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Abstract
Causal inference concerns not only the average effect of
the treatment on the outcome but also the underlying
mechanism through an intermediate variable of inter-
est. Principal stratification characterizes such a mecha-
nism by targeting subgroup causal effects within prin-
cipal strata, which are defined by the joint potential
values of an intermediate variable. Due to the funda-
mental problem of causal inference, principal strata are
inherently latent, rendering it challenging to identify
and estimate subgroup effects within them. A line of
research leverages the principal ignorability assumption
that the latent principal strata are mean independent
of the potential outcomes conditioning on the observed
covariates. Under principal ignorability, we derive var-
ious nonparametric identification formulas for causal
effects within principal strata in observational studies,
which motivate estimators relying on the correct spec-
ifications of different parts of the observed-data distri-
bution. Appropriately combining these estimators yields
triply robust estimators for the causal effects within prin-
cipal strata. These triply robust estimators are consistent
if two of the treatment, intermediate variable and out-
come models are correctly specified, and moreover, they
are locally efficient if all three models are correctly spec-
ified. We show that these estimators arise naturally from
either the efficient influence functions in the semipara-
metric theory or the model-assisted estimators in the
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survey sampling theory. We evaluate different estima-
tors based on their finite-sample performance through
simulation and apply them to two observational studies.

K E Y W O R D S

noncompliance, principal stratification, sensitivity analysis, surrogate
endpoint, truncation by death

1 INTRODUCTION

Researchers are often interested in understanding the underlying causal mechanism from
the treatment to the outcome when an intermediate variable is present between them. This
requires proper adjustment for the intermediate variable—naively conditioning on its observed
value does not have a valid causal interpretation unless it is essentially randomized condi-
tional on the treatment and covariates (Rosenbaum, 1984). Frangakis and Rubin (2002) pro-
pose to estimate causal effects within principal strata, which are defined by the joint poten-
tial values of the intermediate variable under both treatment and control. Principal strata
act as pretreatment covariates, so the causal effects within them, often referred to as princi-
pal causal effects (PCEs), are conceptually the same as the standard subgroup causal effects.
PCEs are widely used in applied statistics to deal with noncompliance (Angrist et al., 1996;
Frumento et al., 2012; Mealli & Pacini, 2013), truncation by death (Ding et al., 2011; Rubin, 2006;
Wang et al., 2017), missing data (Frangakis & Rubin, 1999; Mattei et al., 2014), mediation (Elliott
et al., 2010; Gallop et al., 2009; Mattei & Mealli, 2011; Rubin, 2004) and surrogate evaluation
(Frangakis & Rubin, 2002; Gilbert & Hudgens, 2008; Huang & Gilbert, 2011; Jiang et al., 2016;
Li et al., 2010).

Due to the fundamental problem of causal inference, the two potential values of the interme-
diate variable are not simultaneously observable, rendering it challenging to identify and estimate
PCEs without additional assumptions. Angrist et al. (1996) establish the nonparametric identifi-
cation of one PCE, often called the complier average causal effect or the local average treatment
effect, under the monotonicity and the exclusion restriction (ER). The monotonicity assumes
that the treatment changes the intermediate variable only in one direction for any unit, and the
ER assumes that the treatment affects the outcome only through the intermediate variable. The
identification result of Angrist et al. (1996) has motivated various estimation methods and effi-
ciency theories (Abadie, 2003; Frölich, 2007; Ogburn et al., 2015; Tan, 2006). Although the ER is
a standard assumption, it is not plausible when the treatment affects the outcome through path-
ways other than the intermediate variable. Hirano et al. (2000) give an example of the violation
of the ER in a randomized experiment with noncompliance. Moreover, in mediation, truncation
by death, and principal surrogate evaluation problems, testing the ER is a scientific question of
interest. Thus, we cannot invoke ER a priori. Without the ER, Zhang et al. (2008) and Imai (2008)
derive the large sample bounds on the PCEs, and Li et al. (2010), Zigler and Belin (2012), and
Schwartz et al. (2011) perform model-based Bayesian analyses. Unfortunately, the bounds might
be too wide to be informative, whereas the Bayesian analyses could be sensitive to models and
priors. Assuming Normal linear outcome models within principal strata, Zhang et al. (2009) and
Frumento et al. (2012) estimate the PCEs using the likelihood approach, but these analyses can
be sensitive to the modelling assumptions and can be unstable even if the models are correctly
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JIANG et al. 1425

specified due to the mixture distributions of the observed data (Feller et al., 2022). Auxiliary
covariates or secondary outcomes satisfying additional conditional independence assumptions
can help to improve identification and estimation of the PCEs (e.g. Ding et al., 2011; Jiang & Ding,
2021; Jiang et al., 2016; Mattei & Mealli, 2011; Mattei et al., 2013; Mealli & Pacini, 2013; Yang &
Small, 2016), but those additional assumptions may be hard to justify without prior knowledge.

We focus on an alternative nonparametric identification strategy under principal ignorability,
an assumption in parallel with ignorability for estimating the average causal effect in obser-
vational studies (Rosenbaum & Rubin, 1983). Principal ignorability assumes that the observed
covariates are adequate for controlling for confounding between the principal strata and outcome.
This identification strategy has been popular in applied statistics (Egleston et al., 2009; Feller et al.,
2017; Follmann, 2000; Hayden et al., 2005; Hill et al., 2002; Jo & Stuart, 2009; Jo et al., 2011; Stuart
& Jo, 2015).

We develop a statistical methodology for estimating the PCEs in both randomized experiments
and observational studies under principal ignorability. We first establish three identification for-
mulas for each PCE. These formulas motivate three estimators for each PCE, which rely on correct
specifications of two of the following three models:

1. the model of the treatment conditional on the covariates, called the treatment probability;
2. the model of the intermediate variable conditional on the treatment and covariates, called the

principal score with a little abuse of terminology;
3. the model of the mean of the outcome conditional on the treatment, intermediate variable and

covariates, called the outcome mean.

The existence of multiple estimators for the same parameter hints at the possibility of a com-
bined estimator for each PCE. To guide the construction of principled estimators, we derive the
efficient influence functions (EIFs; Bickel et al., 1993) for the PCEs under the nonparametric
model. These EIFs motivate novel estimators for PCEs based on the treatment probability, princi-
pal score and outcome mean. Interestingly, the novel estimators are triply robust in that they are
consistent and asymptotically Normal if any two of the three models in (a)–(c) are correctly speci-
fied, and locally efficient if all three models are correctly specified. These results extend the classic
doubly robust estimators for the average causal effect in observational studies (Bang & Robins,
2005) and are similar in spirit to the triply robust estimators in other contexts of causal inference
(Shi et al., 2020; Tchetgen Tchetgen & Shpitser, 2012; Wang & Tchetgen Tchetgen, 2018). The new
triply robust estimators offer additional protection against model misspecification compared to
other non-robust estimators. Finally, we establish an equivalence relationship between the triply
robust estimation and the model-assisted estimation, extending the existing results on the aver-
age causal effect in observational studies (Kang & Schafer, 2007; Little & An, 2004; Lumley et al.,
2011; Robins & Rotnitzky, 1998).

