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ABSTRACT
The era of big data has witnessed an increasing availability of multiple data sources for statistical analyses.
We consider estimation of causal effects combining big main data with unmeasured confounders and
smaller validation data with supplementary information on these confounders. Under the unconfounded-
ness assumption with completely observed confounders, the smaller validation data allow for constructing
consistent estimators for causal effects, but the big main data can only give error-prone estimators in
general. However, by leveraging the information in the big main data in a principled way, we can improve the
estimation efficiencies yet preserve the consistencies of the initial estimators based solely on the validation
data. Our framework applies to asymptotically normal estimators, including the commonly used regression
imputation, weighting, and matching estimators, and does not require a correct specification of the model
relating the unmeasured confounders to the observed variables. We also propose appropriate bootstrap
procedures, which makes our method straightforward to implement using software routines for existing
estimators. Supplementary materials for this article are available online.

ARTICLE HISTORY
Received July 2018
Revised February 2019

KEYWORDS
Calibration; Causal inference;
Inverse probability
weighting; Missing
confounder; Two-phase
sampling

1. Introduction

Unmeasured confounding is an important and common prob-
lem in observational studies. Many methods have been pro-
posed to deal with unmeasured confounding in causal inference,
such as sensitivity analyses (e.g., Rosenbaum and Rubin 1983a),
instrumental variable approaches (e.g., Angrist, Imbens, and
Rubin 1996). However, sensitivity analyses cannot provide point
estimation, and valid instrumental variables are often difficult
to find in practice. We consider the setting where external
validation data provide additional information on unmeasured
confounders. To be more precise, the study includes a large main
dataset representing the population of interest with unmeasured
confounders and a smaller validation dataset with additional
information about these confounders.

Our framework covers two common types of studies. First,
we have a large main dataset, and then collect more information
on unmeasured confounders for a subset of units, for example,
using a two-phase sampling design (Neyman 1938; Cochran
2007; Wang et al. 2009). Second, we have a smaller but carefully
designed validation dataset with rich covariates, and then link it
to a larger main dataset with fewer covariates. The second type
of data is now ubiquitous. In the era of big data, extremely large
data have become available for research purposes, such as elec-
tronic health records, claims databases, disease data registries,
census data, and to name a few (e.g., Imbens and Lancaster
1994; Schneeweiss et al. 2005; Chatterjee et al. 2016). Although
these datasets might not contain full confounder information
that guarantees consistent causal effect estimation, they can be
useful to increase efficiencies of statistical analyses.
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In causal inference, Stürmer et al. (2005) proposed a propen-
sity score calibration method when the main data contain the
outcome and an error-prone propensity score based on partial
confounders, and the validation data supplement a gold stan-
dard propensity score based on all confounders. Stürmer et al.
(2005) then applied a regression calibration technique to correct
for the measurement error from the error-prone propensity
score. This approach does not require the validation data to
contain the outcome variable. However, this approach relies on
the surrogacy property entailing that the outcome variable is
conditionally independent of the error-prone propensity score
given the gold standard propensity score and treatment. This
surrogacy property is difficult to justify in practice, and its
violations can lead to substantial biases (Stürmer et al. 2007;
Lunt et al. 2012). Under the Bayesian framework, McCandless,
Richardson, and Best (2012) specified a full parametric model of
the joint distribution for the main and validation data, and treat
the gold standard propensity score as a missing variable in the
main data. Antonelli, Zigler, and Dominici (2017) combined the
ideas of Bayesian model averaging, confounder selection, and
missing data imputation into a single framework in this context.
Enders et al. (2018) use simulation to show that multiple impu-
tation is more robust than two-phase logistic regression against
misspecification of imputation models. Lin and Chen (2014)
developed a two-stage calibration method, which summarizes
the confounding information through propensity scores and
combines the results from the main and validation data. Their
two-stage calibration focuses on the regression context with a
correctly specified outcome model. Unfortunately, regression
parameters, especially in the logistic regression model used by
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Lin and Chen (2014), may not be the causal parameters of
interest in general (Freedman 2008).

In this article, we propose a general framework to estimate
causal effects in the setting where the big main data have unmea-
sured confounders, but the smaller external validation data pro-
vide supplementary information on these confounders. Under
the assumption of ignorable treatment assignment, causal effects
can be identified and estimated from the validation data, using
commonly used estimators, such as regression imputation, (aug-
mented) inverse probability weighting (Horvitz and Thompson
1952; Rosenbaum and Rubin 1983b; Robins, Rotnitzky, and
Zhao 1994; Bang and Robins 2005; Cao, Tsiatis, and Davidian
2009), and matching (e.g., Rubin 1973; Rosenbaum 1989; Heck-
man, Ichimura, and Todd 1997; Hirano, Imbens, and Ridder
2003; Hansen 2004; Rubin 2006; Abadie and Imbens 2006;
Stuart 2010; Abadie and Imbens 2016). However, these estima-
tors based solely on the validation data may not be efficient.
We leverage the correlation between the initial estimator from
the validation data and the error-prone estimator from the
main data to improve the efficiency over the initial estimator.
This idea is similar to the two-stage calibration in Lin and
Chen (2014); however, their method focuses only on regression
parameters and requires the validation data to be a simple
random sample from the main data. Alternatively, the empirical
likelihood is also an attractive approach to combine multiple
data sources (Chen and Sitter 1999; Qin 2000; Chen, Sitter, and
Wu 2002; Chen, Leung, and Qin 2003). However, the empiri-
cal likelihood approach needs sophisticated programming, and
its computation can be heavy when data become large. Our
method is practically simple, because we only need to compute
commonly used estimators that can be easily implemented by
existing software routines. Moreover, Lin and Chen (2014) and
the empirical likelihood approach can only deal with regular
and asymptotically linear (RAL) estimators often formulated by
moment conditions, but our framework can also deal with non-
RAL estimators, such as matching estimators. We also propose
a unified bootstrap procedure based on resampling the linear
expansions of the estimators, which is simple to implement and
works for both RAL and matching estimators.

Furthermore, we relax the assumption that the validation
data are a random sample from the study population of interest.
We also link the proposed method to existing methods for
missing data, viewing the additional confounders as missing
values for units outside of the validation data. In contrast to most
existing methods in the missing data literature, the proposed
method does not need to specify the missing data model relating
the unmeasured confounders with the observed variables.

For simplicity of exposition, we use “IID” for “identically
and independently distributed,” 1(·) for the indicator function,
ξ⊗2 = ξξT for a vector or matrix ξ , “plim” for the probability
limit of a random sequence, and An ∼= Bn for two random
sequences satisfying An = Bn + oP(n−1/2) with n being the
generic sample size. We relegate all regularity conditions for
asymptotic analyses to the online supplementary material.

2. Basic Setup

2.1. Notation: Causal Effect and Two Data Sources

Following Neyman (1923) and Rubin (1974), we use the poten-
tial outcomes framework to define causal effects. Suppose that

the treatment is a binary variable A ∈ {0, 1}, with 0 and 1 being
the labels for control and active treatments, respectively. For
each level of treatment a ∈ {0, 1}, we assume that there exists
a potential outcome Y(a), representing the outcome had the
subject, possibly contrary to the fact, been given treatment a.
The observed outcome is Y = Y(A) = AY(1) + (1 − A)Y(0).
Let a vector of pretreatment covariates be (X, U), where X is
observed for all units, but U may not be observed for some units.

Although we can extend our discussion to multiple data
sources, for simplicity of exposition, we first consider a study
with two data sources. The validation data have observations
O2 = {(Aj, Xj, Uj, Yj) : j ∈ S2} with sample size n2 = |S2|.
The main data have observations O1 = {(Ai, Xi, Yi) : i ∈
S1\S2}∪O2 with sample size n1 = |S1|. In our formulation, we
consider the case with S2 ⊂ S1, and let ρ = limn2→∞ n2/n1 ∈
[0, 1]. If one has two separate main and validation datasets,
the main dataset in our context combines these two datasets.
Although the main dataset is larger, that is, n1 > n2, it does
not contain full information on important covariates U. Under a
superpopulation model, we assume that {Ai, Xi, Ui, Yi(0), Yi(1) :
i ∈ S1} are IID for all i ∈ S1, and therefore the observations in
O1 are also IID. The following assumption links the main and
validation data.

