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A unified inference framework for multiple imputation using martingales

Qian Guan and Shu Yang

Department of Statistics, North Carolina State University

Abstract: Multiple imputation is widely used to handle missing data. Although Rubin’s combining rule

is simple, it is not clear whether or not the standard multiple imputation inference is consistent when

coupled with the commonly-used full sample estimators. This article establishes a unified martingale

representation of multiple imputation for a wide class of asymptotically linear full sample estimators.

This representation invokes the wild bootstrap inference to provide consistent variance estimation

under the correct specification of the imputation models. As a motivating application, we illustrate

the proposed method to estimate the average causal effect (ACE) with partially observed confounders

in causal inference. Our framework applies to asymptotically linear ACE estimators, including the

regression imputation, weighting, and matching estimators. We extend to the scenarios when both

outcome and confounders are subject to missingness and when the data are missing not at random.

Key words and phrases: Causality; Congeniality; Martingale representation; Influence function; Weighted

bootstrap.

1. Introduction

Missing data are ubiquitous in practice. A widely-used approach to handle incomplete/missing

data is multiple imputation (MI). The National Research Council has recommended MI as

one of its preferred approaches to addressing missing data (National Research Council, 2010).

The idea of MI is to fill the missing values multiple times by sampling from the posterior

predictive distribution of the missing values given the observed values. Then, full sample

analyses can be applied straightforwardly to the imputed data sets, and these multiple re-
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sults are summarized by an easy-to-implement combining rule for inference (Rubin, 1987).

MI can provide valid frequentist inferences in various applications (e.g., Clogg et al., 1991).

On the other hand, many authors have found that Rubin’s variance estimator is not always

consistent (e.g., Fay, 1992, Kott, 1995, Fay, 1996, Binder and Sun, 1996, Wang and Robins,

1998, Robins and Wang, 2000, Nielsen, 2003 and Kim et al., 2006). To ensure the validity of

Rubin’s variance estimation, imputations must be proper (Rubin, 1987). A sufficient condi-

tion for proper imputation is the congeniality condition of Meng (1994), imposed on both the

imputation model and the subsequent full sample analysis. Even with a correctly specified

imputation model, Yang and Kim (2016) showed that MI is not necessarily congenial for

the method of moments estimation, so common statistical procedures can be incompatible

with MI. Given the popularity of MI in practice, it is important to develop a valid inference

procedure for utilizing MI in statistical inference.

As a motivating application, we focus on causal inference with partially observed con-

founders. Causal inference is a central goal in many disciplines, such as medicine, econo-

metrics, political and social sciences. When all confounders that influence both treatment

and outcome are observed, the average causal effect (ACE) of the treatment is identifiable

(Imbens and Rubin, 2015). The literature has proposed many ACE estimators, such as

regression imputation (Hahn, 1998, Heckman et al., 1997), (augmented) propensity score

weighting (Horvitz and Thompson, 1952, Rosenbaum and Rubin, 1983, Robins et al., 1994,

Bang and Robins, 2005, Cao et al., 2009) and matching (Rosenbaum, 1989, Stuart, 2010,

Abadie and Imbens, 2016) to adjust for confounders. Previous works have used MI for

causal inference with partially observed confounders, e.g., Qu and Lipkovich (2009), Crowe

et al. (2010), Mitra and Reiter (2011), and Seaman and White (2014). Given that many
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full sample estimators are available for estimating the ACE, the validity of Rubin’s variance

estimator using these full sample estimators for causal inference is largely unexplored.

In this article, we establish a novel martingale representation of MI for a general class of

asymptotically linear full sample estimators under the correct specification of the imputation

models. Our key insight is that the MI estimator is intrinsically created in a sequential

manner: first, the posterior samples of parameters are drawn from the posterior distribution,

which is asymptotically equivalent to the sampling distribution of the maximum likelihood

estimator based on the Bernstein-von Mises theorem (van der Vaart, 2000; Chapter 10);

second, the posterior predictive samples of the missing data are drawn conditioned on the

observed data. This conceptualization leads to an asymptotically linear expression of the MI

estimator in terms of a sequence of random variables that have conditional mean zero given

the sigma algebra generated from the preceding variables (i.e., a martingale representation).

The martingale representation invokes the wild/weighted bootstrap procedure (Wu, 1986,

Liu, 1988) that provides valid variance estimation and inference regardless of which full

sample estimator is adopted in MI.

We show the asymptotic validity of our proposed bootstrap inference method for the

MI estimator using the martingale central limit theory (Hall and Heyde, 1980) and the

asymptotic property of weighted sampling of martingale difference arrays (Pauly et al., 2011).

Although the validity of the proposed method is based on the asymptotic results as the

sample size goes to infinity, the simulation results demonstrate that it performs well for

finite samples. It is worthwhile to compare the proposed method with the improper MI

approach proposed by Wang and Robins (1998) and Robins and Wang (2000). The idea of

improper MI is to use Monte Carlo imputation as a tool to compute the maximum likelihood
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estimator and therefore, it requires the imputation size m to be large in order to reduce the

Monte Carlo error. In contrast, our proposed method allows the imputation size m to be

fixed at a small value. This property is appealing for releasing multiply imputed datasets

for public usage. Moreover, improper MI can only deal with regular estimators but not non-

regular estimators such as the matching estimators. The proposed method can be applied

to a wide range of the ACE estimators adopted in MI, including the outcome regression,

weighting, and matching estimators. Indeed, the simulation studies indicate that Rubin’s

variance estimator overestimates the variance for the IPW and matching estimators because

these two estimators are not self-efficient (Meng, 1994, Xie and Meng, 2017), while the

proposed variance estimation procedure is consistent for all types of estimators.

Importantly, our framework can easily accommodate the scenarios when both outcome

and confounders have missing values and when the missing data are missing not at random.

In the former case, we only need to add the imputation step for the missing outcomes. In the

latter case, we only need to modify the imputation model by further considering the missing

data probability model in the data likelihood function. Our research is likely to bridge the

advantages of MI and its wide applications in causal inference and missing data analyses.

The rest of the paper is organized as follows. Section 2 introduces general asymptotically

linear estimators and illustrates with common estimators in causal inference. Section 3 de-

scribes the general MI to fill in missing values that facilitate full sample estimators. Section

4 presents the martingale representation for the MI estimators and the wild bootstrap infer-

ence procedure and establishes its validity. Section 5 extends the proposed method to the

scenario with other causal estimands, the scenario where both outcome and the confounders

have missing values and the scenario where the confounders are missing not at random. In
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Section 6, we evaluate the finite sample performance of the proposed method using simula-

tion studies. In Section 7, we apply the proposed wild bootstrap inference method to a U.S.

National Health and Nutrition Examination Survey data. Section 8 concludes.

2. Background

2.1 General setup

We introduce a general setup and illustrate it with common estimators of the ACE in causal

inference. Suppose we observe n independent and identically distributed (i.i.d.) samples

L = {Li : i = 1, . . . , n} governed by the distribution P(L). We are interested in inference

about the target parameter, a functional of the observed data distribution, τ = τ(P), e.g.,

the mean of the distribution P. For simplicity of presentation, we assume τ to be a one-

dimensional parameter. An extension to a multi-dimensional parameter is feasible at the

cost of heavier notation. Let τ̂n denote a generic estimator of τ . We focus on the class of

asymptotically linear estimators. This class of estimators includes the common regular and

asymptotically linear (RAL) estimators, which can be expressed by

τ̂n − τ =
1

n

n∑
i=1

ψ(Li) + oP(n−1/2), (2.1)

where {ψ(Li) : i = 1, . . . , n} are i.i.d with E{ψ(Li)} = 0 and E{ψ(Li)
2} <∞. The random

variable ψ(Li) is called the influence function of τ̂n and captures the first-order asymptotic

behavior of τ̂n (Bickel et al., 1993). Regarding regularity conditions, see, e.g., Newey (1990).