Previously, Ding and Lu (2017) establish some preliminary results for estimating the PCEs in
randomized experiments including an identification formula based on weighting and the corre-
sponding estimators for each PCE with and without adjusting for covariates. Their model-assisted
estimator adjusts for covariates but is neither doubly robust nor semiparametrically efficient.
So even in randomized experiments, the theory for estimating the PCEs is incomplete. We
discuss a broader class of treatment assignments in both randomized experiments and uncon-
founded observational studies, providing two additional identification formulas for each PCE and
proposing more principled estimators based on the EIFs. Our new estimators outperform those
in Ding and Lu (2017) and we recommend using them in data analyses.
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1426 JIANG et al.

The rest of this paper proceeds as follows. Section 2 introduces notation and assumptions for
identification. Section 3 presents three different identification formulas and the corresponding
estimators of the PCEs. Section 4 derives the EIFs, proposes novel estimators and shows the triple
robustness of the estimators. Section 5 uses simulation to evaluate the finite-sample properties of
the estimators, and Section 6 applies the novel estimators to two observational studies. Section 7
concludes. The supplementary material contains the technical details including some extensions
and the proofs.

2 NOTATION AND ASSUMPTIONS FOR PRINCIPAL
STRATIFICATION

Let Zi ∈ {0, 1} be the binary treatment, Si ∈ {0, 1} the binary intermediate variable, Yi the out-
come and Xi a vector of pretreatment covariates for unit i = 1, … , n. We adopt the potential
outcomes framework under the Stable Unit Treatment Value Assumption, and let Siz and Yiz be
the potential values of the intermediate variable and outcome if unit i were to receive treatment
condition z (z = 0, 1). The observed intermediate variable and outcome are thus Si = ZiSi1 + (1 −
Zi)Si0 and Yi = ZiYi1 + (1 − Zi)Yi0. Assume {Zi, Si1, Si0,Yi1,Yi0,Xi ∶ i = 1, … ,n} are independent
and identically distributed. Thus, the observed {Zi, Si,Yi,Xi ∶ i = 1, … ,n} are also independent
and identically distributed. For simplicity, we drop the subscript i when no confusion arises.

Frangakis and Rubin (2002) use the joint potential values of the intermediate variable to define
the principal stratification variable, U = (S1, S0). For a binary intermediate variable, U can be
(0, 0), (1, 0), (0, 1), and (1, 1). For the ease of exposition, we will simplify (S1, S0) as S1S0 throughout
the paper. Define the PCE as the average causal effect within a principal stratum:

𝜏s1s0 = E(Y1 − Y0|U = s1s0), (s1s0 = 00, 10, 11, 01).

The scientific meanings of the PCEs vary with the contexts. We review four canonical examples
below.

Example 1 (Noncompliance). In noncompliance problems, Z is the treatment assigned, S is the
treatment received and Y is the outcome. The principal strata U = (0, 0), (1, 0), (0, 1), (1, 1)
are referred to as never-takers, compliers, always-takers and defiers respectively. Angrist
and Imbens (1994) and Angrist et al. (1996) propose to estimate 𝜏10, the complier average
causal effect, which is also called the local average treatment effect.

Example 2 (Truncation by death). In truncation-by-death problems, Z is the treatment, S is the
survival status, and Y is often a measure of the quality of life. Rubin (2006) points out
that the only well-defined causal effect is 𝜏11, which characterizes the treatment effect for
patients who would survive regardless of the treatment. Other PCEs are not well defined
because the quality of life is defined only for survived patients.

Example 3 (Mediation). In mediation analysis, S is the mediator that lies on the causal pathway
from the treatment Z to the outcome Y . The subgroup effects 𝜏11 and 𝜏00 can assess the direct
effect of the treatment on the outcome because the treatment does not change the mediator
in these two strata (Gallop et al., 2009; Mattei & Mealli, 2011; Rubin, 2004). In contrast, the
subgroup effects 𝜏10 and 𝜏01 are less interpretable because they consist of both direct and
indirect effects (VanderWeele, 2011).

 14679868, 2022, 4, D
ow

nloaded from
 https://rss.onlinelibrary.w

iley.com
/doi/10.1111/rssb.12538 by N

orth C
arolina State U

niversity, W
iley O

nline L
ibrary on [27/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



JIANG et al. 1427

Example 4 (Surrogate evaluation). In surrogate evaluation problems, S is the surrogate candidate
for the effect of the treatment Z on the outcome Y . Frangakis and Rubin (2002) pro-
pose the principal surrogate criterion based on ‘causal necessity’. It requires that Z
affects Y only if Z affects S, that is, 𝜏11 = 𝜏00 = 0. Gilbert and Hudgens (2008) argue
that a valid surrogate should also satisfy ‘causal sufficiency’. It requires that if the
treatment effect on the surrogate is non-zero, then the treatment effect on the out-
come is also non-zero, that is, 𝜏10 ≠ 0 and 𝜏01 ≠ 0. See Jiang et al. (2016) for a related
discussion.

We will focus on the setting with treatment ignorability for both the intermediate variable and
outcome, extending the classic treatment ignorability in observational studies.

Assumption 1 (Treatment ignorability). Z ⫫ (S0, S1,Y0,Y1)|X .

Assumption 1 rules out latent confounding between the treatment and intermediate
variable and that between the treatment and outcome. It holds by the design of a ran-
domized experiment, where the treatment is independent of all the potential values and
covariates, that is, Z ⫫ (S0, S1,Y0,Y1,X); Ding and Lu (2017) focus on this special case.
It also holds by the design of a stratified experiment based on a discrete X , where the
treatment is independent of all the potential values within each stratum of X . In obser-
vational studies, its plausibility relies on whether or not the observed covariates include
all the confounders that affect the treatment as well as the outcome and intermediate
variable.

Since we do not observe S1 and S0 simultaneously, U is not directly observable. As a result, the
PCEs are not identifiable without additional assumptions. We impose the standard monotonicity
assumption throughout the paper, which helps to identify the distribution of U, even though the
individual Ui’s are not observed for all units.

Assumption 2 (Monotonicity). S1 ≥ S0.

Assumption 2 requires that the treatment has a non-negative impact on the intermediate
variable for all units, which rules out stratum U = 01. It holds automatically when S0 = 0,
for example, in one-sided noncompliance problems (Sommer & Zeger, 1991) and vaccine trials
without immune response under control (Follmann, 2006).