Assumption 1. The index set S2 for the validation data of size n2
is a simple random sample from S1.

Under Assumption 1, {Aj, Xj, Uj, Yj(0), Yj(1) : j ∈ S2} and
the observations inO2 of the validation data are also IID, respec-
tively. We shall relax Assumption 1 to allow S2 to be a general
probability sample from S1 in Section 7. But Assumption 1
makes the presentation simpler.

Example 1. Two-phase sampling design is an example that
results in the observed data structure. In a study, some vari-
ables (e.g., A, X, and Y) may be relatively cheaper, while some
variables (e.g., U) are more expensive to obtain. A two-phase
sampling design (Neyman 1938; Cochran 2007; Wang et al.
2009) can reduce the cost of the study: in the first phase, the
easy-to-obtain variables are measured for all units, and in the
second phase, additional expensive variables are measured for a
selected validation sample.

Example 2. Another example is highly relevant in the era of
big data, where one links small data with full information on
(A, X, U, Y) to external big data with only (A, X, Y). Chatter-
jee et al. (2016) recently consider this scenario for parametric
regression analyses.

Without loss of generality, we first consider the average causal
effect (ACE)

τ = E{Y(1) − Y(0)}, (1)

and will discuss extensions to other causal estimands in Sec-
tion 4.1. Because of the IID assumption, we drop the indices i
and j in the expectations in (1) and later equations.

In what follows, we define the conditional means of the
outcome as

μa(X, U) = E(Y | A = a, X, U),
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μa(X) = E(Y | A = a, X),

the conditional variances of the outcome as

σ 2
a (X, U) = var(Y | A = a, X, U),
σ 2

a (X) = var(Y | A = a, X),

the conditional probabilities of the treatment as

e(X, U) = P(A = 1 | X, U), e(X) = P(A = 1 | X).

2.2. Identification and Model Assumptions

A fundamental problem in causal inference is that we can
observe at most one potential outcome for a unit. Following
Rosenbaum and Rubin (1983b), we make the following
assumptions to identify causal effects.

Assumption 2 (Ignorability). Y(a) |	 A | (X, U) for a = 0 and 1.

Under Assumption 2, the treatment assignment is ignorable
in O2 given (X, U). However, the treatment assignment is only
“latent” ignorable in O1\O2 given X and the latent variable U
(Frangakis and Rubin 1999; Jin and Rubin 2008).

Moreover, we require adequate overlap between the treat-
ment and control covariate distributions, quantified by the fol-
lowing assumption on the propensity score e(X, U).

Assumption 3 (Overlap). There exist constants c1 and c2 such
that with probability 1, 0 < c1 ≤ e(X, U) ≤ c2 < 1.

Under Assumptions 2 and 3, P{A = 1 | X, U, Y(1)} =
P{A = 1 | X, U, Y(0)} = e(X, U), and E{Y(a) | X, U} =
E{Y(a) | A = a, X, U} = μa(X, U). The ACE τ can then
be estimated through regression imputation, inverse probabil-
ity weighting (IPW), augmented inverse probability weighting
(AIPW), or matching. See Rosenbaum (2002), Imbens (2004),
and Rubin (2006) for surveys of these estimators.

In practice, the outcome distribution and the propensity
score are often unknown and therefore need to be modeled and
estimated.

Assumption 4 (Outcome model). The parametric model
μa(X, U; βa) is a correct specification for μa(X, U), for a = 0, 1;
that is, μa(X, U) = μa(X, U; β∗

a ), where β∗
a is the true model

parameter, for a = 0, 1.

Assumption 5 (Propensity score model). The parametric model
e(X, U; α) is a correct specification for e(X, U); that is, e(X, U) =
e(X, U; α∗), where α∗ is the true model parameter.

The consistency of different estimators requires different
model assumptions.

3. Methodology and Important Estimators

3.1. Review of Commonly Used Estimators Based on
Validation Data

The validation data {(Aj, Xj, Uj, Yj) : j ∈ S2} contain observa-
tions of all confounders (X, U). Therefore, under Assumptions 2

and 3, τ is identifiable and can be estimated by some commonly
used estimator solely from the validation data, denoted by τ̂2.
Although the main data do not contain the full confounding
information, we leverage the information on the common vari-
ables (A, X, Y) as in the main data to improve the efficiency of τ̂2.
Before presenting the general theory, we first review important
estimators that are widely used in practice.

Let μa(X, U; βa) be a working model for μa(X, U), for a =
0, 1, and e(X, U; α) be a working model for e(X, U). We con-
struct consistent estimators β̂a (a = 0, 1) and α̂ based on
O2, with probability limits β∗

a (a = 0, 1) and α∗, respectively.
Under Assumption 4, μa(X, U; β∗

a ) = μa(X, U), and under
Assumption 5, e(X, U; α∗) = e(X, U).

Example 3 (Regression imputation). The regression imputation
estimator is τ̂reg,2 = n−1

2
∑

j∈S2 τ̂reg,2,j, where

τ̂reg,2,j = μ1(Xj, Uj; β̂1) − μ0(Xj, Uj; β̂0).

τ̂reg,2 is consistent for τ under Assumption 4.

Example 4 (Inverse probability weighting). The IPW estimator is
τ̂IPW,2 = n−1

2
∑

j∈S2 τ̂IPW,2,j, where

τ̂IPW,2,j = AjYj

e(Xj, Uj; α̂)
− (1 − Aj)Yj

1 − e(Xj, Uj; α̂)
.

τ̂IPW,2 is consistent for τ under Assumption 5.

The Horvitz–Thompson-type estimator τ̂IPW,2 has large vari-
ability, and is often inferior to the Hajek-type estimator (Hájek
1971). We do not present the Hajek-type estimator because
we can improve it by the AIPW estimator below. The AIPW
estimator employs both the propensity score and the outcome
models.

Example 5 (Augmented inverse probability weighting). Define
the residual outcome as Rj = Yj − μ1(Xj, Uj; β̂1) for treated
units and Rj = Yj − μ0(Xj, Uj; β̂0) for control units. The AIPW
estimator is τ̂AIPW,2 = n−1

2
∑

j∈S2 τ̂AIPW,2,j, where

τ̂AIPW,2,j = AjRj

e(Xj, Uj; α̂)
+ μ1(Xj, Uj; β̂1)

− (1 − Aj)Rj

1 − e(Xj, Uj; α̂)
− μ0(Xj, Uj; β̂0). (2)

τ̂AIPW,2 is doubly robust in the sense that it is consistent if either
Assumption 4 or 5 holds. Moreover, it is locally efficient if both
Assumptions 4 and 5 hold (Bang and Robins 2005; Tsiatis 2006;
Cao, Tsiatis, and Davidian 2009).

Matching estimators are also widely used in practice. To fix
ideas, we consider matching with replacement with the number
of matches fixed at M. Matching estimators hinge on imputing
the missing potential outcome for each unit. To be precise, for
unit j, the potential outcome under Aj is the observed outcome
Yj; the (counterfactual) potential outcome under 1 − Aj is not
observed but can be imputed by the average of the observed
outcomes of the nearest M units with 1 − Aj. Let these matched
units for unit j be indexed by Jd,V ,j, where the subscripts d
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and V denote the dataset Od and the matching variable V
(e.g., V = (X, U)), respectively. Without loss of generality, we
use the Euclidean distance to determine neighbors; the discus-
sion applies to other distances (Abadie and Imbens 2006). Let
Kd,V ,j = ∑

l∈Sd
1(j ∈ Jd,V ,l) be the number of times that unit j

is used as a match based on the matching variable V in Od.

