 with some general observations along with directions for future
research.

2 BASIC SETUP

2.1 Notation and assumptions

Let yi = (yi1, … , yiT) be the study variable of interest and xi be the auxiliary variable. We assume
that xi are observed throughout the sample but yi are observed only for the subset of the sample.
Let 𝛿i = 1 if yi is observed and 𝛿i = 0 otherwise. Let Ii be the sampling indicator where Ii = 1
if unit i is selected, and otherwise Ii = 0. Let N = {(xi, yi, 𝛿i) ∶ i = 1, … ,N} be a finite random
sample from a superpopulation model 𝜁 with known N. We make the following assumption for
the missing data process.

https://www.census.gov/content/dam/Census/library/publications/2020/demo/p60-270.pdf
https://www.census.gov/content/dam/Census/library/publications/2020/demo/p60-270.pdf
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Assumption 1 (Missing at random and positivity). (i) The response indicator 𝛿i satisfies P(𝛿i =
1|xi, yi) = P(𝛿i = 1|xi), which can be denoted by 𝜋(xi), and (ii) 𝜋(xi) > 𝜖 for a constant 𝜖 > 0
w.p. 1.

Assumption 1 (i) states that the response indicator depends only on the observed x but not on
the outcome value y. Essentially, it assumes that the covariates contain all the information for the
outcome that affects the probability of response, that is, is missing at random in the population
level (Berg et al., 2016; Rubin, 1976). Assumption 1 (ii) indicates that all sampled units have a posi-
tive probability of responding given any possible value of x, in turn implying that the support of the
respondents and the nonrespondents is the same. This assumption guarantees that all donor val-
ues are plausible. If the Assumption 1 (ii) is violated, our proposed estimator in Section 2.2 would
no longer be asymptotically unbiased. Throughout, we assume this strong ignorability condition
in Assumption 1 holds.

To motivate the NNRI estimator, we first consider the full response case using the
Horvitz-Thompson (HT) estimator. Under full response, we can use

T̂y =
∑
i∈S

wiyi,

to estimate Ty =
∑N

i=1yi, the population total of yi, where wi is the sampling (design) weight com-
puted as the inverse of the sampling inclusion probability and S is the index set of the sample with|| = n.

Let Ep and varp be the expectation and variance with respect to the sampling mechanism;
that is, Ep(⋅) = E(⋅|N) and varp(⋅) = var(⋅|N). We assume a sequence of finite populations and
samples in order to investigate the asymptotic properties as defined in Fuller (2009).

Assumption 2 The HT estimator of a population total given by T̂y =
∑

i∈ wiyi satisfies
(i) C1 ≤ winN−1 ≤ C2; (ii) varp(N−1T̂y) = Op(n−1) and {varp(T̂y)}−1∕2(T̂y − Ty)|N →
 (0, 1) in distribution, as n→∞.

Assumption 2 is widely accepted in survey sampling to allow for valid inferential conclusion
via asymptotic normality.

2.2 Nearest neighbour ratio imputation estimator

Nearest neighbour ratio imputation (NNRI) matches a donor to a recipient (nonrespondent),
then multiplies the recipient’s (available) total by the donated functionm(xi) under the following
assumption, assumed true for all i ∈ 

yi = m(xi) + ei, (1)

whereE𝜁 (ei|xi) = 0 andm(xi) = xiR(xi) for some smooth functionR(⋅). Let y∗i be the imputed value
of yi using NNRI as

y∗i = xiRi(1),

where the ratioRi = (yi1, … , yiT) ∕xi is only available from the responding units (donors), and i(1)
is the index of the nearest neighbour of unit i within the same imputation cell where the nearest
neighbour of i satisfies
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(xi, xi(1)) ≤ (xi, xj),

for all j in the subsample of respondents, where (⋅, ⋅) is a suitable distance function (in this
application, the absolute value of the distance).

Then, the imputed estimator of Ty is given by

T̂y,I =
∑
i∈S

wi
{
𝛿iyi + (1 − 𝛿i)y∗i

}
. (2)

The goal is to estimate the variance of the imputed estimator in Equation (2). If we define

dij =

{
1 if unit i is used as a donor for unit j,
0 otherwise,

then we can express

y∗i = xiRi(1) = xi
∑
j∈

𝛿jdjiRj =
∑
j∈

𝛿jdji
(
xi∕xj

)
yj.

Thus, the imputed estimator in Equation (2) can be written as

T̂y,I =
∑
i∈S

wi

{
𝛿iyi + (1 − 𝛿i)

∑
j∈S

𝛿jdji
(
xi∕xj

)
yj

}
=
∑
i∈S

𝛿iwi(1 + 𝜅i)yi, (3)

where

𝜅i =
∑
j∈S

wjxj
wixi

(1 − 𝛿j)dij.

Note that 𝜅i satisfies ∑
i∈S

𝛿iwi(1 + 𝜅i)xi =
∑
i∈S

wixi. (4)

To study the asymptotic properties of the NNRI estimator in Equation (3), we assume the
following regularity condition holds.

Assumption 3 (i) Let the matching variable X be a random variable on a compact and convex
support X, with its density fX bounded and bounded away from zero. Suppose that fX is
also differentiable in the interior of X with bounded derivatives; (ii) Let R(x) be Lipschitz
continuous in x, which means that ∃C3 s.t. |R(xi) − R(xj)| ≤ C3 |xi − xj|, for any i, j.

Assumption 3 (i) imposes a compact and convex support for the random variable X , which
will be essential for studying the asymptotic properties of the NNRI estimator; Assumption 3 (ii)
restricts the ratio function Ri to be smooth in xi (Abadie & Imbens, 2006; Yang &Kim, 2020). Note
that the underlying ratio model in Equation (1) is a special case of the general models m(⋅) that
clearly satisfies the Lipschitz condition since the Lipshitz condition on R(x) implies that onm(x).



GAO et al. 7

The following lemma describes the key asymptotic property with the proof deferred to the
Supplementary Material.

Lemma 1 Under Assumptions 1–3, we have∑
i∈

𝛿iwi(1 + 𝜅i)xiR(xi) =
∑
i∈

wixiR(xi) + Op(n−1N). (5)

Combining with (5), we have

n1∕2N−1T̂y,I = n1∕2N−1
∑
i∈S

wi [xiR(xi) + 𝛿i(1 + 𝜅i){yi − xiR(xi)}] + op(1). (6)

Considering that E(yi|xi) = xiR(xi) in Equation (1), we can express (6) as

n1∕2N−1T̂y,I = n1∕2N−1
∑
i∈S

wi {mi + 𝛿i(1 + 𝜅i)ei} + op(1), (7)

where mi = xiR(xi) and ei = yi −mi. This decomposition assures that the first component mi is
uncorrelated with the second component ei under the conditional argument of xi. The decompo-
sition leads to the asymptotic distribution of the NNRI estimator as follows.