For a given estimator, upon identifying its influence function, we can characterize the asymp-

totic distribution and construct corresponding confidence intervals for the target parameter.

The class of estimators also includes possibly non-regular asymptotically linear estimators,
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2.2 Motivating application: estimating average causal effects

which can be expressed by

τ̂n − τ =
1

n

n∑
i=1

ψi(L) + oP(n−1/2), (2.2)

where the individual component ψi(L) may depend on the full sample and therefore is not

i.i.d, but satisfies E{ψi(L)} = 0 and E{ψi(L)2} <∞. The matching estimator is an example

as we illustrate later. For simplicity, we also call ψi(L) the influence function of τ̂n.

2.2 Motivating application: estimating average causal effects

We elucidate the general framework with an application of estimating the ACE. Let X be

a vector of p-dimensional covariates, A ∈ {0, 1} be a binary treatment, with 0 and 1 being

the labels for control and active treatments, respectively, and Y be the outcome of interest.

Suppose we observe n i.i.d. samples L = {Li = (Ai, Xi, Yi) : i = 1, . . . , n}.

Following Neyman (1923) and Rubin (1974), we use the potential outcomes framework

to formulate the causal parameter of interest. Under the Stable Unit Treatment Value

assumption (Rubin, 1980), for each level of treatment a, there exists a potential outcome

Y (a), representing the outcome had the unit, possibly contrary to the fact, been given

treatment a. We make the causal consistency assumption that links the observed outcome

with the potential outcomes; i.e., the observed outcome Y is the potential outcome Y (A)

under the actual treatment. We focus on estimating the ACE τ = E{Y (1) − Y (0)}. Our

methodology applies to a broader class of causal estimands in Li et al. (2018); we discuss

the extension to other causal estimands in Section 5.1. For simplicity of exposition, denote

µa(X) = E{Y (a) | X} and e(X) = P(A = 1 | X),

where µa(X) is an outcome mean function for a = 0, 1 and e(X) is the propensity score.
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2.2 Motivating application: estimating average causal effects

It is well known that under the common assumptions in the causal inference literature,

including the treatment ignorability and overlap assumptions (Assumptions S1 and S2 in the

supplementary material), the ACE can be identified by various important estimators that

are widely used in practice, including outcome regression, augmented/inverse probability

weighting (AIPW/IPW), or matching. See Imbens (2004) and Rosenbaum (2002) for surveys

of these estimators. These common estimators are asymptotically linear and belong to the

class of estimators in our general setup. We review these estimators below and identify their

influence functions in the supplementary material.

The common estimators require correct specifications of different parts of the observed

data distribution, including the outcome model and propensity score.

Assumption 1 (Outcome model). The parametric model µa(X; βa) is a correct specification

for µa(X), for a = 0, 1; i.e., µa(X) = µa(X; β∗a), where β∗a is the true model parameter.

Assumption 2 (Propensity score model). The parametric model e(X;α) is a correct speci-

fication for e(X); i.e., e(X) = e(X;α∗), where α∗ is the true model parameter.

Example 1. The outcome regression estimator is τ̂n,reg = n−1
∑n

i=1 τreg,i, where

τreg,i = µ1(Xi; β̂1)− µ0(Xi; β̂0). (2.3)

Example 2. The IPW estimator is τ̂n,IPW = n−1
∑n

i=1 τIPW,i, where

τIPW,i =
AiYi

e(Xi; α̂)
− (1− Ai)Yi

1− e(Xi; α̂)
. (2.4)
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Example 3. The AIPW estimator is τ̂n,AIPW = n−1
∑n

i=1 τAIPW,i, where

τAIPW,i =
AiYi

e(Xi; α̂)
+

{
1− Ai

e(Xi; α̂)

}
µ1(Xi; β̂1)

− (1− Ai)Yi
1− e(Xi; α̂)

−
{

1− 1− Ai
1− e(Xi; α̂)

}
µ0(Xi; β̂0). (2.5)

Example 4 (Matching). For unit i, denote the imputed potential outcomes as

Ŷi(1) =


M−1∑

j∈JX(i) Yj if Ai = 0,

Yi if Ai = 1,

Ŷi(0) =


Yi if Ai = 0,

M−1∑
j∈JX(i) Yj if Ai = 1.

The matching estimator of τ is

τ̂
(0)
n,mat =

1

n

n∑
i=1

{Ŷi(1)− Ŷi(0)} =
1

n

n∑
i=1

(2Ai − 1)

Yi −M−1
∑

l∈JX(i)

Yl

 . (2.6)

where M (M ≥ 1) is the number of matches and JX(i) is the index set of the nearest M

neighbors for unit i in its opposite treatment group based on the matching variable X.

The above estimators are asymptotically linear with the influence functions given in the

supplementary material.

3. Multiple Imputation to Deal with Missing Values

3.1 General multiple imputation

Continuing with the general setup in Section 2.1, we now consider the case where L is q-

dimensional and L = (L[1], . . . , L[q]) contains missing values. Let R = (R[1], . . . , R[q]) be the

vector of missing indicators such that R[j] = 1 if the jth component L[j] is observed and 0

if it is missing. Also, let 1q denote the q-vector of 1’s. We write L = (LR, LR), where LR
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3.1 General multiple imputation

and LR represent the observed and missing parts of L, respectively. This notation depends

on the missingness pattern; e.g., if R[1] = 1 and R[j] = 0 for j = 2, . . . , q, then LR = L[1] and

LR = (L[2], . . . , L[q]). With missing values in L, the full sample estimator τ̂n is not feasible

to calculate.

To facilitate applying a full sample estimator, MI creates multiple complete data sets by

filling in missing values. Assume unit i has the complete data Zi = (Li, Ri) and the observed

data Zobs,i = (LRi,i, Ri). Denote Z = (Z1, . . . , Zn) and Zobs = (Zobs,1, . . . , Zobs,n). Assume

that the observed data likelihood is f(Zobs; θ) with the true parameter value θ0. The MI

procedure proceeds as follows.

Step MI-1. Create m complete data sets by filling in missing values with imputed values

generated from the posterior predictive distribution. Specifically, to create the jth

imputed data set, first generate θ∗(j) from the posterior distribution p(θ | Zobs), and

then generate L
∗(j)
Ri,i

from f(LRi,i
| Zobs,i; θ

∗(j)) for each missing LRi,i
.

Step MI-2. Apply a full sample estimator of τ to each imputed data set. Let τ̂ (j) be the

estimator applied to the jth imputed data set, and V̂ (j) be the full sample variance

estimator for τ̂ (j).

Step MI-3. Use Rubin’s combining rule to summarize the results from the multiple im-

puted data sets. The MI estimator of τ is τ̂MI = m−1
∑m

j=1 τ̂
(j), and Rubin’s variance

estimator is

V̂MI(τ̂MI) = Wm + (1 +m−1)Bm, (3.7)

where Wm = m−1
∑m

j=1 V̂
(j) and Bm = (m− 1)−1

∑m
j=1(τ̂

(j) − τ̂MI)
2.
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3.2 CI in the presence of confounders missing at random

Remark 1. In Step MI-1, as an anonymous referee pointed out, the full/observed data

likelihood has to be specified and fitted for multiple imputation, which can be challenging in

the presence of several, if not many, variables. In practice, we suggest specifying the full data

likelihood as a product of a sequence of conditional models of one variable given the proceeding

variables, allowing model flexibility for each variable (e.g., the error distribution matches the

variable type — logistic for a binary variable). Also, model diagnosis can be carried out

after imputation to assess goodness-of-fit. See the real-data application in Section 7 for an

example.