Example 6 (Matching). Define the imputed potential outcomes
as

Ŷj(1) =
{

M−1∑
l∈J2,(X,U),j

Yl if Aj = 0,
Yj if Aj = 1,

Ŷj(0) =
{

Yj if Aj = 0,
M−1∑

l∈J2,(X,U),j
Yl if Aj = 1.

Then the matching estimator of τ is

τ̂
(0)
mat,2 = n−1

2
∑
j∈S2

{Ŷj(1) − Ŷj(0)}

= n−1
2
∑
j∈S2

(2Aj − 1)

⎛⎝Yj − M−1
∑

l∈J2,(X,U),j

Yl

⎞⎠ .

Abadie and Imbens (2006) obtained the decomposition

n1/2
2 (τ̂

(0)
mat,2 − τ) = B2 + D2,

where

B2 = n−1/2
2

∑
j∈S2

(2Aj − 1)

×
⎡⎣M−1

∑
l∈J2,(X,U),j

{
μ1−Aj(Xj, Uj) − μ1−Aj(Xl, Ul)

}⎤⎦ ,

(3)

D2 = n−1/2
2

∑
j∈S2

[
μ1(Xj, Uj) − μ0(Xj, Uj) − τ

+ (2Aj − 1)
{

1 + M−1K2,(X,U),j
} {

Yj − μAj(Xj, Uj)
}]

.

The difference μ1−Aj(Xj, Uj)−μ1−Aj(Xl, Ul) in (3) accounts for
the matching discrepancy, and therefore B2 contributes to the
asymptotic bias of the matching estimator. Abadie and Imbens
(2006) showed that the matching estimators have nonnegligi-
ble biases when the dimension of V is greater than one. Let
μ̂a(X, U) be an estimator for μa(X, U), obtained either para-
metrically, for example, by a linear regression estimator, or
nonparametrically, for a = 0, 1. Abadie and Imbens (2006)
proposed a bias-corrected matching estimator

τ̂mat,2 = τ̂
(0)
mat,2 − n−1/2

2 B̂2,

where B̂2 is an estimator for B2 by replacing μa(X, U) with
μ̂a(X, U).

3.2. A General Strategy

We give a general strategy for efficient estimation of the ACE by
utilizing both the main and validation data. In Sections 3.3 and
3.4, we will provide examples to elucidate the proposed strategy
with specific estimators.

Although the estimators based on the validation data O2 are
consistent for τ under certain regularity conditions, they are
inefficient without using the main data O1. However, the main
data O1 do not contain important confounders U; if we naively
use the estimators in Examples 3–6 with U being empty, then the
corresponding estimators can be inconsistent for τ and thus are
error-prone in general. Moreover, for robustness consideration,
we do not want to impose additional modeling assumptions
linking U and (A, X, Y).

Our strategy is straightforward: we apply the same error-
prone procedure to both the main and validation data. The key
insight is that the difference of the two error-prone estimates
is consistent for 0 and can be used to improve efficiency of the
initial estimator due to its association with τ̂2. Let an error-prone
estimator of τ from the main data be τ̂1,ep, which converges to
some constant τep, not necessarily the same as τ . Applying the
same method to the validation data {(Aj, Xj, Yj) : j ∈ S2}, we
can obtain another error-prone estimator τ̂2,ep. More generally,
we can consider τep to be an L-dimensional vector of parameters
identifiable based on the joint distribution of (A, X, Y), and τ̂1,ep
and τ̂2,ep to be the corresponding estimators from the main
and validation data, respectively. For example, τ̂d,ep can contain
estimators of τ using different methods based on Od.

We consider a class of estimators satisfying

n1/2
2

(
τ̂2 − τ

τ̂2,ep − τ̂1,ep

)
→ N

{
0L+1,

(
v2 �T

� V

)}
, (4)

in distribution, as n2 → ∞, which is general enough to include
all the estimators reviewed in Examples 3–6. Heuristically, if
(4) holds exactly rather than asymptotically, by the multivariate
normal theory, we have the following the conditional distribu-
tion

n1/2
2 (τ̂2 − τ) | n1/2

2 (τ̂2,ep − τ̂1,ep)

∼ N
{

n1/2
2 �TV−1(τ̂2,ep − τ̂1,ep), v2 − �TV−1�

}
.

Let v̂2, �̂ and V̂ be consistent estimators for v2, � and V .
We set n1/2

2 (τ̂2 − τ) to equal its estimated conditional mean
n1/2

2 �̂TV̂−1(τ̂2,ep − τ̂1,ep), leading to an estimating equation for
τ :

n1/2
2 (τ̂2 − τ) = n1/2

2 �̂TV̂−1(τ̂2,ep − τ̂1,ep).

Solving this equation for τ , we obtain the estimator

τ̂ = τ̂2 − �̂TV̂−1(τ̂2,ep − τ̂1,ep). (5)

Proposition 1. Under Assumption 1 and certain regularity con-
ditions, if (4) holds, then τ̂ is consistent for τ , and

n1/2
2 (τ̂ − τ) → N (0, v2 − �TV−1�), (6)

in distribution, as n2 → ∞. Given a nonzero �, the asymptotic
variance, v2 −�TV−1�, is smaller than the asymptotic variance
of τ̂2, v2.
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The consistency of τ̂ does not require any component in τ̂1,ep
and τ̂2,ep to correctly estimate τ . That is, these estimators can
be error prone. The requirement for the error-prone estimators
is minimal, as long as they are consistent for the same (finite)
parameters. Under Assumption 1, τ̂1,ep − τ̂2,ep is consistent for
a vector of zeros, as n2 → ∞.

We can estimate the asymptotic variance of τ̂ by

v̂ = (v̂2 − �̂TV̂−1�̂)/n2. (7)

Remark 1. We construct the error prone estimators τ̂1,ep and
τ̂2,ep based on O1 and O2, respectively. Another intuitive way is
to construct τ̂1,ep and τ̂2,ep based onO1\O2 andO2, respectively.
In general, we can construct the error prone estimators based
on different subsets of O1 and O2 as long as their difference
converges in probability to zero. We show in the supplementary
material that our construction maximizes the variance reduc-
tion for τ̂2, �TV−1�, given the procedure of the error prone
estimators.

Remark 2. We can view (5) as the best consistent estimator of τ

among all linear combinations {τ̂2 +λT(τ̂2,ep − τ̂1,ep) : λ ∈ RL},
in the sense that (5) achieves the minimal asymptotic variance
among this class of consistent estimators. Similar ideas appeared
in design-optimal regression estimation in survey sampling
(Deville and Särndal 1992; Fuller 2009), regression analyses
(Chen and Chen 2000; Chen 2002; Wang and Wang 2015),
improved prediction in high dimensional datasets (Boonstra,
Taylor, and Mukherjee 2012), and meta-analysis (Collaboration
2009). In the supplementary material, we show that the
proposed estimator in (5) is the best estimator of τ among the
class of estimators {τ̂ = f (τ̂2, τ̂1,ep, τ̂2,ep): f (x, y, z) is a smooth
function of (x, y, z), and τ̂ is consistent for τ }, in the sense that
(5) achieves the minimal asymptotic variance among this class.

Remark 3. The choice of the error-prone estimators will affect
the efficiency of τ̂ . From (6), for a given τ̂2, to improve the
efficiency of τ̂ with a 1-dimensional error-prone estimator, we
would like this estimator to have a small variance V and a large
correlation with τ̂2, �. In principle, increasing the dimension
of the error-prone estimator would not decrease the asymptotic
efficiency gain as shown in the supplementary material. How-
ever, it would also increase the complexity of implementation
and harm the finite sample properties. To “optimize” the trade-
off, we suggest choosing the error-prone estimator to be the
same type as the initial estimator τ̂2. For example, if τ̂2 is an
AIPW estimator, we can choose τ̂d,ep to be an AIPW estimator
without using U in a possibly misspecified propensity score
model. The simulation in Section 5 confirms that this choice is
reasonable.