Under Assumptions 1 and 2, two nonparametric identification strategies exist for the PCEs,
relying on different additional assumptions. We review them below.

2.1 Strategy one based on exclusion restriction

The first strategy assumes the ER:

𝜏11 = 𝜏00 = 0. (1)

A stronger version of the ER is Y1 = Y0 for U = 11 or 00. Under Assumptions 1, 2, and Equation (1),
Angrist and Imbens (1994) and Angrist et al. (1996) establish the nonparametric identification of
the complier average causal effect

𝜏10 =
E(Y |Z = 1) − E(Y |Z = 0)
E(S|Z = 1) − E(S|Z = 0)

.
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1428 JIANG et al.

By definition, the PCE 𝜏10 represents the effect of the treatment assigned for compliers. More-
over, for compliers with U = 10, the treatment assigned is identical to the treatment received, so
𝜏10 also measures the effect of the treatment received. This formulation of the noncompliance
problem is due to Frangakis and Rubin (2002) where the potential outcome Yz corresponds to the
treatment assigned. It corresponds to the intervention Z in the actual experiment without assum-
ing that S is another hypothetical intervention. However, it might cause notational incoherence
with Angrist and Imbens (1994) and Angrist et al. (1996). Angrist and Imbens (1994) index the
potential outcome Ys by the treatment received, and thus enforce the ER assumption automat-
ically; Angrist et al. (1996) index the potential outcome Yzs by both the treatment assigned and
received, and reduce it to Ys under the ER assumption. These different formulations do not cause
fundamental differences. An advantage of Frangakis and Rubin (2002)’s formulation is its gener-
ality to deal with other problems with intermediate variables. In Example 1 with noncompliance,
it allows us to assess the plausibility of the ER by estimating 𝜏11 and 𝜏00; see Section 6.1 for more
details.

The ER requires that the treatment has no direct effect on the outcome, which is
sometimes implausible in open-label randomized experiments. More importantly, it can-
not be invoked in problems where 𝜏00 and 𝜏11 are the quantities of interest, such as
truncation by death in Example 2, mediation in Example 3, and surrogate evaluation in
Example 4.

Without the ER, the PCEs are not identifiable. Under weak assumptions, the large-sample
bounds on the PCEs are often not informative (Imai, 2008; Zhang et al., 2008). In contrast,
Bayesian methods often require specifying strong mixture model assumptions and prior distribu-
tions (Li et al., 2010; Schwartz et al., 2011; Zigler & Belin, 2012). They are not easy to implement
and can be numerically unstable in practice (Feller et al., 2022). Due to these limitations, we focus
on another approach assuming principal ignorability.

2.2 Strategy two based on principal ignorability

The principal ignorability can be viewed as the analogue of the treatment ignorability assumption
in unconfounded observational studies.

Assumption 3 (Principal ignorability). E(Y1|U = 11,X) = E(Y1|U = 10,X) and E(Y0|U =
00,X) = E(Y0|U = 10,X).

Assumption 3 requires that the expectations of the potential outcomes do not vary across prin-
cipal strata conditional on the covariates. It is widely used in applied statistics (Follmann, 2000;
Hill et al., 2002; Jo & Stuart, 2009; Jo et al., 2011; Stuart & Jo, 2015). Under Assumptions 1–2,
Assumption 3 is equivalent to

E(Y1|U = 11,Z = 1, S = 1,X) = E(Y1|U = 10,Z = 1, S = 1,X), (2)

E(Y0|U = 00,Z = 0, S = 0,X) = E(Y0|U = 10,Z = 0, S = 0,X). (3)

The observed stratum (Z = 1, S = 1) is a mixture of two principal strata U = 11, 10. There-
fore, Equation (2) means that within the observed stratum (Z = 1, S = 1), the expecta-
tion of the potential outcome Y1 does not vary across the two principal strata conditional
on the covariates. So the conditional expectations in Equation (2) simplify to the observable
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JIANG et al. 1429

conditional expectation E(Y |Z = 1, S = 1,X). Similarly, Equation (3) means that within the
observed stratum (Z = 0, S = 0), the two principal strata U = 00, 10 are ignorable for the expec-
tation of the potential outcome Y0 conditional on the covariates. So the conditional expectations
in Equation (3) simplify to the observable conditional expectation E(Y |Z = 0, S = 0,X). Intu-
itively, principal ignorability simplifies a latent mixture problem to an observed mixture problem.
With this assumption, we can treat the subpopulation (Z = z, S = s) as a mixture of strata
defined by the observed covariates, which is easier to deal with than a mixture of latent principal
strata.

We start with Assumptions 2 and 3 because they allow for deriving simple identifica-
tion formulas and easy-to-implement estimators. These estimators are numerically stable and
statistically robust. They can be benchmark estimators in data analyses. Nevertheless, their
plausibility cannot be validated by the observed data, so they should be made with cau-
tion. To supplement the theory under Assumptions 2 and 3, we also propose corresponding
sensitivity analysis techniques for the potential violations of these assumptions. Due to the
space limit, we include the theoretical results and numerical examples in the supplementary
material.

2.3 Principal ignorability and sequential ignorability in mediation
analysis

Before giving the nonparametric identification formulas of the PCEs based on principal
ignorability, we comment on its relationship with a commonly used assumption in medi-
ation analysis. We also make a brief comparison of principal stratification and mediation
analysis.

A stronger version of Assumption 3 is Yz ⫫ S1−z|(Sz,X) for z = 0, 1. It assumes that con-
ditional on the covariates, the potential outcome depends only on the potential intermedi-
ate variable under the same treatment condition, but not the one under a different treat-
ment condition. Importantly, principal ignorability is different from the sequential ignorabil-
ity between the intermediate variable and the outcome, which is a common assumption in
mediation analysis (Imai et al., 2010; Pearl, 2001; Tchetgen Tchetgen & Shpitser, 2012). In
particular, the sequential ignorability assumes away the dependence between the potential
outcome and the potential intermediate variable given the covariates, while principal ignor-
ability allows for such dependence but rules out the dependence between the potential out-
come and intermediate variable under different treatment conditions. Hence, the sequential
ignorability and principal ignorability focus on different relationships between the poten-
tial outcome and the potential intermediate variable and thus do not imply each other.
Forastiere et al. (2018) propose a generalized strong principal ignorability and show that under
monotonicity, it is equivalent to the sequential ignorability. Their definition does not imply
Assumption 3, and thus it is essentially different from the principal ignorability used in the
literature.

In general, principal stratification and mediation analysis can be conceptually different. Prin-
cipal stratification does not require that S is a well-defined intervention as in Examples 2 and 4. In
contrast, traditional mediation analysis requires that S is a well-defined intervention on the causal
pathway from the treatment to the outcome. VanderWeele (2011) points out this issue, whereas
Robins et al. (2020) attempt to relax this assumption with an alternative approach to mediation
analysis.
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1430 JIANG et al.