3.2 CI in the presence of confounders missing at random

We elucidate our method in the motivating application of estimating the ACE by assuming

the confounders are missing at random (MAR) in the sense of Rubin (1976). Extensions to

settings with missing outcomes and different missingness mechanisms are provided in Section

5. We now consider the case where X = (X[1], . . . , X[p]), a p-dimensional vector, contains

missing values. Accordingly, let RX = (R[1], . . . , R[p]) be the vector of missing indicators

such that R[j] = 1 if the jth component X[j] is observed and 0 if it is missing. We write

X = (XRX
, XRX

), where XRX
and XRX

represent the observed and missing parts of X,

respectively. With missing values in X, the aforementioned full sample estimators (2.3)–

(2.6) are not feasible to calculate. Estimation of the ACE requires further assumptions.

Following most of the empirical literature, we impose the MAR assumption.

Assumption 3 (Missingness at random). We have XRX
⊥⊥ RX | Zobs.

Assumption 3 holds if the observed data capture all the information related to missing-

ness. Under Assumption 3, f(Ai, Xi, Yi, RXi; θ) = f(Ai, XRXi,i, Yi, RXi; θ) f(XRXi,i
|Ai, XRXi,i,
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3.3 Issue of standard inference with MI

Yi, RXi = 1p; θ) is identifiable, which justifies the likelihood-based or Bayesian inference.

Moreover, by Bayes rule, the posterior distribution of the missing data can be expressed as

f(XRXi,i
| Ai, XRXi,i, Yi, RXi; θ

∗(j)) ∝ f(Ai, XRXi,i
, XRXi,i, Yi, RXi; θ

∗(j))

= f(RXi | Yi, XRXi,i, XRXi,i
, Ai; θ

∗(j))f(Yi, XRXi,i, XRXi,i
, Ai; θ

∗(j))

∝ f(Yi, XRXi,i, XRXi,i
, Ai; θ

∗(j)) (3.8)

∝ f(Yi | XRXi,i, XRXi,i
, Ai; θ

∗(j))f(Ai | XRXi,i, XRXi,i
; θ∗(j))f(XRXi,i

| XRXi,i; θ
∗(j)),

where (3.8) follows because f(RXi | Yi, XRXi,i, XRXi,i
, Ai; θ

∗(j)) = f(RXi | Yi, XRXi,i, Ai; θ
∗(j))

by Assumption 3. The MI procedure proceeds with the imputation model for XRXi,i
, which

does not depend on the missingness pattern probability for RXi.

3.3 Issue of standard inference with MI

The variance of the MI estimator can be decomposed to

V(τ̂MI) = V(τ̂n) + V(τ̂MI − τ̂n) + 2cov(τ̂MI − τ̂n, τ̂n),

In Rubin’s variance estimator (3.7), Wm estimates the within-imputation variance V(τ̂n), and

(1+m−1)Bm estimates the between-imputation variance V(τ̂MI− τ̂n). However, it ignores the

covariance between τ̂MI − τ̂n and τ̂n. Rubin’s variance estimator is asymptotically unbiased

only under the congeniality condition (Meng, 1994), i.e., cov(τ̂MI− τ̂n, τ̂n) = o(1). Therefore,

Rubin’s variance estimator using the different full sample estimator τ̂n may be inconsistent.

For illustration, we conduct a numerical experiment to assess the congeniality condition

for the outcome regression, IPW, AIPW and matching estimators of the ACE. The data

generating mechanism is described in scenario (a) in Section 6. For each simulated data set,

we compute the full sample point estimators τ̂n assuming the confounders are fully observed
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Table 1: Simulation results of the full sample point estimators and MI point estimators based

on 5, 000 simulated data sets

Method τ̂n V(τ̂n) V(τ̂MI) V(τ̂MI − τ̂n) cov(τ̂MI − τ̂n, τ̂n)

(×104) (×104) (×104) (×104)

Regression 24 35 11 0

IPW 62 66 22 -9

AIPW 25 36 12 0

matching 30 38 15 -4

and the multiple imputation point estimators τ̂MI. Table 1 presents the simulations results

of the variances of the full sample point estimators and the MI point estimators and the

covariance between τ̂MI − τ̂n and τ̂n. The covariance is significantly negative for the IPW

and the matching estimators. Rubin’s variance estimator overestimates the variances of the

IPW estimator and matching estimator. As a consequence, MI is not congenial for the IPW

and matching estimators. Thus, the congeniality condition required for MI can be quite

restrictive for general ACE estimation.

4. A Martingale Representation of the MI Estimators of Causal Effects

4.1 A novel martingale representation

Based on the unified linear form of the full sample estimator as in (2.1) or (2.2), we will

express the MI estimator in a general form as

τ̂MI − τ =
1

m

m∑
j=1

(τ̂ (j) − τ) =
1

nm

n∑
i=1

m∑
j=1

ψ(L
∗(j)
i ) + oP(n−1/2), (4.9)
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4.1 A novel martingale representation

where L
∗(j)
i = (LRi,i, L

∗(j)
Ri,i

), and oP(n−1/2) is due to (2.1) or

τ̂MI − τ =
1

m

m∑
j=1

(τ̂ (j) − τ) =
1

nm

n∑
i=1

m∑
j=1

ψi(L
∗(j)) + oP(n−1/2), (4.10)

where L∗(j) = (L
∗(j)
1 , . . . , L

∗(j)
n ), and oP(n−1/2) is due to (2.2). In the following, we will

elucidate our framework with (4.9), and the same exposition applies to (4.10) by replacing

ψ(Li) by ψi(L) and L
∗(j)
i by L∗(j).

To express (4.9) further, it is important to understand the properties of the posterior

distribution and the imputed values L
∗(j)
i . Using the Bernstein-von Mises theorem (van der

Vaart, 2000; Chapter 10), under the regularity conditions described in Assumption 4, con-

ditioned on the observed data, the posterior distribution p(θ | Zobs) converges to a normal

distribution with mean θ̂ and variance n−1I−1obs almost surely, where θ̂ is the maximum like-

lihood estimator (MLE) of θ0 and I−1obs is the inverse of the Fisher information matrix. Let

S(θ;L,R) be the score function of θ. In the presence of missing data, define the mean score

function S̄(θ0;Zobs,i) = E{S(θ0;Li, Ri) | Zobs,i, θ0}.