To close this subsection, we comment on the existing litera-
ture and the advantages of our strategy. The proposed estimator
τ̂ in (5) utilizes both the main and validation data and improves
the efficiency of the estimator based solely on the validation
data. In economics, Imbens and Lancaster (1994) proposed to
use the generalized method of moments (Hansen 1982) for
using the main data which provide moments of the marginal
distribution of some economic variables. In survey sampling,
calibration is a standard technique to integrate auxiliary infor-

mation in estimation or handle nonresponse; see, for example,
Chen and Chen (2000), Wu and Sitter (2001), Kott (2006),
Chang and Kott (2008), and Kim, Kwon, and Paik (2016). An
important issue is how to specify optimal calibration equations;
see, for example, Deville and Särndal (1992), Robins, Rotnitzky,
and Zhao (1994), Wu and Sitter (2001), and Lumley, Shaw, and
Dai (2011). Other researchers developed constrained empirical
likelihood methods to calibrate auxiliary information from the
main data; see, for example, Chen and Sitter (1999), Qin (2000),
Chen, Sitter, and Wu (2002), and Chen, Leung, and Qin (2003).

Compared to these methods, the proposed framework is
attractive because it is simple to implement which requires
only standard software routines for existing methods, and it
can deal with estimators that cannot be derived from moment
conditions, for example, matching estimators. Moreover, our
framework does not require a correct model specification of the
relationship between unmeasured covariates U and measured
variables (A, X, Y).

3.3. Regular Asymptotically Linear (RAL) Estimators

We first elucidate the proposed method with RAL estimators.
From the validation data, we consider the case when τ̂2 − τ

is RAL; that is, it can be asymptotically approximated by a sum
of IID random vectors with mean 0:

τ̂2 − τ ∼= n−1
2
∑
j∈S2

ψ(Aj, Xj, Uj, Yj), (8)

where {ψ(Aj, Xj, Uj, Yj) : j ∈ S2} are IID with mean 0. The
random vector ψ(A, X, U, Y) is called the influence function
of τ̂2 with E(ψ) = 0 and E(ψ2) < ∞ (e.g., Bickel et al.
1993). Regarding regularity conditions, see, for example, Newey
(1990).

Let e(X; γ ) be an error-prone propensity score model for
e(X), and μa(X; ηa) be an error-prone outcome regression
model for μa(X), for a = 0, 1. The corresponding error-prone
estimators of the ACE can be obtained from the main data O1
and the validation data O2. We consider the case when τ̂d,ep is
RAL:

τ̂d,ep − τep ∼= n−1
d

∑
j∈Sd

φ(Aj, Xj, Yj), (d = 1, 2), (9)

where {φ(Aj, Xj, Yj) : j ∈ Sd} are IID with mean 0.

Theorem 1. Under certain regularity conditions, (4) holds for
the RAL estimators (8) and (9), where v2 = var{ψ(A, X, U, Y)},
� = (1 − ρ)cov{ψ(A, X, U, Y), φ(A, X, Y)}, and V = (1 − ρ)

×var{φ(A, X, Y)}.

To derive �̂ and V̂ for RAL estimators, let φ̂d(A, X, Y) and
ψ̂(A, X, U, Y) be estimators of φ(A, X, Y) and ψ(A, X, U, Y)

by replacing E(·) with the empirical measure and unknown
parameters with their corresponding estimators. Note that the
subscript d in φ̂d(A, X, Y) indicates that it is obtained based on
Od. Then, we can estimate � and V by

�̂ = ĉov(τ̂2, τ̂2,ep − τ̂1,ep)

=
(

1 − n2
n1

)
1

n2

∑
j∈S2

ψ̂(Aj, Xj, Uj, Yj)φ̂2(Aj, Xj, Yj),
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V̂ = v̂ar(τ̂1,ep − τ̂2,ep) =
(

1 − n2
n1

)
1

n1

∑
i∈S1

{
φ̂1(Ai, Xi, Yi)

}⊗2
.

Finally, we can obtain the estimator and its variance estimator
by (5) and (7), respectively.

The commonly-used RAL estimators include the regression
imputation and (augmented) inverse probability weighting esti-
mators. Because the influence functions for τ̂reg,2 and τ̂IPW,2 are
standard, we present the details in the supplementary material.
Below, we state only the influence function for τ̂AIPW,2.

For the outcome model, let Sa(A, X, U, Y ; βa) be the estimat-
ing function for βa, for example,

Sa(A, X, U, Y ; βa) = ∂μa(X, U; βa)

∂βa
{Y − μa(X, U; βa)},

for a = 0, 1, which is a standard choice for the conditional mean
model. For the propensity score model, let S(A, X, U; α) be the
estimating function for α, for example,

S(A, X, U; α) = A − e(X, U; α)

e(X, U; α){1 − e(X, U; α)}
∂e(X, U; α)

∂α
,

which is the score function from the likelihood of a binary
response model. Moreover, let

�αα = E
{

S⊗2(A, X, U; α)
}

= E

[
1

e(X, U; α∗){1 − e(X, U; α∗)}
{

∂e(X, U; α∗)
∂α

}⊗2
]

be the Fisher information matrix for α in the propensity score
model. In addition, let β̂a (a = 0, 1) and α̂ be the estimators
solving the corresponding empirical estimating equations based
onO2, with probability limits β∗

a (a = 0, 1) and α∗, respectively.

Lemma 1 (Augmented inverse probability weighting). For sim-
plicity, denote e∗

j = e(Xj, Uj; α∗), ė∗
j = ∂e(Xj, Uj; α∗)/∂αT, S∗

j =
S(Aj, Xj, Uj; α∗), μ∗

aj = μa(Xj, Uj; β∗
a ), μ̇∗

aj = ∂μa(Xj, Uj; β∗
a )

/∂βT
a , S∗

aj = Sa(Aj, Xj, Uj, Yj; β∗
a ), and Ṡ∗

aj = ∂Sa(Aj, Xj, Uj, Yj;
β∗

a )/∂βT
a for a = 0, 1. Under Assumption 4 or 5, τ̂AIPW,2 has the

influence function

ψAIPW(Aj, Xj, Uj, Yj)

= AjYj

e∗
j

+
(

1 − Aj

e∗
j

)
μ∗

1j

− (1 − Aj)Yj

1 − e∗
j

−
(

1 − 1 − Aj

1 − e∗
j

)
μ∗

0j − τ + HAIPW�−1
αα S∗

j

+ E
{(

1 − 1 − A
1 − e∗

)
μ̇∗

0

} {
E(Ṡ∗

0)
}−1 S∗

0j (10)

− E
{(

1 − A
e∗

)
μ̇∗

1

} {
E(Ṡ∗

1)
}−1 S∗

1j, (11)

where

HAIPW = E
[{

A(Y − μ∗
1)

(e∗)2 − (1 − A)(Y − μ∗
0)

(1 − e∗)2

}
ė∗
]

.

Lemma 1 follows from standard asymptotic theory, but as
far as we know it has not appeared in the literature. Lunceford
and Davidian (2004) suggest a formula without (10) and (11) for
ψAIPW, which, however, works only when both Assumptions 4
and 5 hold. Otherwise, the resulting variance estimator is not
consistent if either Assumption 4 or 5 does not hold, as shown
by simulation in Funk et al. (2011). The correction terms in
(10) and (11) also make the variance estimator doubly robust
in the sense that the variance estimator for τ̂AIPW,2 is consistent
if either Assumption 4 or 5 holds, not necessarily both.

For error-prone estimators, we can obtain the influence func-
tions similarly. The subtlety is that both the propensity score
and outcome models can be misspecified. For simplicity of the
presentation, we defer the exact formulas to the online supple-
mentary material.