Theorem 1 Under Assumptions 1–3, suppose the ratio model in Equation (1) holds true and
define 𝜎2e (xi) = var(ei | xi) = E(e2i | xi). Then, n1∕2N−1(T̂y,I − Ty) →  (0,Vy) in distribution as
n→∞, where

Vy = Vm + Ve,

with

Vm = lim
n→∞

n
N2E

{
varp

(∑
i∈S

wimi −
N∑
i=1

mi

)}
,

and

Ve = lim
n→∞

n
N2E

[ N∑
i=1

{Iiwi𝛿i(1 + 𝜅i) − 1}2𝜎2e (xi)

]
. (8)

In particular, if n/N = o(1), then Ve reduces to

Ve = lim
n→∞

n
N2

N∑
i=1

E
[
Ii𝛿i{wi(1 + 𝜅i)}2𝜎2e (xi)

]
. (9)

The detailed proof of Theorem 1 is presented in the Supplementary Material. The results
in Theorem 1 are obtained by taking the reverse sampling arguments following Shao and Steel
(1999) and Kim et al. (2006), so that the sample-response path begin with a census with non-
respondents from which a sample is selected. In the reverse sampling framework, the outer
expectation (denoted E) is taken with respect to the superpopulation model for the census
with nonrespondents, with inner expectations and variances with respect to the sampling
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design conditional on (𝛿1, … , 𝛿N). The component Vm is the variance due to the sampling
design. The other component, Ve, constitutes the error variance added due to the deterministic
ratio imputation model via the NNRI. Variance formula (8) requires access to population
xi’s whereas variance formula (9) does not provided that the overall sampling fraction is
negligible.

3 VARIANCE ESTIMATION

Yang and Kim (2019, 2020) describe asymptotically unbiased variance estimators that fully
account for the error term (Vm and Ve) presented in Section 2.2, under predictive mean
matching imputation. Since NNRI is a special case of predictive mean matching, we modify
their variance estimator to obtain asymptotically unbiased estimators i.e., E(V̂m + V̂ e) =
var{n1∕2N−1(T̂y,I − Ty)}.

Both the empirical application presented in Section 4 and the simulation study presented in
Section 5 employ stratified SRS-WOR designs that include a certainty stratum (all units sam-
pled with probability= 1) and at least one sampling strata with a large sampling rate (greater
than 0.50). The sample design is highly characteristic of business surveys, which are sampled
from highly skewed populations. The presented applications use approximate sampling vari-
ance (design based) estimators for V̂m to easily incorporate the non-negligible sampling fractions,
although we also introduce a general replication variance estimator for use when sampling
fractions are negligible.

3.1 Estimation ofmi

Assumption 3 requires a smooth estimator of R(x) that can be used for all sampled units to esti-
mate mi as xiR(xi). However, NNRI is not a smooth imputation procedure. We approximate a
smooth ratio function R(x) in Equation (6) with a plug-in estimator (R̂(xi)), considering

(a) PARAM1Parametric ratio estimatorwith R̂(xi) = 𝛽 =
∑

i∈S wi𝛿iyi∕
∑

i∈S wi𝛿ixi, the B.L.U.E. of
the weighted simple linear no-intercept regression model yiw−1∕2

i = 𝛽xiw−1∕2
i + eiw−1∕2

i , ei ∼
(0, xi𝜎2). This is the PAR1 estimator utilized in Beaumont and Bocci (2009);

(b) PARAM2 Parametric ratio estimator with R̂(xi) = 𝛽h, where 𝛽h is estimated separately within
each sampling stratum h by fitting the regression model from (a); and

(c) NONPARAM Generalized Additive Model (GAM) estimator (Hastie & Tibshirani, 1990)
approximating the unknown smooth function of R(xi) with multinomial link functions.

The first two estimators are frequently employed in the survey research methods literature (e.g.
Magee, 1998, among others). Of course, these estimators require a very specific relationship
between the independent and auxiliary variable, and this strong association is less likely for
rarely-reported independent variables. Furthermore, the parametric approximations develop sep-
arate regression models for each detail item component in yi. As a nonparametric alternative
approach, we appeal to theGAM for amore flexible representation. In short, GAMs can be consid-
ered as fitting several spline smoothers to approximate the unknown smooth function, in this case
the ratio function R(x). By applying the order-n basis expansions of R(x) under the multinomial
link function, one could observe that for i= 1, … , n
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𝜂(t)(xi) =
n∑
k=1

𝛽
(t)
k b

(t)
k (xi), t = 1, … ,T − 1; 𝜂(T)(xi) = 1, (10)

R̂(xi) =

{
exp{𝜂(1)(xi)}∑T
t=1 exp{𝜂(t)(xi)}

,
exp{𝜂(2)(xi)}∑T
t=1 exp{𝜂(t)(xi)}

, … ,
exp{𝜂(T)(xi)}∑T
t=1 exp{𝜂(t)(xi)}

}
. (11)

The {𝛽(t)k }nk=1, t = 1, 2, … ,T − 1 are the regression coefficients for the t−th detail item and
{b(t)k (xi)}nk=1, t = 1, 2, … ,T − 1 are the known n basis functions (e.g. splines, radial functions, etc.)
associated with the n sample points, which are usually assumed to have good approximation the-
oretical properties. To alleviate the overfitting issue, a model penalty can be imposed during the
model fitting to reduce the number of basis functions from n toK (Wood, 2003;Wood et al., 2016).
The penalized objection function is specified as

min
𝜷

{ n∑
i=1

𝛿i||xiR̂(xi) − yi||2 + 𝜆J{R̂(x)}

}
,

where the first termmeasures the closeness of our fitted functions while the second term J{R̂(x)}
penalizes the wiggliness of the function associated with the tuning parameter 𝜆, which can be
obtained by the cross validation technique. Here, we adopt thewiggliness penalty functional from
Wood (2003) illustrated in Example 1.

Example 1 Let R̂(x) ∈ , where is an arbitrary reproducing kernel Hilbert space. Begin with
a simple objective function:

min
𝜷

n∑
i=1

𝛿i||xiR̂(x) − y||2 + 𝜆∫
b

a
R̂′′(x)⊺R̂′′(x)dx, (12)

with arbitrary value a and b as long as they cover the variable in question (Hastie
& Tibshirani, 1990). The resulting solution R̂∗(x) can be considered as a type of the basis
spline or B-spline (See Figure 1 for an illustrative example). However, its estimation requires
O(n3) operations in the univariate case, which is computational infeasible for the large-scale
of datasets. One approach to tackle this problem is to employ the regression splines, from
which an optimal approximation of R̂(x) can be produced via choosing the truncated bases
with lower ranks K(t) for t = 1, … , T − 1 (Wood, 2003).

3.2 Estimation of Vm

Using the pseudo observations m̂i with postulated parametric or nonparametric models of R(x)
in Section 3.1, a standard design-based estimator under complete response is given by

V̂m =
∑
i∈

∑
j∈

Ωijm̂im̂j, (13)

where Ωij accounts for various sampling designs. For example, under simple random
sampling, the variance expression of Vm simplifies to (1 − n∕N)(n − 1)−1

∑
i∈ (m̂i −m)2 with
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F IGURE 1 An illustrative example of the nonparametric B-spline, where x is a scalar variable ranging
from 1 to 10, with 10 observed sample points as 1, 2, … , 10. Leftmost (a) is the underlying true values of
𝜂(x) =

√|x|+|x − 5|2 + log(|x|); middle (b) is the observed values of 𝜂(x) corrupted by the additive error term
e ∼  (0, 102); rightmost (c) is the fitted values of 𝜂(x) by implementing the B-spline approach based on (12)

m = 1∕n
∑

i∈ m̂i. With a stratified SRS-WOR design as in Sections 4 and 5, the same formula is
used to obtain V̂mh independently in each stratum, then aggregated (V̂m =

∑
h V̂mh).

For sampling designs with negligible sampling fractions, the ease of a replication variance
estimator (Wolter, 2007) may be preferable for the NNRI estimator. The general replicate variance
estimator when yi is observed throughout the sample is

V̂rep(T̂y) =
n
N2

L∑
k=1

ck
(
T̂(k)
y − T̂y

)2
, (14)

where ck is the kth replication factor, and T̂(k)
y =

∑
i∈ w(k)

i yi in which w(k)
i is the k-th replicate

weight for unit i, using a replication method that appropriately accounts for the complex sam-
pling design [Note: for a stratified SRS-WOR samplewith non-negligible sampling fractions, the ck
should bemodified to include the finite population correction factors (1 − nh∕Nh)]. The replicates
are constructed such that E{V̂rep(T̂y)} = var{n1∕2N−1(T̂y − Ty)}{1 + o(1)}. We illustrate replicate
weights through the following example.