The MLE θ̂ can be viewed as the solution to the mean score equation
∑n

i=1 S̄(θ;Zobs,i) =

0. Under the regularity conditions described in Assumption 4, we can then express θ̂− θ0 =

n−1I−1obs

∑n
i=1 S̄(θ0;Zobs,i) + oP(n−1/2). It is insightful to write (4.9) as

τ̂MI − τ =
1

nm

n∑
i=1

m∑
j=1

[
ψ(L

∗(j)
i )− E{ψ(Li) | Zobs, θ̂}

]
+

1

nm

n∑
i=1

m∑
j=1

E{ψ(Li) | Zobs, θ̂}+ oP(n−1/2), (4.11)

where we recall Zobs = (Zobs,1, . . . , Zobs,n). Now, by a Taylor expansion of E{ψ(Li) | Zobs, θ̂}

around the true value θ0,

τ̂MI − τ =
1

nm

n∑
i=1

m∑
j=1

[
ψ(L

∗(j)
i )− E{ψ(Li) | Zobs, θ̂}

]
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4.1 A novel martingale representation

+
1

nm

n∑
i=1

m∑
j=1

[
E{ψ(Li) | Zobs, θ0}+ ΓI−1obsS̄(θ0;Zobs,i)

]
+ oP(n−1/2), (4.12)

where Γ = E
[
E{ψ(Li)S(θ0;Li, Ri) | Zobs, θ0} − E{ψ(Li) | Zobs, θ0}S̄(θ0;Zobs,i)

]T
.

Based on (4.12), we can write

n1/2(τ̂MI − τ) =
n+nm∑
k=1

ξn,k + oP(n−1/2), (4.13)

where

ξn,k =


1

n1/2

[
E{ψ(Li) | Zobs, θ0}+ ΓI−1obsS̄(θ0;Zobs,i)

]
, if k = i,

1
n1/2m

[
ψ(L

∗(j)
i )− E{ψ(Li) | Zobs, θ̂}

]
, if k = n+ (i− 1)m+ j,

where i = 1, . . . , n and j = 1, . . . ,m. For the decomposition in (4.13), the first n terms of

ξn,k contribute to the variability of τ̂MI because of the unknown parameters, and the rest

nm terms of ξn,k contribute to the variability of τ̂MI because of the imputations given the

parameter values, reflecting the sequential MI procedure.

We discuss the mean properties of ξn,k in order to create suitable σ-fields in the martingale

presentation. For k = i, where i = 1, . . . , n, we have

E(ξn,k) =
1

n1/2
E
[
E{ψ(Li) | Zobs, θ0}+ ΓI−1obsS̄(θ0;Zobs,i)

]
=

1

n1/2
E{ψ(Li)}+

1

n1/2
ΓI−1obsE{S̄(θ0;Zobs,i)} = 0, (4.14)

where E{ψ(Li)} = 0 and E{S̄(θ0;Zobs,i)} = 0 are due to the mean zero property of the

influence function and the mean score function. For k = n+ (i− 1)m+ j, where i = 1, . . . , n

and j = 1, . . . ,m, we have

E(ξn,k | Zobs) =
1

n1/2m
E
[
ψ(L

∗(j)
i )− E{ψ(Li) | Zobs, θ̂} | Zobs

]
=

1

n1/2m

[
E{ψ(L

∗(j)
i ) | Zobs} − E{ψ(Li) | Zobs, θ̂}

]
= 0, (4.15)
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4.2 Wild bootstrap for the MI estimator

where the last equality follows because given Zobs, the posterior predictive distribution of

L
∗(j)
i follows the distribution f(Li | Zobs; θ̂) by the Bernstein-von Mises theorem (van der

Vaart, 2000; Chapter 10). Consider the σ-fields Fn,k = σ{N}, if k = i with N being the

null set and Fn,k = σ{Zobs}, if k = n + (i − 1)m + j, where i = 1, . . . , n and j = 1, . . . ,m.

Therefore, by (4.14) and (4.15),{
k∑
i=1

ξn,i,Fn,k, 1 ≤ k ≤ n(1 +m)

}
is a martingale for each n ≥ 1.

Equation (4.12) is a martingale representation of the MI estimator by expressing the MI

estimator in terms of a series of random variables that have mean zero conditional on the

sigma algebra generated from the preceding variables. This martingale representation is used

to construct the bootstap replicate for variance estimation.

4.2 Wild bootstrap for the MI estimator

Invoked by the martingale representation, we propose the wild bootstrap procedure (Wu,

1986; Liu, 1988), which provides valid variance estimation and inference of the linear statistic

for martingale difference arrays based on the martingale central limit theory, to estimate the

variance of τ̂MI.

Step 1. Sample uk, for k = 1, . . . , n+nm, to satisfy that E(uk | Zobs) = 0, E(u2k | Zobs) = 1

and E(u4k | Zobs) <∞.

Step 2. Compute the bootstrap replicate as T ∗ = n−1/2
∑n+nm

k=1 ξ̂n,kuk, where

ξ̂n,k =


1

n1/2

[
E{ψ(Li) | Zobs, θ̂}+ Γ̂Î−1obsS̄(θ̂;Zobs,i)

]
, if k = i,

1
n1/2m

[
ψ(L

∗(j)
i )− E{ψ(Li) | Zobs, θ̂}

]
, if k = n+ (i− 1)m+ j,

where i = 1, . . . , n and j = 1, . . . ,m.
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4.2 Wild bootstrap for the MI estimator

Step 3. Repeat Step 1–Step 2 B times, and estimate the variance of τ̂MI by the sample

variance of the B copies of T ∗.

Remark 2. There are many choices for generating uk, such as the standard normal distri-

bution, Mammen’s two point distribution (Mammen, 1993)

uk =


1−51/2

2
, with probability 1+5−1/2

2
,

51/2+1
2

, with probability 1−5−1/2

2
,

a simpler distribution with probability 0.5 of being 1 and probability 0.5 of being −1, or the

Poisson distribution with parameter one re-centered at zero (Beyersmann et al., 2013). Our

simulation study shows that the wild bootstrap procedure is not sensitive to the choice of

the sampling distribution of uk. In particular, one can also use the nonparametric bootstrap

weights; that is, let uk = (nm+ n)−1/2(Wk −W ), where {Wk : k = 1, . . . , n(m+ 1)} follows

a multinomial distribution with n(m+ 1) draws on n(m+ 1) cells with equal probability, and

W = (nm+ n)−1
∑n(m+1)

k=1 Wk.

Several authors have used the nonparametric bootstrap to estimate the variance of the

MI estimators. Schomaker and Heumann (2018) combined MI with bootstrap to do inference

for the quantity of interest. However, their discussions restrict to the maximum likelihood

estimators of model parameters and require bootstrap on top of MI, which is computationally

intensive. Moreover, in the causal inference literature in the absence of missing data, Abadie

and Imbens (2008) has demonstrated that nonparametric bootstrap can not provide consistent

variance estimation for the matching estimators of the ACE due to the non-smooth nature

of the matching procedure. It is important to note that the proposed wild bootstrap procedure

with the nonparametric bootstrap weights is different from the naive bootstrap. The martin-

gale representation and the wild bootstrap procedure work for the asymptotically linear ACE
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4.2 Wild bootstrap for the MI estimator

estimators including the matching estimator.

Remark 3. In Step 2, we require approximating ξn,k, which involves the MLE θ̂, the esti-

mated observed Fisher information, and the conditional expectations taken with respect to

the distribution of the missing values given the observed values. These estimators are read-

ily available from the posterior draws or approximated by Monte Carlo integration based on

the imputed values. For example, we approximate E{ψ(Li) | Zobs, θ̂} by M−1∑M
j=1 ψ(L

∗(j)
i ).

Thus, the computation is not as intimidating as it appears, although it is heavier than Rubin’s

combining rule. However, as shown in Theorem 1, the proposed inference procedure is valid,

while Rubin’s method may not.

We show the asymptotic validity of the above bootstrap inference method by the follow-

ing theorem with regularity assumptions.