3.4. Matching Estimators

We then elucidate the proposed method with non-RAL estima-
tors. An important class of non-RAL estimators for the ACE
are the matching estimators. The matching estimators are not
regular estimators because the functional forms are not smooth
due to the fixed numbers of matches (Abadie and Imbens 2008).
Continuing with Example 6, Abadie and Imbens (2006) express
the bias-corrected matching estimator τ̂mat,2 in a linear form as

τ̂mat,2 − τ ∼= n−1
2
∑
j∈S2

ψmat,j, (12)

where

ψmat,j = μ1(Xj, Uj) − μ0(Xj, Uj) − τ

+ (2Aj − 1)
{

1 + M−1K2,(X,U),j
} {

Yj − μAj(Xj, Uj)
}

.
(13)

Similarly, τ̂mat,d,ep has a linear form

τ̂mat,d,ep − τep ∼= n−1
d

∑
j∈Sd

φmat,d,j, (14)

where

φmat,d,j = μ1(Xj) − μ0(Xj) − τep

+ (2Aj − 1)
(
1 + M−1Kd,X,j

) {
Yj − μAj(Xj)

}
. (15)

Theorem 2. Under certain regularity conditions, (4) holds for
the matching estimators (12) and (14), where

v2 = var {τ(X, U)}

+ plim

⎡⎣n−1
2
∑
j∈S2

{
1 + M−1K2,(X,U),j

}2
σ 2

Aj(Xj, Uj)

⎤⎦ ,

� = (1 − ρ)

⎛⎝cov {μ1(X, U) − μ0(X, U), μ1(X) − μ0(X)}
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+ plim

⎡⎣n−1
2
∑
j∈S2

{
1 + M−1K2,(X,U),j

}

× (1 + M−1K2,X,j
)
σ 2

Aj(Xj, Uj)

⎤⎦⎞⎠ ,

V = (1 − ρ)

⎡⎣var {μ1(X) − μ0(X)}

+plim

⎧⎨⎩n−1
2
∑
j∈S2

(
1 + M−1K2,X,j

)2
σ 2

Aj(Xj)

⎫⎬⎭
⎤⎦ .

The existence of the probability limits in Theorem 2 are
guaranteed by the regularity conditions specified in the supple-
mentary material (c.f. Abadie and Imbens 2006).

To estimate (v2, �, V) in Theorem 2, we need to estimate the
conditional mean and variance functions of the outcome given
covariates. Following Abadie and Imbens (2006), we can esti-
mate these functions via matching units with the same treatment
level. We will discuss an alternative bootstrap strategy in the next
subsection.

3.5. Bootstrap Variance Estimation

The asymptotic results in Theorems 1 and 2 allow for variance
estimation of τ̂ . In addition, we also consider the bootstrap for
variance estimation, which is simpler to implement and often
has better finite sample performances (Otsu and Rai 2016). This
is particularly important for matching estimators because the
analytic variance formulas involve nonparametric estimation of
the conditional variances σ 2

a (x, u) and σ 2
a (x).

There are two approaches for obtaining bootstrap observa-
tions: (a) the original observations; and (b) the asymptotic linear
terms of the proposed estimator. For RAL estimators, bootstrap-
ping the original observations will yield valid variance estima-
tors (Efron and Tibshirani 1986; Shao and Tu 2012). However,
for matching estimators, Abadie and Imbens (2008) showed that
due to lack of smoothness in their functional form, the bootstrap
based on approach (a) does not apply for variance estimation.
This is mainly because the bootstrap based on approach (a)
cannot preserve the distribution of the numbers of times that
the units are used as matches. As a remedy, Otsu and Rai (2016)
proposed to construct the bootstrap counterparts by resampling
based on approach (b) for the matching estimator.

To unify the notation, let ψj indicate ψ(Aj, Xj, Uj, Yj) for
RAL τ̂2 and ψmat,j for τ̂mat,2; and similar definitions apply to
φd,j (d = 1, 2). Let ψ̂j and φ̂d,j be their estimated version by
replacing the population quantities by the estimated quantities
(d = 1, 2). Following Otsu and Rai (2016), for b = 1, . . . , B, we
construct the bootstrap replicates for the proposed estimators as
follows:

Step 1. Sample n1 units from S1 with replacement as S∗(b)
1 ,

treating the units with observed U as the bootstrap validation
data S∗(b)

2 .

Step 2. Compute the bootstrap replicates of τ̂2−τ and τ̂d,ep−τep
as

τ̂
(b)
2 − τ̂2 = n−1

2
∑

j∈S∗(b)
2

ψ̂j,

τ̂
(b)

d,ep − τ̂d,ep = n−1
d

∑
j∈S∗(b)

d

φ̂d,j, (d = 1, 2).

Based on the bootstrap replicates, we estimate �, V and v2 by

�̂ = (B − 1)−1
B∑

b=1
(τ̂

(b)
2 − τ̂2)(τ̂

(b)
2,ep − τ̂

(b)
1,ep − τ̂2,ep + τ̂1,ep),

(16)

V̂ = (B − 1)−1
B∑

b=1
(τ̂

(b)
2,ep − τ̂

(b)
1,ep − τ̂2,ep + τ̂1,ep)

⊗2, (17)

v̂2 = (B − 1)−1
B∑

b=1
(τ̂

(b)
2 − τ̂2)

2. (18)

Finally, we estimate the asymptotic variance of τ̂ by (7), that is,
v̂ = (v̂2 − �̂TV̂−1�̂)/n2.

Theorem 3. Under certain regularity conditions, (�̂, V̂ , v̂2, v̂) are
consistent for {�, V , var(τ̂2), var(τ̂ )}.

Remark 4. If the ratio of n2 and n1 is small, the above boot-
strap approach may be unstable, because it is likely that some
bootstrap validation data contain only a few or even zero obser-
vations. In this case, we use an alternative bootstrap approach,
where we sample n2 units from S2 with replacement as S∗

2 ,
sample n1 − n2 units from S1\S2 with replacement, combined
with S∗

2 , as S∗
1 , and obtain the proposed estimators based on S∗

1
and S∗

2 . This approach guarantees that the bootstrap validation
data contain n2 observations.

Remark 5. It is worthwhile to comment on a computational
issue. When the main data have a substantially large size, the
computation for the bootstrap can be demanding if we follow
Steps 1 and 2 above. In this case, we can use subsampling
(Politis, Romano, and Wolf 1999) or the Bag of Little Bootstraps
(Kleiner et al. 2014) to reduce the computational burden. More
interestingly, when n1 → ∞ and ρ = 0, that is, the validation
data contain a small fraction of the main data, � and V reduce
to cov(τ̂2, τ̂2,ep) and var(τ̂2,ep), respectively. That is, when the
size of the main data is substantially large, we can ignore the
uncertainty of τ̂1,ep and treat it as a constant, which is a regime
recently considered by Chatterjee et al. (2016). In this case, we
need only to bootstrap the validation data, which is computa-
tionally simpler.

4. Extensions

4.1. Other Causal Estimands

Our strategy extends to a wide class of causal estimands, as
long as (4) holds. For example, we can consider the average
causal effects over a subset of population (Crump et al. 2006;
Li, Morgan, and Zaslavsky 2016), including the average causal
effect on the treated.
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We can also consider nonlinear causal estimands. For exam-
ple, for a binary outcome, the log of the causal risk ratio is

log CRR = log
P{Y(1) = 1}
P{Y(0) = 1} = log

E{Y(1)}
E{Y(0)} ,

and the log of the causal odds ratio is

log COR = log
P{Y(1) = 1}/P{Y(1) = 0}
P{Y(0) = 1}/P{Y(0) = 0}

= log
E{Y(1)}/[1 − E{Y(1)}]
E{Y(0)}/[1 − E{Y(0)}] .

We give a brief discussion for the log CRR as an illustration. The
key insight is that under Assumptions 2 and 3, we can estimate
E{Y(a)} with commonly-used estimators from O2, denoted by
Ê{Y(a)}, for a = 0, 1. We can then obtain an estimator for
the log CRR as log[Ê{Y(1)}/Ê{Y(0)}]. Similarly, we can obtain
error-prone estimators for the log CRR from both O1 and O2
using only covariates X. By the Taylor expansion, we can lin-
earize these estimators and establish a similar result as (4), which
serves as the basis to construct an improved estimator for the
log CRR.