Example 2 Suppose that the probability sample is obtained by a single-stage design where each
unit i has a sampling weight wi, the delete-1-jackknife method yields an unbiased estimate
of the sampling variance under complete response. Therefore, L = n, ck = (n − 1)∕n, and
w(k)
i = nwi∕(n − 1) if i ≠ k, and w(k)

k = 0 if i= k.

3.3 Estimation of Ve

We now discuss estimation of the Ve term. If an asymptotically unbiased estimator of 𝜎2e (xi) is
available, then we may use
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V̂ e = n
N2

∑
i∈

{w2
i 𝛿i(1 + 𝜅i)2 + wi − 2wi𝛿i(1 + 𝜅i)}𝜎2e (xi). (15)

If additionally, we assume the Lipschitz continuity of 𝜎2e (xi) in x, a similar result to Lemma 1 can
be obtained ∑

i∈
𝛿iwi(1 + 𝜅i)𝜎2e (xi) =

∑
i∈

wi𝜎
2
e (xi) + Op(n−1N). (16)

Substituting Equation (16) back into Equation (8) yields

Ve = n
N2

∑
i∈

{w2
i 𝛿i(1 + 𝜅i)2 − wi𝛿i(1 + 𝜅i)}𝜎2e (xi). (17)

Now, we can directly use the residuals êi obtained from the modeled values i.e., êi = yi − m̂i to
estimate 𝜎2e (xi), where m̂i is obtained using the PARAM1, PARAM2, or NONPARAM models
presented in Section 3.1. In particular, we have

V̂ e = n
N2

∑
i∈

{w2
i 𝛿i(1 + 𝜅i)2 − wi𝛿i(1 + 𝜅i)}̂e2i .

Alternatively, we can model the variation of the residuals to estimate 𝜎2e (xi) in Equation (15). We
consider three approaches:

(a) PARAM1(M) Plug-in variance estimator as 𝜎2e (xi) = xi𝛽(1 − 𝛽), specified by the multinomial
distribution of yi, where 𝛽 is the PARAM1 estimator from Section 3.1.

(b) PARAM2(M) Parametric linear estimator of 𝜎2e (xi) = 𝛼0,h + 𝛼1,hxi obtained by the OLS
regression of e2i = (yi − 𝛽hxi)2 = 𝛼0,h + 𝛼1,hxi for 𝛿i = 1 within each strata, where 𝛽h is
PARAM2 estimator from Section 3.1.

(c) NONPARAM(M) Nonparametric estimator of 𝜎2e (xi) =
∑K

k=1𝛽kbk(xi) obtained by fitting a
GAM of e2i = 𝛿i(yi − m̂i)2 =

∑K
k=1𝛽kbk(xi) for all strata, where m̂i is obtained using the NON-

PARAM estimator described in Section 3.1.

Combining the Vm components obtained with the proposed estimators of mi described in
Section 3.1 and the Ve components yields six candidate variance estimators.

4 EMPIRICAL APPLICATION (SERVICE ANNUAL
SURVEY)

In this section, we apply the proposed variance estimator to empirical data from the 2018 col-
lection of the SAS. Conducted by the U.S. Census Bureau, the SAS is a mandatory survey
of approximately 78,000 employer businesses (companies) having one or more establishments
located in the U.S. that provide services to individuals, businesses, and governments. The SAS
collects aggregate and detailed revenues and expenses, e-commerce, exports and inventories data
from a stratified sample of business firms with paid employees in selected industries in the ser-
vices sector. As mentioned in Section 1, the key items collected by SAS are total revenue and total
expenses; detailed breakdowns of these two totals items are requested from all sampled firms. The
revenue detail items vary by industry within sector. Expense detail items, however, are primarily
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the same for all sectors, with an occasional additional expense detail or two collected for select
industries. Complete information on the SAS methodology is available at https://www.census.
gov/programs-surveys/sas/technical-documentation/methodology.html.

SAS uses imputation to account for unit and item nonresponse, relying heavily on the ratio
imputation models presented in Section 3.1 (specifically, PARAM1 and PARAM2). For total
receipts and total expenses, the independent variables are either a highly correlated data item
from the same reference period or historic data for the same item. The model for detail items
use the corresponding totals item (reference period only). Thompson and Washington (2013)
evaluated these imputation models in two of the sectors included in the SAS, explicitly fitting
weighted no-intercept linear regression models within industry using respondent data to assess
model fit (i.e. the PARAM1 method). For the totals, the ratio imputation models were appro-
priate, with adjusted-R2 consistently above 95%. Given such strong predictors, the nonresponse
adjustment is robust to the assumed response mechanism and should decrease the variance
(Little & Vartivarian, 2005). However, the results for the details items were far less convincing,
with adjusted-R2 values often well-below 75-percent and non-significant slopes (𝛼 = 0.10). The
weak predictive power of this ratio imputation approach is exacerbated in the 2020 data collection
year, as many businesses were closed or had business limited due to the COVID-19 pandemic.
Not surprisingly, the SAS programmanagers were interested in exploring other imputationmeth-
ods for these detail items, which are historically less frequently and reliably reported than their
associated totals andwhose imputed values are generallymore difficult to independently validate.

The empirical application is restricted to five industries, collectively representing a
cross-section of the survey’s expenditures data collections. We chose a subset of industries from
a candidate list provided by subject matter experts, requiring a minimum of three sampled units
per strata in addition to validating that the NNRI model assumptions appeared to hold. Con-
sequently, these industries are not representative of the larger survey. The input data for this
application study consists of the sampled companies in the selected industries that tabulated a
positive (non-zero) total expenses value; companies reporting zero-valued expenseswere dropped.
Furthermore, the SAS uses industry-average ratio imputation (not NNRI) for missing and invalid
expenses items and implements a naïve random group variance estimator for all item. For these
reasons, our estimates and variance estimates differ from the official published values.

Tables 1 and 2 describes selected features of the study industries. The sample sizes and
response rates are rounded to comply with internal regulations. The unweighted response rates
presented in Table 1 represent the proportion of sampled units that provided a complete donor
record and do not correspond to the official response rates. On inspection, the response patterns
displayed in Table 1 appear to be atypical of business surveys, in that generally the larger busi-
nesses (e.g. the certainty companies) respond at higher rates. However for NNRI, all detail items
are imputed if either (1) the company was a nonrespondent or (2) the reported set of expenditures
details did not add to the total, thus reducing the total number of respondents.