3 NONPARAMETRIC IDENTIFICATION AND
ESTIMATION

3.1 Identification formulas

To simplify the exposition, define

𝜋(X) = P(Z = 1|X), eu(X) = P(U = u|X), 𝜇zs(X) = E(Y |Z = z, S = s,X)

for u = 10, 00, 11 and z, s = 0, 1. The 𝜋(X) is the treatment probability given the covariates,
also known as the propensity score. The eu(X) is the principal score which equals the proportion
of principal stratum u given the covariates. The 𝜇zs(X) is the mean of the outcome within the
observed group (Z = z, S= s) given the covariates. Let 𝜋 = E{𝜋(X)} = P(Z = 1) and eu = E{eu(X)}
denote the marginalized treatment probability and principal score over the distribution of the
covariates respectively. Thus, 𝜋 represents the proportion of treated units and eu represents the
proportion of units with U = u.

Under Assumption 2, Table 1 shows the relationship between the observed strata defined by
(Z, S) and the principal strata. So under Assumptions 1 and 2, the principal scores are identified
by

e10(X) = p1(X) − p0(X), e00(X) = 1 − p1(X), e11(X) = p0(X),

where pz(X) = P(S = 1|Z = z,X) is the probability of the intermediate variable conditional on the
treatment and covariates. Analogously, the proportions of principal strata are identified by

e10 = p1 − p0, e00 = 1 − p1, e11 = p0,

where pz = E{pz(X)} is the marginalized probability of the intermediate variable over the
distribution of the covariates. Due to the one-to-one mapping between {p1(X), p0(X)} and
{e11(X), e00(X), e10(X)}, we call both sets the principal score, and the exact meaning should be
clear from the context. The following theorem provides three identification formulas for each
PCE.

Theorem 1 (Nonparametric identification). Suppose that Assumptions 1–3 hold, eu > 0 for
u = 10, 00, 11, and 0 < 𝜋(x) < 1 for all x in the support of X . The following identification
formulas hold for the PCEs.

(a) Based on the treatment probability and principal score,

𝜏10 = E

{
e10(X)
p1 − p0

S
p1(X)

Z
𝜋(X)

Y
}

− E

{
e10(X)
p1 − p0

1 − S
1 − p0(X)

1 − Z
1 − 𝜋(X)

Y
}

,

T A B L E 1 Principal strata in the observed strata defined by (Z, S) under monotonicity

S = 0 S = 1

Z = 0 U ∈ {00, 10} U = 11

Z = 1 U = 00 U ∈ {11, 10}

 14679868, 2022, 4, D
ow

nloaded from
 https://rss.onlinelibrary.w

iley.com
/doi/10.1111/rssb.12538 by N

orth C
arolina State U

niversity, W
iley O

nline L
ibrary on [27/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



JIANG et al. 1431

𝜏00 = E

{
1 − S
1 − p1

Z
𝜋(X)

Y
}

− E

{
e00(X)
1 − p1

1 − S
1 − p0(X)

1 − Z
1 − 𝜋(X)

Y
}

,

𝜏11 = E

{
e11(X)

p0

S
p1(X)

Z
𝜋(X)

Y
}

− E

{
S
p0

1 − Z
1 − 𝜋(X)

Y
}

.

(b) Based on the treatment probability and outcome mean,

𝜏10 = E

[
SZ∕𝜋(X) − S(1 − Z)∕{1 − 𝜋(X)}

p1 − p0
{𝜇11(X) − 𝜇00(X)}

]

,

𝜏00 = E

[
1 − SZ∕𝜋(X)

1 − p1
{𝜇10(X) − 𝜇00(X)}

]

,

𝜏11 = E

[
S(1 − Z)∕{1 − 𝜋(X)}

p0
{𝜇11(X) − 𝜇01(X)}

]

.

(c) Based on the principal score and outcome mean,

𝜏10 = E

[
p1(X) − p0(X)

p1 − p0
{𝜇11(X) − 𝜇00(X)}

]

,

𝜏00 = E

[
1 − p1(X)

1 − p1
{𝜇10(X) − 𝜇00(X)}

]

,

𝜏11 = E

[
p0(X)

p0
{𝜇11(X) − 𝜇01(X)}

]

.

Theorem 1 gives identification formulas for the PCEs based on three different combinations of
the likelihood components. Theorem 1(a) is an extension of Ding and Lu (2017) with an additional
weighting term based on the inverse of the treatment probability, which is also mentioned by
Jiang and Ding (2021). Theorem 1(b) and (c) are two additional sets of identification formulas.

Below we give some intuition based on only 𝜏10 since the discussion for the other two PCEs
is similar. Theorem 1(a) expresses 𝜏10 as the difference between weighted averages of the out-
come under the treatment and control. The weights in the formula consist of two parts: Z/𝜋(X)
and (1 − Z)/{1 − 𝜋(X)} correspond to the treatment probability; e10(X)S∕p1(X) and e10(X)(1 −
S)∕{1 − p0(X)} correspond to the principal score. Under Assumptions 1 and 2, the conditional
expectations of the weights equal

E

{
e10(X)
p1 − p0

S
p1(X)

Z
𝜋(X)

|X
}

= E

{
e10(X)
p1 − p0

1 − S
1 − p0(X)

1 − Z
1 − 𝜋(X)

|X
}

= e10(X)
e10

, (4)

that is, the conditional probability of principal stratum U = 10 divided by its unconditional
probability.

Theorem 1(b) expresses 𝜏10 in terms of the treatment probability and outcome mean. Under
principal ignorability, the difference between the outcome means equals

𝜇11(X) − 𝜇00(X) = E(Y1|U = 10,X) − E(Y0|U = 10,X) = E(Y1 − Y0|U = 10,X),

which is the PCE for stratum U = 10 conditional on X . Under Assumptions 1 and 2, the con-
ditional expectation of the unnormalized weight equals E[SZ∕𝜋(X) − S(1 − Z)∕{1 − 𝜋(X)}|X] =
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1432 JIANG et al.

e10(X). Dividing this by the normalizing constant, p1 − p0 = e10, yields e10(X)∕e10, which, by Bayes’
Theorem, is the density ratio of X conditional and unconditional on U = 10. Therefore, the iden-
tification formula for 𝜏10 in Theorem 1(b) averages the conditional PCE over the distribution of X
given U = 10, which gives the PCE within stratum U = 10.

Theorem 1(c) expresses 𝜏10 in terms of the principal score and outcome mean. Compared with
Theorem 1(b), the treatment probability weighting is replaced with the principal score weight-
ing {p1(X) − p0(X)}∕(p1 − p0). Under Assumptions 1 and 2, the weight again equals e10(X)∕e10.
Therefore, similar to the discussion of Theorem 1(b), Theorem 1(c) identifies 𝜏10 by averaging the
conditional PCE over the distribution of X given U = 10.