4.2. Design Issue: Optimal Sample Size Allocation

As a design issue, we consider planning a study to obtain the
data structure in Example 1 in Section 2 subject to a cost
constraint. The goal is to find the optimal design, specifically the
sample allocation, that minimizes the variance of the proposed
estimator subject to a cost constraint, as in the classical two-
phase sampling (Cochran 2007).

Suppose that it costs C1 to collect (A, X, Y) for each unit, and
C2 to collect U for each unit. Thus, the total cost of the study is

C = n1C1 + n2C2. (19)

The variance of the proposed estimator τ̂ is of the form

n−1
2 v2 − (n−1

2 − n−1
1 )γ , (20)

for example, for RAL estimators,

γ = cov{ψ(A, X, U, Y), φ(A, X, Y)}T [var{φ(A, X, Y)}]−1

cov{ψ(A, X, U, Y), φ(A, X, Y)}
is the variance of the projection of ψ(A, X, U, Y) onto the linear
space spanned by φ(A, X, Y). Minimizing (20) with respect to
n1 and n2 subject to the constraint (19) yields the optimal n∗

1
and n∗

2, which satisfy

ρ∗ = n∗
2

n∗
1

=
{
(1 − R2

ψ |φ) × C1
C2

}1/2
, (21)

where R2
ψ |φ = γ /v2 is the squared multiple correlation coeffi-

cient of ψ(A, X, U, Y) on φ(A, X, Y), which measures the asso-
ciation between the initial estimator and the error-prone estima-
tor. We derive (21) using the Lagrange multipliers, and relegate
the details to the supplementary material. Not surprisingly,
(21) shows that the sizes of the validation data and the main
data should be inversely proportional to the square-root of the
costs. In addition, from (21), a large size n2 for the validation
data is more desirable when the association between the initial
estimator and the error-prone estimator is small.

4.3. Multiple Data Sources

We have considered the setting with two data sources, and
we can easily extend the theory to the setting with multiple
data sources O1, . . . ,OK , where O1, . . . ,OK−1 contain partial
covariate information, and the validation data, OK , contain full
information for (A, X, U, Y). For example, for d = 1, . . . , K −1,
Od contains variables (A, Vd, Y) where Vd � (X, U). Each
dataset Od, indexed by Sd, has size nd for d = 1, . . . , K. This
type of data structure arises from a multi-phase sampling as an
extension of Example 1 or multiple sources of “big data” as an
extension of Example 2.

Let τ̂K be the initial estimator for τ from the validation data
OK , and τ̂d,ep be the error-prone estimator for τ from Od (d =
1, . . . , K − 1). Let τ̂d,K,ep be the estimator obtained by applying
the same error-prone estimator for Od to OK , so that τ̂d,ep −
τ̂d,K,ep is consistent for 0, for d = 1, . . . , K − 1. Assume that

n1/2
K

⎛⎜⎜⎜⎝
τ̂K − τ

τ̂1,ep − τ̂1,K,ep
...

τ̂K−1,ep − τ̂K−1,K,ep

⎞⎟⎟⎟⎠
→ N

{(
0

0L

)
,
(

vK �T

� V

)}
,

in distribution, as nK → ∞, where L = ∑K−1
d=1 dim(τ̂d,ep). If

� and V have consistent estimators �̂ and V̂ , respectively, then,
extending the proposed method in Section 3, we can use

τ̂ = τ̂K − �̂TV̂−1
(

τ̂ T
1,ep − τ̂ T

1,K,ep, . . . , τ̂ T
K−1,ep − τ̂ T

K−1,K,ep

)T

to estimate τ . The estimator τ̂ is consistent for τ with the
asymptotic variance vK − �TV−1�, which is smaller than the
asymptotic variance of τ̂K , vK , if � is nonzero. Similar to the
reasoning in Remark 3, using more data sources will improve
the asymptotic estimation efficiency of τ .

5. Simulation

In this section, we conduct a simulation study to evaluate the
finite sample performance of the proposed estimators. In our
data generating model, the covariates are Xi ∼ Unif(0, 2) and
Ui = 0.5 + 0.5Xi − 2 sin(Xi)+ 2sign{sin(5Xi)}+ εi, where εi ∼
Unif(−0.5, 0.5). The potential outcomes are Yi(0) = −Xi−Ui+
εi(0) and Yi(1) = −Xi + 4Ui + εi(1), where εi(0) ∼ N (0, 1),
εi(1) ∼ N (0, 1), and εi(0) and εi(1) are independent. Therefore,
the true value of the ACE is τ = E(5Ui). The treatment indicator
Ai follows Bernoulli(πi) with logit(πi) = 1 − 0.5Xi − 0.5Ui.
The main data O1 consist of n1 units, and the validation data
O2 consist of n2 units randomly selected from the main data.

The initial estimators are the regression imputation, (A)IPW
and matching estimators applied solely to the validation data,
denoted by τ̂reg,2, τ̂IPW,2, τ̂AIPW,2, and τ̂mat,2, respectively. To
distinguish the estimators constructed based on different error-
prone methods, we assign each proposed estimator a name with
the form τ̂method,2&methods, where “method,2” indicates the ini-
tial estimator applied to the validation data O2, and “methods”
indicates the error-prone estimator(s) used to improve the effi-
ciency of the initial estimator. For example, τ̂reg,2&IPW indicates
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the initial estimator is the regression imputation estimator and
the error-prone estimator is the IPW estimator. We compare
the proposed estimators with the initial estimators in terms
of percentages of reduction of mean squared errors, defined
as {1 − MSE(τ̂method,2&methods)/MSE(τ̂method,2)} × 100%. To
demonstrate the robustness of the proposed estimator against
misspecification of the imputation model, we consider the mul-
tiple imputation (MI, Rubin 1987) estimator, denoted by τ̂mi,
which uses a regression model of U given (A, X, Y) for impu-
tation. We implement MI using the “mice” package in R with
m = 10.

Based on a point estimate τ̂ and a variance estimate v̂
obtained by the asymptotic variance formula or the bootstrap
method described in Section 3.5, we construct a Wald-type 95%
confidence interval (τ̂ − z0.975v̂1/2, τ̂ + z0.975v̂1/2), where z0.975
is the 97.5% quantile of the standard normal distribution. We
further compare the variance estimators in terms of empirical
coverage rates.

Figure 1 shows the simulation results over 2000 Monte Carlo
samples for (n1, n2) = (1000, 200) and (n1, n2) = (1000, 500).
The multiple imputation estimator is biased due to the mis-
specification of the imputation model. In all scenarios, the pro-
posed estimators are unbiased and improve the initial esti-
mators. Using the error-prone estimator of the same type of
the initial estimator achieves a substantial efficiency gain, and
the efficiency gain from incorporating additional error-prone
estimator is not significantly important. Because of the prac-
tical simplicity, we recommend using the same type of error-
prone estimator to improve the efficiency of the initial estimator.
Confidence intervals constructed from the asymptotic variance
formula and the bootstrap method work well, in the sense that
the empirical coverage rate of the confidence intervals is close
to the nominal coverage rate. In our settings, the matching
estimator has the smallest efficiency gain among all types of
estimators.

6. Application

We present an analysis to evaluate the effect of chronic obstruc-
tive pulmonary disease (COPD) on the development of herpes
zoster (HZ). COPD is a chronic inflammatory lung disease
that causes obstructed airflow from the lungs, which can cause
systematic inflammation and dysregulate a patient’s immune
function. The hypothesis is that people with COPD are at
increased risk of developing HZ. Yang et al. (2011) find a positive
association between COPD and development of HZ; however,
they do not control for important counfounders between
COPD and HZ, for example, cigarette smoking and alcohol
consumption.