Figure 2 presents histograms of total expenses within study industry. Data values are sup-
pressed for confidentiality protection. Typical of many business surveys, all five distributions are
highly positively skewed, and the largest businesses are sampled with probability = 1 (certainty).
These distributions of the total expenses variable are well-approximated by lognormal distribu-
tions in all industries. Notice that the variance of the approximate lognormal distribution is small
in three industries (517210, 541210, and 713110), so that the compact support requirement in
Assumption 3 is approximately true. Unfortunately, conformance to this requirement is unlikely
for the other two study industries, although the convex support assumption should hold for all
five industries.

https://www.census.gov/programs-surveys/sas/technical-documentation/methodology.html
https://www.census.gov/programs-surveys/sas/technical-documentation/methodology.html
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TABLE 1 Number of expenditures detail items (details) and unweighted response rates of expenditures
details (in percentages) by certainty and noncertainty status for Services Annual Survey (SAS) study industries.
Businesses that are included with certainty are sampled with probability = 1; noncertainty businesses are
sampled with probability less than 1

Details Response rates (in Percentages)

Industry Description yi Total Certainty Noncertainty

221122 Electric power distribution 7 75 65 95

517210 Wireless telecommunications
carriers

9 30 60 30

541211 Offices of certified public
accountants

7 80 75 85

621410 Family planning centers 9 85 80 90

713110 Amusement and theme parks 7 60 60 60

TABLE 2 Sample design characteristics of Services Annual Survey (SAS) study industries. The range of
strata sampling rates excludes the certainty stratum

Sample size (n) Strata sampling rates (nh∕Nh)

Industry Overall n∕N Certainty Noncertainty
Number of
Strata Minimum Maximum

221122 0.0785 80 30 7 0.0061 0.3448

517210 0.0620 60 350 15 0.0140 0.5000

541211 0.0035 40 150 13 0.0020 0.0894

621410 0.1055 50 50 7 0.0122 0.4468

713110 0.0709 40 30 4 0.0160 0.1125

F IGURE 2 Histograms of total expenses within industry for the studied industries. Data source: Service
Annual Survey (2018, U.S. Census Bureau)
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Table 2 provides sample design characteristics of the study industries. The overall sampling
rate (n/N) is non-negligible in four of the five study industries. All industries include a certainty
strata (all units included with probability= 1), which is excluded from the range provided in
Table 2 but is included in the computation of the overall sampling rate. The sampling rates for
the noncertainty industry strata vary greatly, with at least one stratum in each industry having a
non-negligible sampling rate.

Table 3 provides ratios of the NNRI detail item totals to their corresponding total expenses
values (denoted R̂y) and ratios of theNNRI detail items variance estimates computedwith our pro-
posed variance estimators to their corresponding naïve variance counterparts (denotedRMETHOD).
The R̂y estimates are presented without error bounds and are provided to illustrate the prevalence
of a reported detail item in an industry. Since the naïve estimates do not account for variance
caused by nonresponse and imputation, we expect the naïve variance estimates to be smaller than
those obtained by the proposed variance estimates in general, although ratios close to 1 could indi-
cate an extremely effective hot deck prediction. Variance ratios greater than 1000 are indicated by
an ‘XXX’.

The parametric ratio estimator employed by the V̂PARAM1 is clearly problematic. The variance
estimates obtained with the V̂PARAM1 for the rarely reported detail items (values less than 10%)
are often considerably larger than the counterparts obtained with non-naïve variance estimates.
However, usingmodeled residuals for 𝜎2e appears to underestimate the variances, as evidenced by
frequency of variance ratios with values less than one. Similarly the variance estimates obtained
using the modeled residuals with the PARAM2 model (V̂PARAM2(M)) tend to be much larger than
those obtained with any other considered variance estimator, providing evidence of a poor model
fit for 𝜎2e .

Table 4 presents the coefficients of variation (c.v’s) of each item for each considered variance
estimator in percentages. At the 95% confidence level, a total with an associated c.v. greater than
51% (=1/1.96) is not significantly different from zero. Thus, the c.v.’s provide a measure of the
practical impact of the variance estimators on inference.

As one might expect, given the results in Table 3, the c.v.’s obtained using V̂PARAM1 or
V̂PARAM2(M) estimates are much larger than those obtained with any other considered variance
estimator. Recall that the PARAM1 model utlizes an industry level ratio estimator, likely inap-
propriate. Table 3 provides further indications that the modeled residuals in (V̂PARAM1(M)) do not
improve this ratio estimator’s performance, as the associated c.v.’s tend to be smaller than their
naïve variance counterparts. In contrast, the c.v.’s obtained with the V̂PARAM2, V̂NONPARAM, and
V̂NONPARAM(M) estimators are generally similar, with a few visible exceptions. These large differ-
ences could be due to model misspecifications, but could also be confounded with small sample
size effects for many of the detail items.

Despite the similarity of their c.v.’s, the variance estimates of corresponding items obtained
with V̂PARAM2, V̂NONPARAM, and V̂NONPARAM(M) are quite different. This affects confidence interval
width, and expected coverage by extension. Without a gold standard against which to measure
these variances, however, we have no viable recommendation. Consequently, we conducted the
Monte Carlo simulation study described in Section 5.

5 SIMULATION STUDY

To evaluate the finite-sample performance of the proposed method over repeated samples, we
conducted a simulation study. The simulation varies in four factors: parametric distribution of the
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TABLE 3 Ratios of nearest neighbour ratio imputation (NNRI) detail item totals to total expenses (line 1 in
each set of industry results) and ratios of proposed variance estimators to corresponding naïve variance estimates
within industry (lines 2−7 in each set of industry results). The detail item proportions will not necessarily add to
1 due to rounding. Entries with ‘XXX’ indicate ratio values greater than 1000. For all industries, the detail items
are Y1 = gross annual payroll; Y2 = fringe benefits; Y3 = temporary staff payroll; Y4 = expensed software; Y5 =
depreciation costs; Y6 = expensed equipment; and Y7 = other expenses. In industry 517210, Y8 = access charges
and Y9 = universal service and similar charges. In industry 621410, Y8 = professional liability insurance and Y9 =
medical supply costs. Data Source: Service Annual Survey (2018), U.S. Census Bureau