3.2 Estimators based on the nonparametric identification formulas

For each PCE, the three identification formulas in Theorem 1 motivate three estimators, which
require correct specifications of different parts of the observed-data distribution. For descriptive
convenience, we introduce additional notation. Let Pn denote the empirical average, for example,
Pnh(V) = n−1∑n

i=1h(Vi) for any h(V). Let 𝜋 = PnZ be the moment estimator of 𝜋. Let 𝜋(X ; 𝛼) be
a working parametric model for the treatment probability 𝜋(X), pz(X; 𝛾) a working parametric
model for the principal score pz(X) for z = 0, 1, and 𝜇zs(X; 𝛽) a working parametric model for the
outcome mean 𝜇zs(X) for z, s= 0, 1. Because eu(X) has a one-to-one mapping to pz(X), we use e(X ;
𝛾) to denote a working parametric model for eu(X). We focus on parametric models here and will
consider more flexible estimation strategies later. Based on the maximum likelihood estimation
or the method of moments, we obtain estimators 𝛼, 𝛾̂ and ̂

𝛽. Assume they have probability lim-
its 𝛼∗, 𝛾∗ and 𝛽∗ respectively. We use with subscripts ‘tp’, ‘ps’ and ‘om’ to denote models with
the correct specification of the treatment probability, principal score and outcome mean respec-
tively. Therefore, undertp, we have 𝜋(X; 𝛼∗) = 𝜋(X); underps, we have pz(X; 𝛾∗) = pz(X) and
eu(X; 𝛾∗) = eu(X) for z = 0, 1 and u = 10, 00, 11; under om, we have 𝜇zs(X; 𝛽∗) = 𝜇zs(X) for z,
s = 0, 1. In addition, we use ‘+’ in the subscript to indicate that more than one model is correctly
specified. For example,ps+om denotes the model with correctly specified pz(X; 𝛾) and 𝜇zs(X; 𝛽).
We also use the union notation from the standard set theory to denote the correct specification
of at least one model, for example, tp ∪ps+om denotes the model with correctly specified
𝜋(X ; 𝛼) or {pz(X; 𝛾), 𝜇zs(X; 𝛽)}.

To obtain the estimators based on Theorem 1, we need to replace the components in
the identification formulas with their estimated counterparts, and the expectations with the
empirical averages. We use {𝜋(X; 𝛼), pz(X; 𝛾̂), 𝜇zs(X; ̂𝛽)} to denote the estimated version of
{𝜋(X; 𝛼), pz(X; 𝛾), 𝜇zs(X; 𝛽)}. For p1 and p0, we can simply use Pn{p1(X; 𝛾̂)} and Pn{p0(X; 𝛾̂)} as
the estimators, which are consistent underps. Moreover, the doubly robust estimators (Bang &
Robins, 2005),

p̂1 = Pn

[
Z{S − p1(X; 𝛾̂)}

𝜋(X; 𝛼)
+ p1(X; 𝛾̂)

]

, p̂0 = Pn

[
(1 − Z){S − p0(X; 𝛾̂)}

1 − 𝜋(X; 𝛼)
+ p0(X; 𝛾̂)

]

,

improve them, which are consistent for p1 and p0 undertp ∪ps.
The identification formulas in Theorem 1(a) motivate the following weighting estimators

based on the treatment probability and principal score.

Example 5 The treatment probability–principal score (tp-ps) estimators are
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JIANG et al. 1433

𝜏10,tp−ps = Pn

{
e10(X; 𝛾̂)
p̂1 − p̂0

S
p1(X; 𝛾̂)

Z
𝜋(X; 𝛼)

Y − e10(X; 𝛾̂)
p̂1 − p̂0

1 − S
1 − p0(X; 𝛾̂)

1 − Z
1 − 𝜋(X; 𝛼)

Y
}

,

𝜏00,tp−ps = Pn

{
1 − S
1 − p̂1

Z
𝜋(X; 𝛼)

Y − e00(X; 𝛾̂)
1 − p̂1

1 − S
1 − p0(X; 𝛾̂)

1 − Z
1 − 𝜋(X; 𝛼)

Y
}

,

𝜏11,tp−ps = Pn

{
e11(X; 𝛾̂)

p̂0

S
p1(X; 𝛾̂)

Z
𝜋(X; 𝛼)

Y − S
p̂0

1 − Z
1 − 𝜋(X; 𝛼)

Y
}

.

The weighting estimators in Example 5 involve the inverse of the treatment probability. Thus,
they may be unstable if some estimated treatment probabilities are close to zero or one. A strategy
to mitigate this issue is to stabilize the estimators by normalizing the weights (Hernán et al., 2001).
For example, the stabilized weighting estimator of 𝜏11 is

𝜏

′
11,tp−ps = Pn

{

e11(X; 𝛾̂)
S

p1(X; 𝛾̂)
Z

𝜋(X; 𝛼)
Y
}/

Pn

{

e11(X; 𝛾̂)
S

p1(X; 𝛾̂)
Z

𝜋(X; 𝛼)

}

− Pn

{
s(1 − Z)

1 − 𝜋(X; 𝛼)
Y
}/

Pn

{
s(1 − Z)

1 − 𝜋(X; 𝛼)

}

.

The stabilized weighting estimators for 𝜏10 and 𝜏00 have similar forms. The estimators 𝜏u,tp-ps are
consistent undertp+ps, that is, correct specifications of the treatment probability and principal
score. However, if either model is incorrectly specified, they are inconsistent.

The identification formulas in Theorem 1(b) motivate the following estimators based on the
treatment probability and the outcome mean.

Example 6 The treatment probability–outcome mean (tp-om) estimators are

𝜏10,tp-om = Pn

[
ZS∕𝜋(X; 𝛼) − (1 − Z)S∕{1 − 𝜋(X; 𝛼)}

p̂1 − p̂0

{

𝜇11(X; ̂𝛽) − 𝜇00(X; ̂𝛽)
}]

,

𝜏00,tp-om = Pn

[
Z(1 − S)∕𝜋(X; 𝛼)

1 − p̂1

{

𝜇10(X; ̂𝛽) − 𝜇00(X; ̂𝛽)
}]

,

𝜏11,tp-om = Pn

[
(1 − Z)S∕{1 − 𝜋(X; 𝛼)}

p̂0

{

𝜇11(X; ̂𝛽) − 𝜇01(X; ̂𝛽)
}]

.

Similar to the estimators in Example 5, we can also obtain the stabilized weighting version of
the estimators in Example 6. For example, the stabilized version of 𝜏11,tp-om is

𝜏

′
11,tp-om = Pn

[
(1 − Z)S

1 − 𝜋(X; 𝛼)

{

𝜇11(X; ̂𝛽) − 𝜇01(X; ̂𝛽)
}]/

Pn

{
(1 − Z)S

1 − 𝜋(X; 𝛼)

}

.