Assumption 4. Suppose the standard conditions hold for the maximum likelihood estimator

(MLE) θ̂ to be n1/2-consistent for θ0:

1. Zobs,1, . . . , Zobs,n are independently and identically distributed and follow f(z | θ);

2. θ is identifiable; i.e., if θ 6= θ′, then f(z | θ) 6= f(z | θ′);

3. The density f(z | θ) have a common support (not depend on θ);

4. The parameter space contains an open set of which the true parameter θ0 is an interior

point.;

5. For every z in the support, f(z | θ) is three times differentiable with respect to θ, the

third derivative is continuous in θ, and
∫
∂3 log f(z | θ)/∂θ3dz <∞;
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4.2 Wild bootstrap for the MI estimator

6. For any θ0 in the parameter space, there exists a positive number c and a function M(z)

such that |∂3 log f(z | θ)/∂θ3| ≤M(z) for all z in the support, θ0− c < θ < θ0 + c, with

Eθ0{M(Z)} <∞.

Define ψ̄(θ;Zobs,i) = E{ψ(Li) | Zobs,i, θ}.

Assumption 5. ψ̄(θ; Zobs), V{ψ(Li) | Zobs, θ}, S̄(θ;Zobs,i) and V{S(θ;Li, Ri) | Zobs,i, θ} are

continuous functions of θ.

Assumption 6. E[{ψ̄(θ; Zobs)}4] < ∞ and E[{S̄(θ;Zobs,i)}4] < ∞ for θ in a neighborhood

of θ0.

Assumption 7. {ψ̄(θ; Zobs − ψ̄(θ0; Zobs)}2 and {S̄(θ;Zobs,i) − S̄(θ0;Zobs,i)}2 belong to a

Donsker class.

Assumption 4 is the standard assumption in the literature to guarantee the consistency of

the MLE (van der Vaart, 2000). Assumption 5 is imposed to guarantee sufficient smoothness

on the conditional mean and variance functions for the influence function and the score

function. It holds for the general estimands such as mean-type estimands and the commonly-

used class of parametric models such as the exponential family. For Assumption 6, the

moment conditions are used to invoke the central limit theory and typically hold for the

general estimands and parametric models coupled with the bounded moment conditions for

L. In practice, L often has a bounded support and thus the bounded moment conditions are

reasonable. Assumption 7 ensures the convergence of the empirical process to its limiting

version (Kennedy, 2016). The interested readers can consult Kennedy (2016) for details and

examples of the Donsker class.
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4.2 Wild bootstrap for the MI estimator

Theorem 1. Suppose that Assumptions S1, S2 and 4-7 hold. Suppose that f(LRi,i
| Zobs,i; θ)

is correctly specified. Then, for MI adopts the full sample estimator that satisfies (2.1) or

(2.2), we have

sup
r

∣∣P(n1/2T ∗ ≤ r | Zobs)− P{n1/2(τ̂MI − τ) ≤ r}
∣∣ P→ 0,

as n→∞.

We provide the proof of Theorem 1 in the supplementary material, which draws on

the martingale central limit theory (Hall and Heyde, 1980) and the asymptotic property of

weighted sampling of martingale difference arrays (Pauly et al., 2011). Theorem 1 indicates

that the distribution of the wild bootstrap statistic consistently estimates the distribution

of the MI estimator.

Theorem 1 requires the imputation model f(LRi,i
| Zobs,i; θ) to be correctly specified (the

congeniality condition of Meng, 1994). This requirement is needed not only for the consis-

tency of the MI variance estimator but also for the consistency of the MI point estimator.

Corollaries hereafter clarify the required correct imputation models in different scenarios.

Corollary 1. For the scenario with confounders missing at random, the assumption that

the imputation model f(LRi,i
| Zobs,i; θ) is correctly specified in Theorem 1 implies that the

outcome distribution f(Yi | Xi, Ai; θ), the propensity score model f(Ai | Xi; θ) and the con-

founder distribution f(XRXi,i
| XRXi,i; θ) should be correctly specified.
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5. Extensions

5.1 Different causal estimands

Our inference framework extends to a wide class of causal estimands, as long as the estimand

admits an asymptotically linear full sample estimator as in (2.1). For example, we can

consider the average causal effects over a subset of the population (Crump et al., 2006,

Li et al., 2018), including the average causal effect on the treated. We can also consider

nonlinear causal estimands. For example, for a binary outcome, the log of the causal risk

ratio is

log CRR = log
P{Y (1) = 1}
P{Y (0) = 1}

= log
E{Y (1)}
E{Y (0)}

,

and the log of the causal odds ratio is

log COR = log
P{Y (1) = 1}/P{Y (1) = 0}
P{Y (0) = 1}/P{Y (0) = 0}

= log
E{Y (1)}/[1− E{Y (1)}]
E{Y (0)}/[1− E{Y (0)}]

.

The key insight is that under Assumptions S1 and S2, we can estimate E{Y (a)} with

commonly-used estimators, denoted by Ê{Y (a)}, for a = 0, 1. We can then obtain and

estimator for the log CRR as log[Ê{Y (1)}/Ê{Y (0)}]. By the Taylor expansion, we can lin-

earize these estimators and establish a similar linear form as (2.1), which serves as the basis

to construct the weighted bootstrap inference.

5.2 Missingness not at random

If Assumption 3 fails, the missing pattern also depends on the missing values themselves even

after controlling for the observed data, a scenario known as missing not at random (MNAR).

In our motivating example discussed in Section 7, the family poverty ratio is likely to be

missing not at random because subjects with higher income may be less likely to disclose
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5.2 Missingness not at random

their income information (Davern et al., 2005). In general, MNAR occurs frequently for

sensitive questions regarding e.g. alcohol consumption, income, etc.

Causal inference with data missing not at random is more challenging because the full

data distribution and therefore the ACE are not identifiable in general. To utilize MI in

causal inference with confounders MNAR, we require identification conditions that ensure

the full data distribution is identifiable. For example, Wang et al. (2014) introduced a non-

response instrument as a sufficient condition for the identifiability of the observed likelihood.

Miao et al. (2016) investigated the identifiability of normal and normal mixture models with

nonignorable missing data. Yang et al. (2019) proposed an outcome-independence missing-

ness mechanism under which the missing data mechanism is independent of the outcome

given the treatment and confounders and established general identification conditions.

Our proposed method can easily extend to the scenario where the confounders are MNAR

when additional assumptions are made for identifiability of the full data distribution. After

the identification check, we only need to modify the posterior predictive distribution of

X
(j)

Ri,i
. For example, following Yang et al. (2019), we assume that the missingness pattern R

is independent of the outcome given the treatment and confounders.

Assumption 8 (Outcome-independent missingness). We have Y ⊥⊥ RX | (A,XRX
, XRX

).

Under the regularity conditions in Yang et al. (2019), f(A,X, Y,RX) is identifiable (Yang

et al., 2019). Then in Step MI-1, the posterior distribution of X
(j)

RXi,i
can be decomposed to

f(XRXi,i
| Ai, XRXi,i, Yi, RXi; θ

∗(j)) ∝ f(Yi | XRXi,i, XRXi,i
, Ai; θ

∗(j))

× f(RXi | XRXi,i, XRXi,i
, Ai; θ

∗(j))f(Ai | XRXi,i, XRXi,i
; θ∗(j))f(XRXi,i

| XRXi,i; θ
∗(j)).