Industry Variance Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

221122 R̂y 0.1 0.0 0.0 0.0 0.2 0.0 0.6

RPARAM1 6.2 2.9 XXX 14.4 25.9 7.7 1.6

RPARAM1(M) 1.5 0.5 82.0 0.1 4.0 0.1 0.4

RPARAM2 16.8 2.9 XXX 18.0 19.7 2.7 0.8

RPARAM2(M) 16.7 6.1 XXX 91.4 47.4 494.4 40.2

RNONPARAM 8.6 3.8 XXX 2.0 9.3 2.0 0.7

RNONPARAM(M) 8.6 3.8 XXX 2.0 9.3 2.0 0.7

517210 R̂y 0.1 0.0 0.0 0.1 0.2 0.3 0.3 0.0 0.0

RPARAM1 XXX 677.6 XXX 1.3 XXX XXX 1.3 9.6 0.5

RPARAM1(M) 0.1 0.2 0.5 1.0 2.5 2.6 0.3 0.0 0.4

RPARAM2 4.3 2.5 4.5 6.3 13.7 18.8 1.4 2.9 5.1

RPARAM2(M) 3.2 171.4 292.1 3.3 7.6 612.1 243 15.9 787.0

RNONPARAM 2.5 2.7 2.5 1.2 10.1 4.2 2.2 2.3 2.8

RNONPARAM(M) 3.5 2.7 3.3 4.4 8.1 13 1.7 2.9 4.2

541211 R̂y 0.5 0.1 0.0 0.0 0.0 0.0 0.3

RPARAM1 1.0 1.9 9.9 1.2 2.0 1.4 2.6

RPARAM1(M) 0.7 0.5 0.3 0.2 0.2 0.0 1.0

RPARAM2 0.9 1.5 2.2 1.1 1.7 0.9 2.1

RPARAM2(M) 1.1 124.4 15.5 1.3 89.3 XXX 6.8

RNONPARAM 1.0 1.2 1.3 1.1 1.2 0.8 1.9

RNONPARAM(M) 1.0 1.4 1.7 1.0 1.6 0.8 1.3

621410 R̂y 0.5 0.1 0.0 0.0 0.0 0.0 0.3 0.0 0.1

RPARAM1 0.9 2.0 4.7 3.5 3.8 1.4 1.5 1.7 1.5

RPARAM1(M) 0.5 1.5 0.4 0.1 0.8 0.1 0.3 0.1 0.7

RPARAM2 1.0 7.0 4.5 1.4 4.6 1.4 1.0 1.1 4.5

RPARAM2(M) 19.9 7.1 5.1 52.7 7.2 87.3 107.8 158.6 19.2

RNONPARAM 1.0 6.2 3.5 1.1 5.1 1.4 1.0 1.3 3.6

RNONPARAM(M) 0.8 2.5 3.6 1.2 1.9 1.5 1.2 1.0 2.1

713110 R̂y 0.3 0.1 0.0 0.0 0.2 0.0 0.4

RPARAM1 XXX 371 38.7 269.3 100.2 XXX 85.9

RPARAM1(M) 0.4 1.3 0.1 0.7 0.5 0.0 0.5

RPARAM2 6.0 31.2 5.6 344.1 2.4 7.4 5.2

RPARAM2(M) 1.0 14.1 3.4 XXX 7.6 51.7 2.1

RNONPARAM 1.5 2.5 0.0 58.8 2.7 3.6 2.1

RNONPARAM(M) 6.6 30.1 5.6 343.3 2.2 7.2 5.3
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TABLE 4 Coefficients of variation (c.v.) for nearest neighbour ratio imputation (NNRI) detail items (HT
Totals) in percentages. Data Source: Service Annual Survey (2018), U.S. Census Bureau

Industry Variance Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

221122 V̂Naı̈ve 2.2 3.9 0.3 7.1 1.3 10.9 4.2

V̂PARAM1 5.4 6.6 34.1 27.0 6.8 30.2 5.4

V̂PARAM1(M) 2.6 2.7 2.6 2.6 2.7 3.1 2.8

V̂PARAM2 8.9 6.6 27.2 30.2 6.0 17.9 3.7

V̂PARAM2(M) 8.9 9.6 106.3 68.0 9.3 242.0 26.9

V̂NONPARAM 6.4 7.6 14.7 10.1 4.1 15.6 3.6

V̂NONPARAM(M) 8.7 6.9 27.6 29.9 4.8 16.5 3.8

517210 V̂Naı̈ve 1.1 0.8 0.4 0.3 0.2 0.2 0.6 2.3 0.5

V̂PARAM1 34.1 19.9 49.7 0.4 54.3 46.7 0.6 7.2 0.4

V̂PARAM1(M) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

V̂PARAM2 2.2 1.2 1.0 0.8 0.7 0.8 0.7 4.0 1.1

V̂PARAM2(M) 1.9 10.0 7.8 0.6 0.5 4.8 8.6 9.3 14.0

V̂NONPARAM 1.7 1.3 0.7 0.4 0.6 0.4 0.8 3.5 0.8

V̂NONPARAM(M) 2.0 1.3 0.8 0.7 0.6 0.7 0.7 4.0 1.0

541211 V̂Naı̈ve 3.4 4.0 5.9 6.8 6.5 23.9 3.0

V̂PARAM1 3.5 5.5 18.6 7.9 9.1 29.9 4.7

V̂PARAM1(M) 2.9 2.8 3.2 2.9 2.9 3.0 2.9

V̂PARAM2 3.2 4.8 8.7 7.3 8.4 23.4 4.2

V̂PARAM2(M) 3.6 44.1 23.3 8.0 60.3 1035.5 7.6

V̂NONPARAM 3.4 4.3 6.8 7.3 7.0 22.3 4.0

V̂NONPARAM(M) 3.4 4.6 7.8 7.3 8.1 21.9 3.4

621410 V̂Naı̈ve 4.3 2.6 5.4 8.5 3.7 11.4 5.7 9.5 3.6

V̂PARAM1 4.1 3.8 11.8 16.0 7.3 13.4 7.1 12.4 4.5

V̂PARAM1(M) 3.0 3.3 3.2 3.2 3.3 3.0 3.2 3.2 3.1

V̂PARAM2 4.3 7.0 11.5 10.0 8.0 13.4 5.8 10.1 7.6

V̂PARAM2(M) 19.1 7.1 12.2 62.3 10.0 106.6 60.0 121.3 15.7

V̂NONPARAM 4.3 6.6 10.1 9.2 8.4 13.5 5.9 10.9 6.8

V̂NONPARAM(M) 3.7 4.2 10.2 9.5 5.1 14.1 6.4 9.8 5.1

713110 V̂Naı̈ve 1.4 0.8 0.5 1.0 1.3 4.2 1.3

V̂PARAM1 93.9 15.8 24.2 15.5 12.8 167.7 11.9

V̂PARAM1(M) 0.9 0.9 1.0 0.8 0.9 0.8 0.9

V̂PARAM2 3.3 4.6 9.2 17.5 2.0 11.5 2.9

V̂PARAM2(M) 1.4 3.1 7.1 219.3 3.5 30.3 1.8

V̂NONPARAM 1.6 1.3 0.5 7.2 2.1 8.0 1.9

V̂NONPARAM(M) 3.5 4.5 9.2 17.5 1.9 11.3 2.9
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size (auxiliary) variable xi, the size of the finite population (N), relationship of auxiliary variable
and detail items (xi and yi), and response propensity. The data generation is largely patterned after
the realistic procedures described in Andridge et al. (2021), with each separate process outlined
below.

5.1 Create and stratify the finite population

We generated three different sets of B= 2000 finite populations of size N by drawing the size
(auxiliary) variable xi from

Population Scenario 1: xi ∼ 100,000 ∗ U(0, 1)
Population Scenario 2: xi ∼ Lognormal(4.1, 0.66)
Population Scenario 3: xi ∼ Lognormal(12, 1.72)

The first population scenario ensures the compact and convex support requirements of
Assumption 3. Thus, these data represent ideal conditions for the proposed NNRI variance esti-
mators. However, business data population such as the SAS industry populations discussed
in Section 4 are generally positively skewed. Consequently, we consider two lognormal distri-
butions. The second population scenario exhibits mild deviations from the required compact
support requirement, while respecting the convex support requirement (similar to the 517210,
541210, and 713110 industries’ total expenses distributions discussed in Section 4). The third
population scenario creates finite populations that do not exhibit the compact support require-
ment of Assumption 3, but resemble 221122 and 621410 industries’ total expenses distribu-
tions presented in Section 4. Thus, the two lognormal population scenarios provide insights
into the empirical results while testing the robustness of the proposed variance estimation
approach.

Each finite population is stratified using the strata boundaries provided in Table 5.

5.2 Generate sets of detail items in stratified finite populations

We used a two-step process to generate the sets of detail items values yi = (yi1, yi2, yi3, yi4, yi5)⊺
associatedwith eachunit, capturing important data features observed in several of theU.S. Census
Bureau’s economic programs. Specifically, the yi for all units have non-zero values assigned to
(yi1, yi2) but may have zero values in (yi3, yi4, yi5).