The estimators 𝜏u,tp-om are consistent undertp+om.
The identification formulas in Theorem 1(c) motivate the following estimators based on the

principal score and outcome mean.

Example 7 The principal score–outcome mean (ps-om) estimators are

𝜏10,ps−om = Pn

[
p1(X; 𝛾̂) − p0(X; 𝛾̂)

p̂1 − p̂0

{

𝜇11(X; ̂𝛽) − 𝜇00(X; ̂𝛽)
}]

,

𝜏00,ps−om = Pn

[
1 − p1(X; 𝛾̂)

1 − p̂1

{

𝜇10(X; ̂𝛽) − 𝜇00(X; ̂𝛽)
}]

,
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1434 JIANG et al.

𝜏11,ps−om = Pn

[
p0(X; 𝛾̂)

p̂0

{

𝜇11(X; ̂𝛽) − 𝜇01(X; ̂𝛽)
}]

.

The estimators 𝜏u,ps−om are consistent underps+om.

4 FROM THE EIFS TO TRIPLY ROBUST ESTIMATORS

Theorem 1 presents three identification formulas, which motivate infinitely many estimators for
each PCE. This calls for the construction of more principled estimators. In this section, we derive
the EIF for each PCE to motivate a new estimator. The EIFs below are derived under the non-
parametric model of the observed-data distribution, which is a standard strategy in the literature.
In particular, the derivation ignores the restrictions implied by the monotonicity assumption (cf.
Frölich, 2007; Hong & Nekipelov, 2010). For simplicity, we use the terminology ‘EIF’ throughout.

4.1 EIFs and the resulting estimators

Because the PCEs have a ratio form 𝜏u = E{(Y1 − Y0)1(U = u)}∕P(U = u), we will first define a
general quantity to represent the EIFs of the numerators and denominators, and then combine
them to have the EIFs for the PCEs.

Define the following quantity for any function f (Y , S, X):

𝜓f (Yz ,Sz ,X) =
1(Z = z)[ f (Y , S,X) − E{ f (Y , S,X)|X ,Z = z}]

P(Z = z|X)
+ E{ f (Y , S,X)|X ,Z = z}. (5)

Under Assumption 1, we can show that E{𝜓f (Yz ,Sz ,X)} = E{f (Yz, Sz,X)}. In fact, 𝜓f (Yz ,Sz ,X) −
E{f (Yz, Sz,X)} is the EIF for E{f (Yz, Sz,X)}; see Lemma S5 in the supplementary material. With
f (Y , S, X) = S, Equation (5) reduces to

𝜓Sz =
1(Z = z){S − pz(X)}

P(Z = z|X)
+ pz(X),

and 𝜓Sz − E(Sz) is the EIF for E(Sz). This reduces to a standard result in observational studies
(Hahn, 1998), which is the foundation for constructing the doubly robust estimator for E(Sz)
(Bang & Robins, 2005). With f (Y , S, X) = YS and z = 0, Equation (5) reduces to

𝜓Y0S0 =
1(Z = 0){YS − 𝜇01(X)p0(X)}

1 − 𝜋(X)
+ 𝜇01(X)p0(X),

and 𝜓Y0S0 − E(Y0S0) is the EIF for E(Y0S0), which equals E(Y0|U = 11)P(U = 11) because S0 = 1
is equivalent to U = 11 under monotonicity. Based on the𝜓 notation in Equation (5), the following
theorem gives the EIFs for the PCEs.

Theorem 2 (EIFs). Suppose 𝜏u’s are identified in Theorem 1. The EIF for 𝜏10 is 𝜙10 = {𝜙1,10 −
𝜙0,10 − 𝜏10(𝜓S1 − 𝜓S0)}∕(p1 − p0), where

𝜙1,10 =
e10(X)
p1(X)

𝜓Y1S1 − 𝜇11(X)
{

𝜓S0 −
p0(X)
p1(X)

𝜓S1

}

,
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JIANG et al. 1435

𝜙0,10 =
e10(X)

1 − p0(X)
𝜓Y0(1−S0) − 𝜇00(X)

{

𝜓1−S1 −
1 − p1(X)
1 − p0(X)

𝜓1−S0

}

.

The EIF for 𝜏00 is 𝜙00 =
(
𝜙1,00 − 𝜙0,00 − 𝜏00𝜓1−S1

)
∕(1 − p1), where

𝜙1,00 = 𝜓Y1(1−S1), 𝜙0,00 =
e00(X)

1 − p0(X)
𝜓Y0(1−S0) + 𝜇00(X)

{

𝜓1−S1 −
1 − p1(X)
1 − p0(X)

𝜓1−S0

}

.

The EIF for 𝜏11 is 𝜙11 =
(
𝜙1,11 − 𝜙0,11 − 𝜏11𝜓S0

)
∕p0, where

𝜙1,11 =
e11(X)
p1(X)

𝜓Y1S1 + 𝜇11(X)
{

𝜓S0 −
p0(X)
p1(X)

𝜓S1

}

, 𝜙0,11 = 𝜓Y0S0 .

From Theorem 2, the semiparametric efficiency bounds for the PCEs are E(𝜙2
u) for

u = 10, 00, 11 (Bickel et al., 1993). The EIFs have mean zero, so we can obtain another set of
identification formulas by solving E(𝜙u) = 0.

Corollary 1 Under Assumptions 1–3,

𝜏10 =
E(𝜙1,10 − 𝜙0,10)
E(𝜓S1 − 𝜓S0)

, 𝜏00 =
E(𝜙1,00 − 𝜙0,00)

E(1 − 𝜓S1)
, 𝜏11 =

E(𝜙1,11 − 𝜙0,11)
E(𝜓S0)

. (6)

As a sanity check of Equation (6), we can verify that the denominator of 𝜏u in Equation (6)
equals P(U = u), and the numerator equals E{(Y1 − Y0)1(U = u)}, for u = 10, 00, 11. Based on
Corollary 1, we can improve the estimators in Examples 5–7. Denote the estimator for𝜓f (Yz ,Sz ,X) by

𝜓̂f (Yz ,Sz ,X) =
1(Z = z)[f (Y , S,X) − ̂E{f (Y , S,X)|X ,Z = z}]

𝜋
z(X; 𝛼){1 − 𝜋(X; 𝛼)}1−z

+ ̂E{f (Y , S,X)|X ,Z = z},

where ̂E{f (Y , S,X)|X ,Z = z} is the fitted conditional expectation of f (Y , S, X) given X and Z = z.
When f (Y , S, X) = S, we have ̂E{f (Y , S,X)|X ,Z = z} = pz(X; 𝛾̂), which reduces to the esti-
mated principal score and results in the estimator Pn(𝜓̂Sz ) = p̂z. When f (Y , S, X) = YS, we have
̂E{f (Y , S,X)|X ,Z = z} = 𝜇z1(X; ̂𝛽)pz(X; 𝛾̂), which relies on both the principal score and outcome
mean.