We analyze the main data from the 2005 Longitudinal Health
Insurance Database (LHID, Yang et al. 2011) and the validation
data from the 2005 National Health Interview Survey conducted
by the National Health Research Institute and the Bureau of
Health Promotion in Taiwan (Lin and Chen 2014). The 2005
LHID consist of 42, 430 subjects followed from the date of
cohort entry on January 1, 2004 until the development of HZ or
December 31, 2006, whichever came first. Among those, there
are 8, 486 subjects with COPD, denoted by A = 1, and 33, 944

subjects without COPD, denoted by A = 0. The outcome Y was
the development of HZ during follow up (1, having HZ and 0,
not having HZ). The observed prevalence of HZ among COPD
and non-COPD subjects are 3.7% and 2.2% in the main data and
2.5% and 0.8% in the validation data.

The confounders X available from the main data were age,
sex, diabetes mellitus, hypertension, coronary artery disease,
chronic liver disease, autoimmune disease, and cancer. How-
ever, important confounders U, including cigarette smoking and
alcohol consumption, were not available. The validation dataO2
use the same inclusion criteria as in the main study and consist
of 1, 148 subjects who were comparable to the subjects in the
main data. Among those, 244 subjects were diagnosed of COPD,
and 904 subjects were not. In addition to all variables available
from the main data, cigarette smoking and alcohol consumption
were measured. In our formulation, the main data O1 combine
the LHID data and the validation data. Table 4 in Lin and Chen
(2014) shows summary statistics on demographic characteris-
tics and comorbid disorders for COPD and Non-COPD subjects
in the main and validation data. Because the common covariates
in the main and validation data are comparable, it is reasonable
to assume that the validation sample is a simple random sample
from the main data. Moreover, the difference in distributions of
alcohol consumption between COPD and non-COPD subjects
is not statistical significant in the validation data. But, the COPD
subjects tended to have higher cumulative smoking rates than
the non-COPD subjects in the validation data.

We obtain the initial estimators applied solely to the vali-
dation data and the proposed estimators applied to both data.
As suggested by the simulation in Section 5, we use the same
type of the error-prone estimator as the initial estimator. Fol-
lowing Stürmer et al. (2005) and Lin and Chen (2014), we
use the propensity score to accommodate the high-dimensional
confounders. Specifically, we fit logistic regression models for
the propensity score e(X, U; α) and the error-prone propensity
score e(X; γ ) based on {(Aj, Xj, Uj) : j ∈ S2} and {(Ai, Xi) :
j ∈ S1}, respectively. We fit logistic regression models for the
outcome mean function μa(X, U) based on a linear predictor
{1, e(X, U; α̂)}Tβa, and for μa(X) based on a linear predictor
{1, e(X; γ̂ )}Tηa, for a = 0, 1.

We first estimate the ACE τ . Table 1 shows the results for
the average COPD effect on the development of HZ. We find
no big differences in the point estimates between our proposed
estimators and the corresponding initial estimators, but large
reductions in the estimated standard errors of the proposed
estimators. As a result, all 95% confidence intervals based on
the initial estimators include 0, but the 95% confidence intervals
based on the proposed estimators do not include 0, except for
τ̂mat2&mat. As demonstrated by the simulation in Section 5, the
variance reduction by utilizing the main data is the smallest for
the matching estimator. From the results, on average, COPD
increases the percentage of developing HZ by 1.55%.

We also estimate the log of the causal risk ratio of HZ with
COPD. The initial IPW estimate from the validation data is
log ĈRRIPW,2= 1.10 (95% confidence interval: 0.02, 2.18). In
contrast, the proposed estimate by using the error-prone IPW
estimators is log ĈRRIPW,2&IPW= 0.57 (95% confidence inter-
val: 0.41, 0.72), which is much more accurate than the initial
IPW estimate.
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Figure 1. Simulation results of point estimates (top panels) and coverage rates (bottom panels): the subscripts “a,” “b,” “c,” and “d” stand for methods “reg,” “IPW,” “AIPW,”
and “mat,” respectively, “reg2” is τ̂reg,2, “reg2,method” is τ̂reg,2&method, other notation is defined similarly, and “mi” is τ̂mi.
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Table 1. Point estimate, bootstrapped standard error and 95% Wald-type confidence interval

Est SE 95% CI Est SE 95% CI

τ̂reg,2 0.0178 0.0112 (−0.0047, 0.0402) τ̂reg,2&reg 0.0155 0.0023 (0.0109, 0.0200)

τ̂IPW,2 0.0175 0.0111 (−0.0048, 0.0398) τ̂IPW,2&IPW 0.0155 0.0024 (0.0108, 0.0202)

τ̂AIPW,2 0.0179 0.0111 (−0.0044, 0.0402) τ̂AIPW,2&AIPW 0.0156 0.0024 (0.0109, 0.0203)

τ̂mat,2 0.0077 0.0092 (−0.0106, 0.021) τ̂mat,2&mat 0.0079 0.0053 (−0.0027, 0.0184)

7. Relaxing Assumption 1

In previous sections, we invoked Assumption 1 that S2 is a
random sample from S1. We now relax this assumption and
link our framework to existing methods for missing data. Let
Ii be the indicator of selecting unit i into the validation data,
that is, Ii = 1 if i ∈ S2 and Ii = 0 if i /∈ S2. Alternatively,
Ii can be viewed as the missingness indicator of Ui. Under
Assumption 1, I |	 (A, X, U, Y); that is, U is missing completely
at random. We now relax it to I |	 U | (A, X, Y), that is, U
is missing at random. In this case, the selection of S2 from
S1 can depend on a probability design, which is common in
observational studies, for example, an outcome-dependent two-
phase sampling (Breslow, McNeney, and Wellner 2003; Wang
et al. 2009).

We assume that each unit in the main data is subjected to an
independent Bernoulli trial which determines whether the unit
is selected into the validation data. For simplicity, we further
assume that the inclusion probability P(I = 1 | A, X, U, Y) =
P(I = 1 | A, X, Y) ≡ π(A, X, Y) is known as in two-phase
sampling. Otherwise, we need to fit a model for the missing
data indicator I given (A, X, Y). We summarize the above in the
following assumption.

Assumption 6. {(Ii, Ai, Xi, Ui, Yi) : i ∈ S1} are IID with
I |	 U | (A, X, Y). S2 is selected from S1 with a known inclusion
probability π(A, X, Y) > 0.

In what follows, we use π for π(A, X, Y) and πj for
π(Aj, Xj, Yj) for shorthand. Because of Assumption 6, we
drop the indices i and j in the expectations, covariances, and
variances, which are taken with respect to both the sampling
and superpopulation models.

7.1. RAL estimators

For the illustration of RAL estimators, we focus on the AIPW
estimator of the ACE τ , because the regression imputation
and inverse probability weighting estimators are its special
cases. Let α̂ and β̂a solve the weighted estimating equations∑

j∈S2 π−1
j S(Aj, Xj, Uj; α) = 0 and

∑
j∈S2 π−1

j Sa(Aj, Xj, Uj, Yj;
βa) = 0, and let α∗ and β∗

a satisfy E{S(A, X, U; α∗)} = 0 and
E{Sa(A, X, U, Y ; β∗

a )} = 0. Under suitable regularity condition,
α̂ → α∗ and β̂a → β∗

a in probability, for a = 0, 1. Let the initial
estimator for τ be the Hajek-type estimator (Hájek 1971):

τ̂2 =
∑

j∈S2 π−1
j τ̂AIPW,2,j∑

j∈S2 π−1
j

, (22)

where τ̂AIPW,2,j has the same form as (2). Under regularity
conditions, Assumption 4 or 5, and Assumption 6, we show in

the supplementary material that

τ̂2 − τ ∼= n−1
1
∑
j∈S1

π−1
j Ijψ(Aj, Xj, Uj, Yj), (23)

where ψ(A, X, U, Y) is given by (11). Because
{π−1

j Ijψ(Aj, Xj, Uj, Yj) : j ∈ S1} are IID with mean 0, τ̂2 is
consistent for τ .