To justify the use of the NNRI procedure, the number of non-zero detail items is directly related
to unit size. Within each stratum Si, we generate Ci (the number of non-zero detail items) for

TABLE 5 Strata boundaries for the simulation study (Section 5)

Stratum S Population Scenario 1 Population Scenario 2 Population 3

1 <25,000 <55 <40,000

2 25,000 ≤ X < 50,000 55 ≤ X < 85 40,000 ≤ X < 150,000

3 50,000 ≤ X < 75,000 85 ≤ X < 150 150,000 ≤ X < 500,000

4 ≥75,000 ≥150 ≥500,000
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F IGURE 3 Bubble plots of realized nonzero detail items c in a single simulated finite population. Bubble
plots are computed within sampling strata. Relative size of each bubble indicates stratum proportion. Strata are
numbered in increasing order, with Stratum 1 containing the smallest units

unit i from a discrete distribution of {2,3,4,5} with selection probability P(Ci = c|xi) = p(xi) where
p(x) = (𝜋1, 𝜋2, 𝜋3, 𝜋4, 𝜋5) are given by

(𝜋1, 𝜋2, 𝜋3, 𝜋4, 𝜋5) =

⎧⎪⎪⎨⎪⎪⎩

(0, .91, .03, .03, .03) in Stratum 1
(0, .50, .40, .05, .05) in Stratum 2
(0, .20, .20, .30, .30) in Stratum 3
(0, .05, .15, .40, .40) in Stratum 4

.

Figure 3 presents bubble plots of the realized values of the number of nonzero details (c) from
a single simulated population. As the unit size (x) increases, the number of nonzero detail items
reported by each unit tends to likewise increase: for example, in the smallest unit size stratum (1),
the majority of units provide two nonzero values, whereas in the largest unit size stratum (4), the
majority of units provide four or five nonzero values.

Conditioning on the assigned ci, we draw theRi for eachunit i fromamultinomial distribution.

Ri|(xi, ci) ∼ Multinomial{xi, (p1, p2, p3, p4, p5)},

with probabilities

(p1, p2, p3, p4, p5) =

⎧⎪⎪⎨⎪⎪⎩

(.60, .40, .00, .00, .00) if c = 2
(.60, .30, .10, .00, .00) if c = 3
(.60, .25, .10, .05, .00) if c = 4
(.60, .20, .10, .05, .05) if c = 5

.
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F I GURE 4 Distribution of detail item ratios R(x) by sampling strata in a single simulated finite population

By design, p1 = 0.60 for all units regardless its class. This detail item therefore represents
about 60% of each unit’s total (xi). Figure 4 illustrates the subtle change in multinomial dis-
tributions as unit size (sampling strata) increases. The largest proportion of the total is always
reported in item Y1, with item Y2 following. The remaining three items are more rarely
reported, with the probability of a reported nonzero value being strongly related to unit size.
This mimics patterns that were observed by Andridge et al. (2021) in several economic census
datasets.

Lastly, using these Ri, we compute yi = (yi1, yi2, yi3, yi4, yi5) = xi(Ri1,Ri2,Ri3,Ri4,Ri5). This
ensures that xi =

∑5
t=1yit.

5.3 Select stratified SRS-WOR samples

We select a single stratified SRS-WOR sample from each finite population. Table 6 provides the
finite population size (N), the average stratum sizes Nh, the sampling fractions fh, and average
sample sizes nh. Notice that the overall sampling fraction (f ) is 302/1000 in the N = 1000 popula-
tions and is 152/500 in the N = 500 populations and are therefore both non-negligible. As typical
of business surveys, the largest units are grouped into a certainty stratum, and a high proportion
of the medium-sized units (grouped into strata 2 and 3) are sampled at a high (non-negligible)
rates, requiring inclusion of the finite-population correction in V̂m.



20 GAO et al.

TABLE 6 Averaged Stratum size and sample allocations. Sampling fractions are fixed in all simulations

Stratum S 1 2 3 4

N = 1000

Nh 442 255 219 83

fh 1∕10 1∕4 1∕2 1

nh 45 64 110 83

N = 500

Nh 221 128 110 42

fh 1∕10 1∕4 1∕2 1

nh 23 32 55 42

TABLE 7 Response propensities for the negative and positive MAR mechanisms

Stratum S 1 2 3 4

Negative MAR

𝜋h 0.85 0.65 0.45 0.25

Positive MAR

𝜋h 0.25 0.45 0.65 0.85

5.4 Induce nonresponse and impute

Finally, within each sample, we generate missingness indicators for each unit i as 𝛿i ∼
Bernoulli(𝜋) under different responsemechanisms: uniform (missing completely at random)with
𝜋 = 75% and 50% (MCAR); uniform responsewithin strata (missing at random)with smaller units
being more likely to respond (Negative MAR); and uniform response within strata with larger
units being more likely to respond (Positive MAR). Table 7 presents the strata response propen-
sities for the negative and positive MAR response mechanisms. Notice that between-stratum
differences in response propensities quite large; these discrepancies are exaggerated for illustra-
tion. TheMCAR response propensities resemble the observed patterns for industry 713110 and to
a lesser extent, for industries 541211 and 621410 presented in Section 4, although the latter two
industries could equally be categorized with negativeMAR response patterns. The negativeMAR
responsemechanismmimics the observed pattern for industry 221122, whereas the positiveMAR
response mechanism mimics the observed pattern for industry 517210.

Imputation and estimation are performed separately within each strata, with xi as the match-
ing variable for the NNRI of yi = (yi1, … , yiT) as outlined in Section 2.2.

5.5 Simulation results

To evaluate the performance of the proposed NNRI variance estimators over repeated samples
selected from different population distributions (scenarios), finite population sizes, and response
mechanisms, we compute the relative bias of each variance estimator V̂yp and the coverage rates
of the approximate 95% confidence intervals constructed with T̂y and V̂yp for variance estimation
method p.
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Table 8 reports the relative biases using directly obtained residuals for all five detail items for
each population scenario and response mechanism for the N = 1000 populations. Results for the
N = 500 populations are similar and are consequently not presented here, but are available upon
request to the authors. The relative bias of each variance estimator is computed as RB

(
V̂ (b)
yp
)
=[(∑B

b=1V̂
(b)
yp ∕B

)
∕Vyp

]
− 1 where V̂ (b)

yp is the estimate from the bth sample (B= 2000) and Vyp is the
Monte Carlo empirical (true) variance. Recall that

∑5
i=2Yi represents a maximum of 40% of the

corresponding total,
∑5

i=3Yi represents amaximum of 20% of the corresponding total, and
∑5

i=4Yi
represents 5% or less of the corresponding total. Consequently, the analysis of relative biases of the
variance estimates will be confounded with small sample size effects for each detail item except
Y1, with small unit differences in totals potentially representing large percentage differences. The
main results of Table 8 can be summarized as follows:

• The naïve variance estimator severely underestimates the true variance of detail items Y2, Y3,
Y4, and Y5 for all populations and response mechanisms;

• In Population Scenarios 1 and 2, the PARAM1 variance estimator overestimates the true vari-
ance of all detail items except for Y1, essentially confirming the conjecture of overestimation
posited Section 4 for industries 517210, 541210 and 713110. This variance estimator generally
underestimates the true variance of the same detail items in Population Scenario 3, mimicking
the empirical results for industries 221122 and 631400.

• In Population Scenarios 1 and 2, the PARAM2 variance estimates are nearly unbiased,
regardless of response mechanism. However, in Population Scenario 3, the PARAM2 vari-
ance estimator tends to underestimate the variance of all detail items except for Y1, with
the degree of underestimation being more severe than their PARAM1 variance estimate
counterparts.

• In Population Scenarios 1 and 2, the NONPARAM variance have inconsistent relative bias per-
formance, although generally improved over the corresponding naïve variance estimates. This
is not true in Population Scenario 3, where the variances estimates for all detail items except
Y1 are severely underestimated, and the variance estimates for Y1 are overestimates, with the
level of overestimation related to the response mechanism.