Corollary 1 motivates the following estimators:

𝜏10 =
Pn(̂𝜙1,10 − ̂

𝜙0,10)
Pn(𝜓̂S1 − 𝜓̂S0 )

, 𝜏00 =
Pn(̂𝜙1,00 − ̂

𝜙0,00)
Pn(1 − 𝜓̂S1)

, 𝜏11 =
Pn(̂𝜙1,11 − ̂

𝜙0,11)
Pn(𝜓̂S0)

, (7)

where

̂
𝜙1,10 =

e10(X; 𝛾̂)
p1(X; 𝛾̂)

𝜓̂Y1S1 − 𝜇11(X; ̂𝛽)
{

𝜓̂S0 −
p0(X; 𝛾̂)
p1(X; 𝛾̂)

𝜓̂S1

}

,

̂
𝜙0,10 =

e10(X; 𝛾̂)
1 − p0(X; 𝛾̂)

𝜓̂Y0(1−S0) − 𝜇00(X; ̂𝛽)
{

𝜓̂1−S1 −
1 − p1(X; 𝛾̂)
1 − p0(X; 𝛾̂)

𝜓̂1−S0

}

,

̂
𝜙0,00 =

e00(X; 𝛾̂)
1 − p0(X; 𝛾̂)

𝜓̂Y0(1−S0) + 𝜇00(X; ̂𝛽)
{

𝜓̂1−S1 −
1 − p1(X; 𝛾̂)
1 − p0(X; 𝛾̂)

𝜓̂1−S0

}

,
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1436 JIANG et al.

̂
𝜙1,11 =

e11(X; 𝛾̂)
p1(X; 𝛾̂)

𝜓̂Y1S1 + 𝜇11(X; ̂𝛽)
{

𝜓̂S0 −
p0(X; 𝛾̂)
p1(X; 𝛾̂)

𝜓̂S1

}

,

̂
𝜙1,00 = 𝜓̂Y1(1−S1),

̂
𝜙0,11 = 𝜓̂Y0S0 .

These estimators for the PCEs are all in ratio forms, similar to the classic Wald estimator for the
complier average causal effect under the monotonicity and ER (Angrist et al., 1996).

Motivating estimators based on EIFs is a standard approach in semiparametric statistics. This
approach, however, involves advanced statistical theory. To add more intuition for the estimators
above, we offer an alternative perspective in the supplementary material based on model-assisted
estimation from the classic survey sampling theory. This extends the results on doubly robust and
model-assisted estimation for the average causal effect in unconfounded observational studies
(Kang & Schafer, 2007; Little & An, 2004; Lumley et al., 2011; Robins & Rotnitzky, 1998).

Interestingly, although the 𝜏u’s involve models for the treatment probability, principal score,
and outcome, their consistency does not require the correct specification of all three models. We
will characterize this triple robustness property in the next subsection.

4.2 Triple robustness

The following theorem shows the triple robustness and local efficiency of the estimators con-
structed based on the EIFs.

Theorem 3 (Triple robustness and local efficiency). Suppose that Assumptions 1–3 hold, 𝛿 <
{𝜋(x; 𝛼∗), 𝜋(x; 𝛼̂)} < 1 − 𝛿, and {p1(x; 𝛾∗), p1(x; 𝛾̂), 1 − p0(x; 𝛾∗), 1 − p0(x; 𝛾̂)} > 𝛿 for some
𝛿 ∈ (0, 1) and all x in the support of X . Each estimator 𝜏u in Equation (7) is triply robust
in the sense that it is consistent for 𝜏u under tp+ps ∪tp+om ∪ps+om. Moreover, 𝜏u has
the influence function 𝜙u and therefore achieves the semiparametric efficiency bound under
tp+ps+om.

The regularity condition in Theorem 3 is similar to the classic overlap condition (D’Amour
et al., 2020; Rosenbaum & Rubin, 1983), which rules out small quantities in the denominators
of the estimators. Theorem 3 states that 𝜏u is consistent if any two of the three models are cor-
rectly specified, and locally efficient if all three models are correctly specified. For the variance
calculation of these estimators, we use the nonparametric bootstrap.

To gain more intuition, we then give the sketch of the proof for the triple robustness of
𝜏10 = (Pn ̂𝜙1,10 − Pn ̂𝜙0,10)∕(Pn𝜓̂S1 − Pn𝜓̂S0 ) and relegate additional technical details to the sup-
plementary material. For simplicity in this paragraph, let triple =tp+ps ∪tp+om ∪ps+om
denote the set containing at least two correct models. The denominator is consistent for E(S1 −
S0) = P(U = 10) undertp ∪ps ⊇triple. For the terms in the numerator, we calculate their
asymptotic biases in Section S7. In particular, Pn ̂𝜙1,10 − E{Y11(U = 10)} has the probability limit
B1 + B2 − B3, where

B1 = E

[
{𝜇11(X)p1(X) − 𝜇11(X; 𝛽∗)p1(X; 𝛽∗)}{𝜋(X) − 𝜋(X; 𝛼∗)}

𝜋(X; 𝛼∗)

]

,

B2 = E

[
{𝜋(X)p0(X; 𝛾∗)p1(X) − 𝜋(X; 𝛼∗)p0(X)p1(X; 𝛾∗)}{𝜇11(X) − 𝜇11(X; 𝛽∗)}

𝜋(X; 𝛼∗)p1(X; 𝛾∗)

]

,
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B3 = E

[
{𝜋(X) − 𝜋(X; 𝛼∗)}{p0(X) − p0(X; 𝛾∗)}𝜇11(X; 𝛽∗)

1 − 𝜋(X; 𝛼∗)

]

.

The bias B1 equals 0 under ps+om ∪tp; the bias B2 equals 0 under tp+ps ∪om; the bias
B3 equals 0 undertp ∪ps. Each of these three sets containstriple. As a result, Pn(̂𝜙1,10) is
consistent for E{Y11(U = 10)} under triple. Similarly, we can show Pn(̂𝜙0,10) is consistent for
E{Y01(U = 10)} undertriple. So the triple robustness of 𝜏10 holds.

The bias formulas above suggest that the proposed triply robust estimator would remain con-
sistent and asymptotically Normal under some regularity conditions when using nonparametric
or machine learning estimation for the nuisance functions 𝜋(X), pz(X), and 𝜇zs(X), denoted by
𝜋(X), p̂z(X), and 𝜇zs(X). This property would be similar to that of the doubly robust estimator
for estimating the average causal effect in unconfounded observational studies (Chernozhukov
et al., 2018). In other contexts involving intermediate variables, Zheng and van der Laan (2017)
and Miles et al. (2020) have established similar results for multiply robust estimators. Theorem 4
formalizes the results for the proposed estimators using nonparametric or machine learning
estimation.