After imputation, the wild bootstrap steps remain exactly the same.
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5.3 Partially observed outcome and confounders

Corollary 2. For the scenario with confounders missing not at random, the assumption that

the imputation model f(LRi,i
| Zobs,i; θ) is correctly specified in Theorem 1 implies that the

outcome distribution f(Yi | Xi, Ai; θ), the propensity score model f(Ai | Xi; θ), the confounder

distribution f(XRXi,i
| XRXi,i; θ), and the missingness model f(RXi | Xi, Ai; θ) should be

correctly specified.

5.3 Partially observed outcome and confounders

In some cases, both the outcome and the confounders are subject to missingness. Our

framework can easily accommodate this scenario by adding an outcome imputation step in

the MI procedure.

We now introduce another missingness indicator RY for Y ; i.e., RY = 1 if Y is ob-

served and RY = 0 otherwise. In Step MI-1, we first generate θ∗(j) from the posterior

distribution p(θ | Zobs). Then for unit i with RY = 1, generate X
∗(j)
RXi,i

from f(XRXi,i
, |

Ai, XRXi,i, Yi, Ri, RY i = 1; θ∗(j)); for unit i with RY = 0, generate X
∗(j)
RXi,i

and Y
∗(j)
i from

f(XRXi,i
, Yi | Ai, XRXi,i, RXi, RY i = 0; θ∗(j)) to create the jthe imputed data set. Then the

MI estimator can be written in a general form with both imputed outcome and confounders

as

τ̂MI − τ =
1

nm

n∑
i=1

m∑
j=1

ψ(Ai, X
∗(j)
i , Y

∗(j)
i ) + oP(1).

Accordingly, the martingale difference arrays in the wild bootstrap procedure can be written

as

ξ̂n,k =


1

n1/2

[
E{ψ(Ai, Xi, Yi) | Zobs, θ̂}+ Γ̂Î−1obsS̄(θ̂;Zobs,i)

]
, if k = i,

1
n1/2m

[
ψ(Ai, X

∗(j)
i , Y

∗(j)
i )− E{ψ(Ai, Xi, Yi) | Zobs, θ̂}

]
, if k = n+ (i− 1)m+ j,
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where i = 1, . . . , n and j = 1, . . . ,m. Other steps in the MI and wild bootstrap procedures

remain the same as described for the scenario when only confounders have missing values.

Corollary 3. For the scenario where both the outcome and the confounders are subject to

missingness, the assumption that the imputation model f(LRi,i
| Zobs,i; θ) is correctly specified

in Theorem 1 implies Corollary 1 under MAR and Corollary 2 under MNAR.

6. Simulation study

We conduct simulation studies to evaluate the finite sample performance of the proposed

inference when MI adopts different full sample estimators including the outcome regression,

IPW, AIPW and matching estimators.

For each sample, the confounder X = (X[1], X[2]) are sampled from a multivariate normal

distribution with mean (0, 0), variance (1, 1) and a correlation coefficient 0.2. The potential

outcomes follow Y (0) = 2 + 3X[1] + 2X[2] + ε(0) and Y (1) = 1 + 2X[1] + X[2] + ε(1), where

ε(0) ∼ N (0, σ2
0), ε(1) ∼ N (0, σ2

1) with σ0 = σ1 = 1, and ε(0) and ε(1) are independent. So the

true value of ACE is τ = −1. We generate the treatment indicator A from Bernoulli{πA(X)}

and πA(X) = P (A = 1 | X) = Φ(−0.2 + 0.3X[1] + 0.4X[2]), where Φ(·) is the cumulative

density function for the standard normal distribution. In the sample, we assume A and X[1]

are fully observed, but X[2] and Y can be partially observed with the missing indicators R[2]

and RY , respectively. We consider four scenarios:

(a) X[2] is missing at random; i.e., its missingness depends only on the observed data. Let

R[2] ∼ Bernoulli{πR1(A,X[1], Y )}, where πR1(A,X[1], Y ) = Φ(−0.1 + 0.1A + 0.5X[1] +

0.2Y ) with the missingness rate being about 45%. Moreover, the inference procedure

assumes the correct missingness mechanism;
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(b) X[2] is missing not at random; i.e., its missingness depends on unobserved data. Let

R[2] ∼ Bernoulli{πR2(A,X[1], X[2])}, where πR2(A,X[1], X[2]) = Φ(0.2 + 1X[2]) with the

missingness rate being about 45%. Moreover, the inference procedure assumes the

correct missingness mechanism;

(c) X[2] is missing not at random as in scenario (b); but the inference procedure assumes

an incorrect missingness at random mechanism;

(d) both X[2] and Y are missing not at random, with the missingness indicators R[2] and

RY , respectively. Let R[2] ∼ Bernoulli{πR(X[2])}, where πR(X[2]) = Φ(0.8 + 1X[2])

with the missingness rate being about 30%. Let RY ∼ Bernoulli{πY (A,X)}, where

πY (A,X) = Φ(1+0.2A+0.5X[1] +0.5X[2]) with the missingness rate being about 20%.

We generate 5, 000 Monte Carlo samples with size n = 3000 for each scenario. In MI, the

missing data mechanism is specified according to the above scenarios and other components

of the distribution are correctly specified. We use non-informative priors for parameters.

Suppose that the prior distribution for each coefficient in the outcome model, the propensity

score model and the missing indicator model is N (0, 100); the prior distribution for the

variance parameters σ0 and σ1 in the outcome regression model is Gamma(0.01, 0.01); the

prior distribution for the mean of X is (0, 0); the prior distribution for the variance covariance

matrix of X is I2, where I2 is the 2-dimensional identity matrix. More details about priors

and posterior sampling are provided in the supplementary material. We consider three sizes

of multiple imputation with m = 5, 10 or 100. To generate the posterior samples of the

missing values X
∗(j)
R

, we use Gibbs sampling with 5, 000 iterations, discard first 2, 000 burn-

in samples, and randomly choose m posterior samples from the remaining 3, 000 draws. For

each imputed data set, we calculate the full sample point estimators and variance estimators
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of the ACE using outcome regression, IPW, AIPW and matching, and then use Rubin’s

method to get the corresponding MI estimators τ̂MI and Rubin’s variance estimators V̂MI.

For the matching estimator, we set the number of matches as M = 1.

We compare the standard MI inference and the proposed bootstrap inference. For

the standard MI inference, the 100(1 − α)% confidence intervals are calculated as (τ̂MI −

tν,1−α/2V̂
1/2
MI , τ̂MI + tν,1−α/2V̂

1/2
MI ), where tν,1−α/2 is the 100(1− α/2)% quantile of the t distri-

bution with degree of freedom ν = (m−1)λ−2 with λ = (1+m−1)Bm/{Wm+(1+m−1Bm)}.

For the proposed bootstrap procedure, we use B = 1, 000, generate the weights µk from

the Mammen’s two point distribution as suggested in Remark 2, and calculate the variance

estimate V̂BS. The corresponding 100(1 − α)% confidence interval are estimated using two

different methods: (i) quantile-based confidence interval (τ̂MI − q∗1−α/2, τ̂MI − q∗α/2), where

q∗1−α/2 and q∗α/2 are the (1 − α/2)th and (α/2)th quantiles of T ∗; (ii) the Wald-type confi-

dence interval (τ̂MI − z1−α/2V̂ 1/2
BS , τ̂MI + z1−α/2V̂

1/2
BS ), where z1−α/2 is the (1− α/2)th quantile

of the standard normal distribution.

We assess the performance in terms of the relative bias of the variance estimator and

the coverage rate of confidence intervals. The relative bias of the variance estimators are

calculated as {E(V̂MI) − V(τ̂MI)}/V(τ̂MI) × 100% and {E(V̂BS) − V(τ̂MI)}/V(τ̂MI) × 100%

correspondingly. The coverage rate of the 100(1− α)% confidence intervals is estimated by

the percentage of the Monte Carlo samples for which the confidence intervals contain the

true value.