The simulation conditions in Population 2 with a MCAR or negative MAR response mech-
anism resemble the 541210 and 713110 industries’ conditions; Table 8 provides evidence that
the V̂PARAM2 are likely the most accurate estimates in this situation, even for the rarely-reported
detail items. The simulation conditions in Population 2 with a positive MAR response mecha-
nism resemble the industry 517210 conditions; the simulation results are close to the same for
the V̂PARAM2 and the V̂NONPARAM, without a clear-cut favourite. The simulation conditions in Pop-
ulation 3 with a negative MAR response mechanism resemble the 221122 and 621400 industries’
data; the relative biases for theMCAR response mechanism are similar for V̂PARAM1 and V̂PARAM2,
but the V̂PARAM2 are less biased under the negativeMAR responsemechanism (the V̂NONPARAM are
severe underestimates for all detail items).

Table 9 reports the relative biases using the modeled residuals (see Section 3.3) for all five
detail items for each population scenario and response mechanism for the N = 1000 popula-
tions. With the ‘high’ uniform response rate (i.e. MCAR with 𝜋 = 0.75), as well as the negative
and positive MAR response mechanism, modelling the residuals for 𝜎2e (xi) generally reduces
the relative bias of the PARAM2 variance estimates. Notice that the PARAM2(M) variance
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TABLE 8 Relative biases of variance estimates using directly-obtained residuals for all detail items by
population scenario and response mechanism computed from 2000 independent stratified SRS-WOR samples
from the N = 1000 populations. Negative relative biases are in parenthesis. Population Scenario 1 = Uniform;
Population Scenario 2 = Lognormal (𝜇 = 4.1, 𝜎 = 0.66); Population Scenario 3 = Lognormal (𝜇 = 12.0, 𝜎 = 1.7)

MCAR (𝝅 = 0.75) MCAR (𝝅 = 0.50)
Population
Scenario Method (V̂yp) Y1 Y2 Y3 Y4 Y5 Y1 Y2 Y3 Y4 Y5

Population
Scenario 1

NAÏVE (0.00) (0.77) (0.89) (0.93) (0.95) (0.01) (0.54) (0.75) (0.82) (0.85)

PARAM1 (0.00) 0.45 0.47 0.56 0.12 (0.00) 0.31 0.51 0.64 0.23

PARAM2 (0.00) (0.04) (0.07) (0.07) (0.05) (0.00) (0.02) (0.05) (0.03) 0.03

NONPARAM 0.01 (0.02) 0.02 (0.01) (0.04) 0.00 (0.05) 0.04 0.03 0.05

Population
Scenario 2

NAÏVE (0.13) (0.36) (0.49) (0.57) (0.62) (0.29) (0.57) (0.73) (0.78) (0.82)

PARAM1 (0.00) 0.14 0.70 0.54 0.18 0.02 0.33 0.67 0.58 0.18

PARAM2 (0.01) (0.07) (0.02) (0.04) (0.03) 0.00 (0.01) (0.02) (0.00) (0.02)

NONPARAM 0.02 (0.12) 0.11 0.00 (0.04) 0.03 (0.03) 0.09 0.01 (0.07)

Population
Scenario 3

NAÏVE 0.04 (0.96) (0.96) (0.99) (1.00) 0.04 (0.98) (0.98) (1.00) (1.00)

PARAM1 0.04 (0.22) (0.08) (0.35) (0.28) 0.04 (0.08) (0.02) (0.15) (0.20)

PARAM2 0.04 (0.28) (0.17) (0.39) (0.30) 0.04 (0.14) (0.10) (0.19) (0.21)

NONPARAM 0.09 (0.73) (0.57) (0.78) (0.82) 0.21 (0.76) (0.69) (0.77) (0.81)

Negative MAR Positive MAR

Y1 Y2 Y3 Y4 Y5 Y1 Y2 Y3 Y4 Y5

Population
Scenario 1

NAÏVE (0.01) (0.60) (0.75) (0.88) (0.92) (0.00) (0.49) (0.72) (0.74) (0.75)

PARAM1 (0.01) 0.45 0.64 0.57 0.11 (0.00) 0.68 1.08 1.49 0.46

PARAM2 (0.01) 0.02 (0.00) (0.02) (0.03) (0.00) (0.06) (0.02) (0.07) (0.06)

NONPARAM 0.00 (0.02) 0.06 (0.00) (0.04) 0.00 (0.07) 0.16 0.06 0.02

Population
Scenario 2

NAÏVE (0.22) (0.52) (0.72) (0.83) (0.88) (0.44) (0.68) (0.77) (0.77) (0.75)

PARAM1 (0.01) 0.53 0.81 0.67 0.16 (0.01) 0.59 1.32 1.23 0.56

PARAM2 (0.02) (0.01) (0.04) (0.03) (0.05) (0.05) (0.11) (0.09) (0.09) (0.02)

NONPARAM (0.01) (0.10) (0.03) (0.15) (0.26) (0.01) (0.04) 0.32 0.06 0.07

Population
Scenario 3

NAÏVE 0.04 (0.99) (0.99) (1.00) (1.00) 0.04 (0.94) (0.93) (0.99) (0.99)

PARAM1 0.04 (0.11) (0.04) (0.14) (0.24) 0.04 (0.26) (0.07) (0.40) (0.30)

PARAM2 0.04 (0.21) (0.17) (0.21) (0.28) 0.04 (0.33) (0.19) (0.45) (0.33)

NONPARAM 0.46 (0.86) (0.83) (0.84) (0.88) 0.08 (0.69) (0.47) (0.76) (0.82)



GAO et al. 23

TABLE 9 Relative biases of variance estimates usingmodeled residuals for all detail items by population
scenario and response mechanism computed from 2000 independent stratified SRS-WOR samples from the
N = 1000 populations. Negative relative biases are in parenthesis. Population Scenario 1 = Uniform; Population
Scenario 2 = Lognormal (𝜇 = 4.1, 𝜎 = 0.66); Population Scenario 3 = Lognormal (𝜇 = 12.0, 𝜎 = 1.7)

MCAR (𝝅 = 0.75) MCAR (𝝅 = 0.50)Population
Scenario Method (V̂yp) Y1 Y2 Y3 Y4 Y5 Y1 Y2 Y3 Y4 Y5

Population
Scenario 1

PARAM1(M) (0.00) (0.90) (0.98) (0.99) (1.00) 0.00 (0.81) (0.95) (0.97) (0.99)

PARAM2(M) (0.00) (0.04) (0.06) (0.06) (0.05) (0.00) (0.01) (0.04) (0.02) 0.04

NONPARAM(M) 0.01 2.42 16.03 0.14 0.06 0.00 0.07 0.48 0.18 0.16

Population
Scenario 2

PARAM1(M) 0.00 (0.47) (0.46) (0.23) (0.47) 0.02 (0.47) (0.50) (0.30) (0.55)

PARAM2(M) (0.01) (0.06) (0.01) (0.02) (0.02) 0.00 (0.01) (0.02) 0.00 (0.01)

NONPARAM(M) 0.03 (0.08) 0.42 0.15 0.16 0.05 0.04 0.41 0.16 0.12

Population
Scenario 3

PARAM1(M) 0.04 (0.98) (0.98) (1.00) (1.00) 0.04 (0.99) (0.99) (1.00) (1.00)

PARAM2(M) 0.04 0.10 0.34 0.00 0.05 0.04 0.22 0.29 0.22 0.10

NONPARAM(M) 0.20 (0.40) 0.26 (0.51) (0.65) 0.41 (0.55) (0.22) (0.57) (0.69)

Negative MAR Positive MAR

Y1 Y2 Y3 Y4 Y5 Y1 Y2 Y3 Y4 Y5

Population
Scenario 1

PARAM1(M) (0.00) (0.81) (0.96) (0.99) (1.00) (0.00) (0.81) (0.93) (0.95) (0.98)