Theorem 4 (Triple machine learning estimation). Suppose that Assumptions 1–3 hold,

(a) {𝜋(x), p̂z(x), 𝜇zs(x)} � {𝜋(x), pz(x), 𝜇zs(x)} in probability for all x in the support of X ,
(b) {𝜋(x), p̂z(x), 𝜇zs(x)} and{𝜋(x), pz(x), 𝜇zs(x)} are in a Donsker class,
(c) 𝛿 < {𝜋(x), 𝜋(x)} < 1 − 𝛿, {p1(x), p̂1(x), 1 − p0(x), 1 − p̂0(x)} > 𝛿 and {|𝜇zs(x)|, |𝜇zs(x)|} <

C for some 𝛿 ∈ (0, 1), C > 0, and all x in the support of X , and
(d) ||̂g(X) − g(X)||2 × ||̂h(X) − h(X)||2 = oP(n−1∕2), for any g ≠ h ∈ (𝜋, pz, 𝜇zs), where || � ||2

denotes the L2-norm, that is, ||f (X)||22 = ∫ f (x)2dFX (x).

Then 𝜏u in Equation (5) is asymptotically Normal, has the influence function 𝜙u, and
achieves the semiparametric efficiency bound.

Conditions (a)–(d) are analogous to those for double machine learning estimation of average
causal effects (e.g. Bradic et al., 2019; Kennedy, 2016). The consistency in (a) and the rates of con-
vergence in (d) are well studied for commonly used flexible models. Condition (b) restricts the
complexity of the spaces of the nuisance functions and their estimators. The cross-fitting tech-
nique can be used to relax this condition (Chernozhukov et al., 2018). The conditions in (c) may
not be necessary but enable bounding the error |𝜏u − Pn𝜙u| by the summation of the terms in
the form of ||̂g(X) − g(X)||2 × ||̂h(X) − h(X)||2 with g ≠ h ∈ (𝜋, pz, 𝜇zs). Thus, by Condition (d), the
results in Theorem 4 follow.

Section S3 in the supplementary material extends the identification and estimation framework
to two important scenarios under randomization, that is, Z ⫫ (S1, S0,Y1,Y0,X), and strong mono-
tonicity, that is, S1 ≥ S0 respectively. We also establish robustness properties of the corresponding
estimators there.

5 SIMULATION

We evaluate the finite-sample properties of various estimators at sample size n = 500. Generate
covariate X ∈ R5 by Xj ∼ N(0.25, 1) for j = 1,… , 4, and X5 ∼ Bernoulli (0.5). We use linear pre-
dictors, Cj = Xj − 0.25, or quadratic predictors, ̃Cj = (X2

j − 1)∕
√

2, for j = 1, … , 4. Generate the
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1438 JIANG et al.

treatment by Z|X ∼Bernoulli{𝜋(X)}, the intermediate variable by S|(Z = z,X) ∼
Bernoulli{pz(X)}, and the outcome by Y |(Z = z, S = s,X) ∼ N{𝜇zs(X), 1}. To assess the
robustness of the estimators to model misspecification, we consider two different choices
for each of 𝜋(X), pz(X) and 𝜇zs(X), summarized in Table 2. We indicate the models by
the name of the dependent variable and whether or not the predictors are linear. For
example, ‘tp:no’ is the model with 𝜋(X) = 2

∑4
j=1
̃Cj∕5, and ‘ps:yes’ is the model with

pz(X) = 2{(2z − 1) −
∑4

j=1Cj}∕5.
We calculate the true value of 𝜏u based on the identification formulas in Theorem 1 and the

true models. We then compare the following estimators for 𝜏u:

1. weighting estimators: 𝜏u,tp-ps and 𝜏′u,tp-ps given in Example 5;
2. regression estimators: 𝜏u,tp-om given in Example 6 and 𝜏u,ps−om given in Example 7;
3. triply robust estimators: 𝜏u and 𝜏u,ml with parametric models and with flexible generalized

additive models for nuisance functions respectively.

We also consider the weighting estimator and the regression estimator in Ding and Lu
(2017), which are proposed under randomized experiments. Under ‘ps:yes’ and ‘ps:no’, we
estimate the principal score by logistic regressions with linear predictors X and (X1,X2)
respectively; we estimate the outcome mean by linear regressions with the linear predic-
tor X . Therefore, under generative models with the label ‘yes’, the fitting models are cor-
rectly specified, while under generative models with the label ‘no’, the fitting models are
misspecified.

We compare the estimators in 23 = 8 scenarios depending on whether the treatment prob-
ability, principal score or outcome model is correctly specified. Figure 1 presents the violin
plots based on 1000 repeated sampling of the estimators. For all the three PCEs, the weight-
ing estimators 𝜏u,tp-ps and 𝜏

′
u,tp-ps (indicated by ‘w1’ and ‘w2’ in the figures) are biased when

the treatment probability or principal score model is misspecified. The bias with a misspeci-
fied treatment probability is larger than that with a misspecified principal score because the
weights corresponding to the treatment probability are unbounded while the weights correspond-
ing to the principal score are bounded within [0, 1]. The weighting estimator in Ding and Lu
(2017) (indicated by ‘w3’ in the figures) performs similarly to 𝜏u,tp-ps and 𝜏

′
u,tp-ps, because the

treatment is randomized under ‘tp:yes’. As our theory predicts, the regression estimator 𝜏u,tp-om
(indicated by ‘r1’ in the figures) is unbiased undertp+om; the regression estimator 𝜏u,ps−om (indi-
cated by ‘r2’ in the figures) is unbiased under ps+om. The regression estimator in Ding and
Lu (2017) (indicated by ‘r3’ in the figures) performs similarly to 𝜏u,tp-om in terms of bias. The
triply robust estimator 𝜏u (indicated by ‘tr’ in the figures) is unbiased undertp+ps ∪tp+om ∪
ps+om, verifying its triple robustness. With flexible models for the nuisance functions, 𝜏u,ml
is unbiased under tp+ps ∪tp+om ∪ps+om and is less biased than other estimators in most
scenarios.

T A B L E 2 Models for simulation with two specifications for each of logit{𝜋(X)}, logit{pz(X)}, and 𝜇zs(X),
indicated by ‘Yes’ and ‘No’

logit{� (X)} logit{pz(X)} � zs(X)

Yes 0 2{(2z − 1) −
∑4

j=1Cj}∕5
∑5

j=1Cj(1 + z + s)∕4

No 2
∑4

j=1
̃Cj∕5 2{(2z − 1) −

∑4
j=1
̃Cj}∕5

∑5
j=1
̃Cj(1 + z + s)∕4
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