Tables 2–5 present the simulation results for the four scenarios. When the imputation

model is correctly specified as in scenarios (a), (b) and (d), the MI point estimator has

small biases for all full sample estimators. Also, as m increases, the variance of the MI
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point estimator becomes smaller, suggesting that using more imputations can help improving

the efficiency of the MI estimator. Across difference choices of m, the relative bias of the

proposed variance estimator stays small. The accuracy of the proposed variance estimator

is less sensitive to the choice of m. Rubin’s variance estimator is unbiased for the outcome

regression estimator and the AIPW estimator; however, it overestimates the variances of the

IPW estimator and the matching estimator e.g. by as high as 29.7% and 20.1% in scenario

(a). Due to variance overestimation, the coverage rate of Rubin’s method exceeds the nominal

level for the IPW and Matching estimators, all exceeding 96% and some reaching 97.3%. In

contrast, our proposed wild bootstrap procedure for variance estimation is unbiased for all

four ACE estimators, and therefore the coverage rate of the confidence intervals based on

our proposed wild bootstrap method is close to the nominal level. Moreover, the proposed

method is not sensitive to the number of imputations m and the choice of quantile-based

or Wald-type confidence interval. However, in scenario (c) when the true missing data

mechanism is missingness not at random while the inference procedure assumes missingness

at random, the MI point estimator has large biases and all the confidence intervals have poor

coverage rates; see Table 4.

There are other methods developed for multiple imputation inference. For example,

Xie and Meng (2017) proposed a doubling variance approach for more conservative variance

estimation when Rubin’s method underestimates the variance. However, it will further over-

estimates the variance of MI estimators in our simulation settings so that the performance is

even worse than Rubin’s method. Meng and Rubin (1992) and Chan and Meng (2022) pro-

posed likelihood ratio based procedure for multiply-imputed data inference. However, this

procedure is not easily implemented for the variance and confidence interval construction for
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the treatment effect estimation.

7. An application

We apply our method to a dataset from the 2015-2016 U.S. National Health and Nutrition

Examination Survey to estimate the ACE of education on general health satisfaction. The

general health satisfaction outcome (Y ) is fully observed with a lower value indicating better

satisfaction. A sample of 4, 845 individuals is divided into two groups: one (76%) with at

least high school education, denoted as A = 1, and the other one (24%) with education

level lower than high school, denoted as A = 0. The covariates X consist of four categorical

variables including age, race, gender, marital status, and one continuous variable family

poverty ratio which is truncated at 0 and 5. The family poverty ratio has about 10% missing

values. The other four covariates are fully observed.

The general health satisfaction outcome (Y ) is an ordinal variable with distinct values

1, 2, 3, 4, 5. We introduce a latent continuous variable Y ∗ to link the ordinal outcome to the

continuous space with support (−∞,+∞):

Y =



1 if Y ∗ < 1,

[Y ∗] if 1 ≤ Y ∗ ≤ 5,

5 if Y ∗ > 5.

where [·] represents rounding to the nearest integer. Since the family poverty ratio X[1] is a

continuous variable truncated at 0 and 5, we introduce another latent variable X∗[1] to link
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Table 2: Simulation results: point estimate (Monte Carlo mean of point estimates), true

variance (Monte Carlo variance of point estimates), relative bias of the variance estimator,

coverage and mean width of interval estimate using Rubin’s method and the proposed wild

bootstrap method under scenario (a) with missingness at random

Method τ̂n m Point est True var Relative Bias Coverage (%) Mean width (×102)

(×10) (×104) (%) for 95% CI for 95% CI

Rubin BS Rubin BS Rubin BS

Quantile Wald Quantile Wald

5 -10.0 35.8 -2.1 1.9 94.3 94.9 95.4 23.9 23.6 24.1

Regression 10 -10.0 34.9 -1.9 3.7 94.6 95.3 95.8 23.1 23.6 24.0

100 -10.0 33.8 -1.4 5.6 94.8 95.6 95.9 22.6 23.4 23.9

5 -10.0 68.0 25.8 -0.3 96.0 93.9 94.7 35.6 31.1 31.9

IPW 10 -10.0 66.3 27.4 0.3 96.3 94.2 94.6 34.9 30.8 31.6

100 -10.0 64.4 29.7 1.2 96.3 94.2 94.7 34.4 30.4 31.3

5 -10.0 36.6 3.0 -3.9 95.2 94.4 94.9 24.8 23.2 23.7

AIPW 10 -10.0 35.7 3.0 -2.7 94.9 94.5 95.0 24.0 23.1 23.5

100 -10.0 34.6 3.7 -1.1 95.3 94.7 95.3 23.5 22.9 23.4

5 -10.0 39.1 18.2 -4.5 96.5 94.4 95.0 27.5 23.9 24.4

Matching 10 -10.0 37.8 18.7 -3.5 96.5 94.5 95.1 26.6 23.7 24.2

100 -10.0 36.4 20.1 -2.1 96.9 94.4 95.0 26.0 23.4 23.9
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Table 3: Simulation results under scenario (b) with missingness not at random

Method τ̂n m Point est True var Relative Bias Coverage (%) Mean width (×102)

(×10) (×104) (%) for 95% CI for 95% CI

Rubin BS Rubin BS Rubin BS

Quantile Wald Quantile Wald

5 -10.0 34.5 -0.5 2.8 94.6 95.2 95.7 23.6 23.3 23.8

Regression 10 -10.0 33.6 0.9 4.4 94.8 95.4 95.7 22.9 23.2 23.7

100 -10.0 32.9 -0.1 5.6 94.8 95.5 96.0 22.5 23.1 23.6

5 -10.0 67.5 28.0 0.3 96.4 94.5 94.8 35.7 30.9 31.7

IPW 10 -10.0 65.6 30.6 1.3 96.7 94.6 95.0 35.0 30.6 31.4

100 -10.0 64.2 29.8 1.4 96.7 94.7 95.0 34.5 30.4 31.2

5 -10.0 35.5 5.0 -2.3 95.2 94.8 95.2 24.6 23.1 23.5

AIPW 10 -10.0 34.5 5.6 -0.7 95.5 94.9 95.5 23.9 22.9 23.4

100 -10.0 33.6 5.7 -0.5 95.5 95.1 95.4 23.4 22.8 23.2

5 -10.0 38.0 21.0 -3.5 96.9 94.8 95.4 27.5 23.7 24.2

Matching 10 -10.0 36.7 21.8 -2.1 96.9 95.0 95.5 26.5 23.5 24.0

100 -10.0 35.6 22.4 -1.1 97.0 94.9 95.3 25.9 23.2 23.7
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Table 4: Simulation results under scenario (c) when the true missing mechanism is missing

not at random but missingness at random is assumed

Method τ̂n m Point est True var Relative Bias Coverage (%) Mean width (×102)