PARAM2(M) (0.00) 0.01 (0.00) (0.02) (0.02) (0.00) (0.05) (0.01) (0.04) (0.02)

NONPARAM(M) 0.02 0.00 0.15 0.04 (0.01) 0.04 0.54 10.88 0.40 0.18

PARAM1(M) (0.01) (0.49) (0.68) (0.71) (0.84) 0.01 (0.46) (0.24) 0.48 0.25

PARAM2(M) (0.02) (0.00) (0.03) (0.02) (0.04) (0.05) (0.09) (0.08) (0.06) (0.00)

NONPARAM(M) 0.00 (0.07) 0.06 (0.09) (0.19) 0.06 0.17 1.25 0.30 0.43

Population
Scenario 3

PARAM1(M) 0.04 (1.00) (1.00) (1.00) (1.00) 0.04 (0.97) (0.97) (1.00) (1.00)

PARAM2(M) 0.04 (0.05) (0.02) (0.02) (0.07) 0.04 (0.03) 0.17 (0.10) (0.00)

NONPARAM(M) 0.55 (0.82) (0.77) (0.80) (0.85) 0.72 8.17 16.58 5.78 0.81

estimates are nearly unbiased in Population Scenario 3 for all detail items, except the low-
est uniform response rate mechanism (MCAR with 𝜋 = 0.50); in this situation, the bias effects
are likely overstated for the most rarely reported detail items (e.g. Y4 and Y5). This results
contrast with those presented in the empirical case study in Section 4, and we suspect this
could be an artifact of the data simulation process. The other approaches (PARAM1(M) and
NONPARAM(M)) do not yield consistent improvements over their counterparts obtained with
directly-obtained residuals. Given that the 2nd parametric method of estimating mi (PARAM2)
generally yields accurate variance estimates and the associated procedures for obtaining 𝜎2e
appear tractable, we dropped the alternative parametric approach (PARAM1) from further
consideration.

Regardless of population scenario, population size, and considered response mechanism, all
NNRI totals were unbiased across the repeated samples. Again, we conjecture that this is an
artifact of the simulation design, which ensures appropriate conditions for the distance func-
tion used to select the nearest neighbour for imputation. Nevertheless, coverage rates provide a
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F IGURE 5 Coverage rates with Monte Carlo confidence bounds (in percentages) by population scenario
and response mechanism using directly-obtained and modeled residuals with the PARAM2 and NONPARAM
methods for the N = 1000 populations. Nominal coverage indicated by horizontal asymptote

measure of the practical impact of the bias of the considered variance estimators, given the unbi-
ased estimates. Figure 5 presents the coverage rates using confidence intervals constructed from
the PARAM2, PARAM2(M), NONPARAM, and NONPARAM(M) variance estimates.

Figure 5 provides evidence of

• Nominal or slight undercoverage with the PARAM2 variance estimates regardless of response
mechanism when Assumption 3 is fully met (Population Scenario 1) or is mildly violated
(Population Scenario 2). Moderate undercoverage under strong violations of Assumption 3,
regardless of response mechanism. However, the undercoverage is nearly abated with
the PARAM2(M) variances, except for the most infrequently reported item (Y5) with the
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positive MAR response mechanism. In this case, the modeled residuals are inadequate, proba-
bly because small units are less likely to respond under this response mechanism and Y5 is (by
design) rarely reported by smaller units.

• Inconsistent but rarely nominal coverage for the NONPARAM variance estimates for all
response mechanisms in Population Scenarios 1 and 2 and consistent overcoverage with the
NONPARAM(M) variance estimates in the same scenarios. Severe undercoverage with NON-
PARAM variance estimates for all response mechanisms in Population Scenario 3, with no
improvements offered by the NONPARAM(M) approach.

Taken collectively, the simulation results support the generally poor performance of the
PARAM1 and PARAM1(M) methods demonstrated in Section 4. Ultimately, the results obtained
with PARAM2 are promising, especially given that the data generation models were not conge-
nial to theWLS regression used to obtain m̂i and the data violations in the third data generation
scenario (found in two of the five studied empirical distributions). Despite its poor performance
in this simulation study, the nonparametric method remains appealing due to its flexbility. It
is possible that the model fit and estimation might be improved with a different choice of
basis functions, although we would not recommend utilizing either variation with the stud-
ied industries in Section 4. That said, some caution should be exercised in over-generalizing
these results, as the simulation utilizes a very specific multinomial distribution and a single
sampling design.

6 CONCLUDING REMARKS

Nearest neighbour ratio imputation (NNRI) is a useful approach for imputing an entire set of
component detail items. Instead of directly imputing the set of detail item values (yi) from the
donor, NNRI imputes the proportions of donor ratios (Ri), which are in turn multiplied by
the recipient’s available total to derive imputed values for all items. This imputation method
has several appealing properties, especially from a bias reduction perspective as discussed
in Section 1.

NNRI guarantees additivity, as the summed details always equal the associated total. It
accommodates subtle changes in unit level multinomial distributions that are associated with
unit size. It yields realistic microdata, preserving multivariate relationships. In contrast to
other frequently used imputation methods, the NNRI avoids inadvertently imposing possibly
outdated historical patterns in the imputed data, as it is entirely restricted to current data
(Andridge et al., 2021).

The numerous advantages of the NNRI procedure can be offset by the difficulty of obtain-
ing a valid variance estimator. However, Yang and Kim (2019) show that by identifying the
nearest donor using a single scalar with a suitable distance function, the NNRI estimator is
asymptotically consistent. Following the frameworks of Shao and Steel (1999) and Yang and
Kim (2019), we decompose our asymptotic variance into two parts and extend the variance
estimation further to include the case of non-negligible sampling fractions employing both
parametric and nonparametric models to obtain smooth estimators for set of ratios. Selecting
an appropriate model for the data set at hand is essential, as demonstrated by the empirical
application and the simulation study. Model determination is not completely straightforward:
in both the empirical application and our simulation, the frequently reported detail items
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tend to be strongly associated with the total, whereas the relationship between rarely-reported
detail items and the total is less obvious. Nevertheless, our simulation studies provide
fairly promising results in terms of bias and coverage, even with some model misspecifi-
cation. In practice, one would expect that methodologists would develop and validate any
implemented models after careful data analysis before implementing the proposed variance
estimator.

Although promising, the empirical and simulation study results collectively suggest several
areas of future research. First, we limited ourselves to uniform and lognormally distributed
size variables in our study and restricted the response mechanisms to tractable MCAR or
MAR models. Thus, the sensitivity of our variance estimator to more complex MAR models
or even to non-random response mechanism bears study. Second, if the proportion of recipi-
ents to donors is large, then NNRI may repeatedly use the same donor, yielding insufficient
variation within each imputation cell. Andridge et al. (2021) propose a modification of the
NNRI method that addresses this issue in a multiple imputation framework; it would be use-
ful to develop a single imputation analogue. Third, in practice, many auxiliary variables can
be used to determine nearest neighbours, in which case, dimension reduction is necessary to
mitigate matching discrepancies. Several techniques such as propensity score (Rosenbaum &
Rubin, 1983), prognostic score (Hansen, 2008), or their combination (Yang & Zhang, 2020)
can be potentially adopted in the NNRI framework. Finally, this paper considers only pop-
ulation totals. However, extending the current framework to general parameter estimation is
also feasible (Yang & Kim, 2020). Given that hot deck imputation is used to create realis-
tic microdata (as well as macrodata), such extensions are especially compelling topics for our
future research.
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