(×10) (×104) (%) for 95% CI for 95% CI

Rubin BS Rubin BS Rubin BS

Quantile Wald Quantile Wald

5 -11.5 34.6 1.7 10.9 27.2 29.1 30.2 23.7 24.3 24.8

Regression 10 -11.5 33.8 1.8 12.3 25.6 24.1 24.6 23.2 24.1 24.6

100 -11.5 33.2 1.4 13.0 23.9 27.9 28.9 22.8 24.0 24.5

5 -12.0 130.1 31.5 1.1 66.1 54.5 53.7 46.3 39.1 40.5

IPW 10 -12.0 127.8 31.3 -1.4 64.9 53.1 51.9 45.6 38.6 40.0

100 -12.0 126.4 33.3 -1.8 64.7 52.1 50.9 45.4 38.2 39.6

5 -11.5 36.3 6.0 -0.7 31.0 27.5 28.6 24.7 23.5 24.0

AIPW 10 -11.5 35.5 5.8 0.2 29.0 26.5 27.8 24.1 23.3 23.8

100 -11.5 34.9 5.5 0.5 27.6 26.3 27.4 23.8 23.2 23.7

5 -11.6 38.7 26.2 -1.3 40.9 29.4 30.8 28.1 24.2 24.7

Matching 10 -11.6 37.5 26.6 -0.5 38.4 27.8 29.1 27.3 23.9 24.4

100 -11.6 36.6 26.7 -0.2 36.5 27.2 28.6 26.7 23.6 24.1
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Table 5: Simulation results under scenario (d) where both the outcome and confounders are

missing and missing not at random is assumed

Method τ̂n m Point est True var Relative Bias Coverage (%) Mean width (×102)

(×10) (×104) (%) for 95% CI for 95% CI

Rubin BS Rubin BS Rubin BS

Quantile Wald Quantile Wald

5 -10.0 35.6 -2.4 -1.5 94.6 94.7 95.2 23.7 23.2 23.7

Regression 10 -10.0 34.3 -0.9 0.7 94.9 95.0 95.7 23.1 23.0 23.5

100 -10.0 33.4 -0.5 2.2 95.0 95.3 95.7 22.6 22.9 23.4

5 -10.0 68.5 28.6 -2.7 96.3 94.2 94.7 36.6 30.8 31.6

IPW 10 -10.0 65.9 32.7 -0.8 96.7 94.5 94.9 35.6 30.4 31.3

100 -10.0 64.0 34.3 -0.2 97.3 94.5 95.1 35.2 30.1 30.9

5 -10.0 36.5 7.3 -3.9 95.5 94.4 94.9 25.4 23.2 23.7

AIPW 10 -10.0 34.9 9.7 -1.3 96.1 94.6 95.4 24.5 23.0 23.5

100 -10.0 33.8 10.2 0.1 96.1 94.9 95.3 23.9 22.8 23.3

5 -10.0 39.5 18.5 -4.7 96.6 94.1 94.6 27.8 24.0 24.5

Matching 10 -10.0 37.7 21.4 -2.6 97.1 94.5 95.0 26.8 23.7 24.2

100 -10.0 36.5 22.1 -1.5 97.2 94.8 95.6 26.2 23.5 24.0
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the recorded truncated family poverty ratio values to the full continuous space (−∞,+∞):

X[1] =



0 if X∗[1] < 0,

X∗[1] if 0 ≤ X∗[1] ≤ 5,

5 if X∗[1] > 5.

Accordingly, let X∗ include the latent family poverty ratio variable X∗[1] and the other four

variables. To facilitate imputation and estimation, we assume the latent outcome Y ∗ follows

a linear regression model, i.e., Y ∗(a) = X∗Tβa + ε(a), where ε(a) ∼ N (0, σ2
a) for a = 0, 1.

The treatment indicator follows Bernoulli{πA(X∗)} with πA(X∗) = Φ(X∗Tα). The missing

indicator follows Bernoulli{πR(X∗, A)} with πR(X∗, A) = Φ{(X∗, A)Tγ}, under which the

missingness of the family poverty ratio probably depend on the missing values themselves

but not the outcome variable (i.e., Assumption 8). Also, we assume the latent family poverty

ratio follows a linear regression model with the other covariates, i.e., X∗
RX

= XRX
η + εX ,

where X∗
RX

= X∗[1] represents the latent family poverty ratio and XR represents the other

four covariates, εX ∼ N (0, σ2
X). We have conducted model diagnoses in the supplementary

material and the diagnosis plots show that the proposed model fits the data well. Given the

outcome model and the covariate model, the missing values of the family poverty ratio can

be imputed by f(X∗
RX
| A,XRX

, Y, RX ; θ∗(j)) ∝ f(Y ∗ | X∗, A; θ∗(j))f(RX | X∗, A; θ∗(j))f(A |

X∗; θ∗(j))f(X∗
RX
| XRX

; θ∗(j)) given each posterior sample of the parameters θ∗(j). More

details about priors and posterior sampling are provided in the supplementary material.

For each imputed dataset, we consider the full sample point estimators of the ACE using

outcome regression, IPW, AIPW, and matching based on propensity score to reduce the

dimensionality of the matching variable (Abadie and Imbens, 2016). We compare Rubin’s

variance estimator and the proposed wild bootstrap variance estimator. Table 6 shows
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Table 6: Result for the ACE of education on general health satisfaction: point estimates, the

variance of point estimators, and 95% confidence interval estimated using Rubin’s method

and proposed wild bootstrap method.

Rubin BS

Method Point est Var est 95% CI Var est 95% CI

(×104) (×104) Wald

Regression -0.36 19 (-0.45,-0.27) 19 (-0.45,-0.27)

IPW -0.25 65 (-0.41,-0.10) 54 (-0.40,-0.11)

AIPW -0.27 32 (-0.38,-0.16) 31 (-0.38,-0.16)

Matching -0.25 40 (-0.37,-0.12) 28 (-0.35,-0.14)

that education has a significantly positive effect on the general health satisfaction. The

variances for the IPW estimator and the matching estimator estimated by Rubin’s method

are larger than the variances estimated by the wild bootstrap method, while the two methods

give similar results for the regression estimator and the AIPW estimator. This suggests

Rubin’s method works well for the regression estimator and the AIPW estimator but might

overestimate the variances of the IPW and matching estimators, which is consistent with

our observations in the simulation studies.

8. Conclusion

This paper establishes a unified inference framework for multiple imputation using martingale

which invokes the wild bootstrap inference for consistent variance estimation. Our framework

allows a wide class of asymptotically linear full sample estimators. We demonstrate its utility
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in estimating the ACE with missing values. The simulation results indicate the good finite

sample performance of the proposed method when MI adopts different full sample estimators

including the outcome regression, IPW, AIPW, and matching estimators. Our framework

works well when the missing mechanism is either MAR or MNAR.

Our framework can also be extended in the following directions. First, multiple imputa-

tion was originated for survey data, which often contain design weights (or sample weights)

to account for sample selection. If sampling weights are non-informative, the sample data

follow the population model, and therefore the imputation can be done by ignoring sampling

weights; whereas, if sampling weights are informative, the sample data distribution is differ-

ent from the population model, and therefore imputation must take into account sampling

weights. The full Bayesian imputation is difficult (if not impossible) to implement in this

case. To mitigate this problem, Kim and Yang (2017) and Wang et al. (2018) proposed an

approximate Bayesian computation technique, which can be used for multiple imputation in

complex sampling. It would be interesting to extend the martingale representation to this

setting in our future work. Second, in the current work, we assume that the imputer’s model

and the analyst’s model are the same and are correctly specified. Xie and Meng (2017)

argued that the uncongeniality of the imputer’s model and the analyst’s model is the rule

but not an exception. Their findings suggest that even both models are correctly specified,

if the imputation model is more saturate than the analysis model, the standard MI inference

may be invalid. In future work, we will extend our framework to this setting for consistent

inference allowing uncongeniality.
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