Similarly, let γ̂d and η̂d,a solve the weighted estimating equa-
tion

∑
j∈Sd

π−1
j S(Aj, Xj; γ ) = 0 and

∑
j∈Sd

π−1
j Sa(Aj, Xj, Yj;

ηa) = 0, and let γ ∗ and η∗
a satisfy E{S(Aj, Xj; γ ∗)} = 0 and

E{Sa(Aj, Xj, Yj; η∗
a)} = 0 . Under suitable regularity condition,

γ̂d → γ ∗ and η̂d,a → η∗
a in probability, for a = 0, 1 and

d = 1, 2. Let the error-prone estimators be

τ̂1,ep = n−1
1
∑
i∈S1

τ̂AIPW,1,ep,i, τ̂2,ep =
∑

j∈S2 π−1
j τ̂AIPW,2,ep,j∑

j∈S2 π−1
j

,

(24)

where τ̂AIPW,d,ep,j has the same form as (S8) in the supplemen-
tary material. Following a similar derivation for (23), we have

τ̂1,ep − τep ∼= n−1
1
∑
i∈S1

φ(Ai, Xi, Yi),

τ̂2,ep − τep ∼= n−1
1
∑
j∈S1

π−1
j Ijφ(Aj, Xj, Yj), (25)

where φ(A, X, Y) is given by (S9) in the supplementary material.
Because both {φ(Ai, Xi, Yi) : i ∈ S1} and {π−1

j Ijφ(Aj, Xj, Yj) :
j ∈ S1} are IID with mean 0, τ̂1,ep and τ̂2,ep are consistent for τep.

Theorem 4. Under certain regularity conditions, (4) holds
for the Hajek-type estimators (22) and (24), where ρ =
plim n2→∞ (n2/n1), v2 = ρ × var{π−1Iψ(A, X, U, Y)},
� = ρ × cov{π−1Iψ(A, X, U, Y), (π−1I − 1)φ(A, X, Y)} and
V = ρ × var{(π−1I − 1)φ(A, X, Y)}.

Similar to Section 3.3, we can construct a consistent variance
estimator for τ̂ by replacing the variances and covariance in
Theorem 4 with their sample analogs.

7.2. Matching Estimators

Recall that Jd,V ,l is the index set of matches for unit l based on
data Od and the matching variable V , which can be (X, U) or
X. Define δd,V ,(j,l) = 1 if j ∈ Jd,V ,l and δd,V ,(j,l) = 0 otherwise.
Now, we denote Kd,V ,j = πj

∑
l∈Sd

π−1
l 1{Al = 1−Aj}δd,V ,(j,l) as

the weighted number of times that unit j is used as a match. If πj
is a constant for all j ∈ Sd, then Kd,V ,j reduces to the number of
times that unit j is used as a match defined in Section 3.1, which
justifies using the same notation as before.
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Let the initial matching estimator for τ be the Hajek-type
estimator:

τ̂
(0)
mat,2 =

⎛⎝∑
j∈S2

π−1
j

⎞⎠−1

×
∑
j∈S2

π−1
j (2Aj − 1)

⎛⎝Yj − M−1
∑

l∈J2,(X,U),j

Yl

⎞⎠
=
⎛⎝∑

j∈S2

π−1
j

⎞⎠−1

×
∑
j∈S2

π−1
j (2Aj − 1)

{
1 + M−1K2,(X,U),j

}
Yj.

Let a bias-corrected matching estimator be

τ̂mat,2 = τ̂
(0)
mat,2 − n−1/2

1 B̂2, (26)

where

B̂2 = n−1/2
1

∑
j∈S2

π−1
j (2Aj − 1)

×
⎡⎣M−1

∑
l∈J2,(X,U),j

{
μ̂1−Aj(Xj, Uj) − μ̂1−Aj(Xl, Ul)

}⎤⎦ ,

We show in the supplementary material that

τ̂mat,2 − τ ∼= n−1
1
∑
j∈S2

π−1
j ψmat,j, (27)

where ψmat,j is defined in (13) with the new definition of
K2,(X,U),j.

Similarly, we obtain error-prone matching estimators and
express them as

τ̂mat,1,ep − τep ∼= n−1
1
∑
j∈S1

φmat,1,j,

τ̂mat,2,ep − τep ∼= n−1
1
∑
j∈S2

π−1
j φmat,2,j, (28)

where φmat,d,j is defined in (15) with the new definition of Kd,X,j.
From the above decompositions, τ̂mat,2 is consistent for τ ,

and τ̂mat,1,ep − τ̂mat,2,ep is consistent for 0.

Theorem 5. Under certain regularity conditions, (4) holds
for the estimators (26) and τ̂mat,d,ep (d = 1, 2), where ρ =
plim n2→∞ (n2/n1),

v2 = ρ ×
(

E
[

1 − π

π
{τ(X, U) − τ }2

]

+ plim

⎡⎣n−1
1
∑
j∈S1

1 − πj

πj

{
1 + M−1K2,(X,U),j

}2

σ 2
Aj(Xj, Uj)

])
,

� = ρ × E
[

1 − π

π
{μ1(X, U) − μ0(X, U) − τ }{

μ1(X) − μ0(X) − τep
}]

+ ρ × plim

⎡⎣n−1
1
∑
j∈S1

1 − πj

πj

{
1 + M−1K2,(X,U),j

}
(
1 + M−1K2,X,j

)
σ 2

Aj(Xj, Uj)
]

,

V = ρ × E
[

1 − π

π

{
μ1(X) − μ0(X) − τep

}2
]

+ ρ × plim

⎡⎣n−1
1
∑
j∈S1

1 − πj

πj

(
1 + M−1K1,X,j

)2
σ 2

Aj(Xj)

⎤⎦ .

We can construct variance estimators based on the formulas
in Theorem 5. However, this again involves estimating the con-
ditional variances σ 2

0 (x) and σ 2
1 (x). We recommend using the

bootstrap variance estimator in the next subsection.

7.3. A Bootstrap Variance Estimation Procedure

The asymptotic linear forms (23), (25), (27), and (28) are useful
for the bootstrap variance estimation. For b = 1, . . . , B, we
construct the bootstrap replicates as follows:

Step 1. Sample n1 units from S1 with replacement as S∗(b)
1 .

Step 2. Compute the bootstrap replicates of τ̂2−τ and τ̂d,ep−τep
as

τ̂
(b)
2 − τ̂2 = n−1

1
∑

i∈S∗(b)
1

π−1
i Iiψ̂i,

τ̂
(b)
1,ep − τ̂1,ep = n−1

1
∑

i∈S∗(b)
1

φ̂1,i,

τ̂
(b)
2,ep − τ̂2,ep = n−1

1
∑

i∈S∗(b)
1

π−1
i Iiφ̂2,i,

where (ψ̂i, φ̂d,i) are the estimated versions of (ψi, φi) fromOd
(d = 1, 2).

We estimate �, V and v2 by (16)–(18) based on the above
bootstrap replicates, and var(τ̂ ) by (7), that is, v̂ = v̂2−�̂TV̂−1�̂.

Theorem 6. Under certain regularity conditions, (�̂, V̂ , v̂2, v̂) are
consistent for {�, V , var(τ̂2), var(τ̂ )}.

For RAL estimators, we can also use the classical nonpara-
metric bootstrap based on resampling the IID observations
{(Ii, Ai, Xi, Ui, Yi) : i ∈ S1} and repeating the analysis as
for the original data. The above bootstrap procedure based
on resampling the linear forms are particularly useful for the
matching estimator.

7.4. Connection With Missing Data

As a final remark, we express the proposed estimator in a linear
form that has appeared in the missing data literature.

Proposition 2. Under certain regularity conditions and Assump-
tion 6, τ̂ has an asymptotic linear form

n1/2
1 (τ̂ − τ) = n−1/2

1
∑
i∈S1

{
Ii
πi

ψi −
(

Ii
πi

− 1
)

�V−1φi

}
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+ oP(1), (29)

where ψi is ψ(Ai, Xi, Ui, Yi) for RAL estimators and ψmat,i for
the matching estimator, and a similar definition applies to φi.
Under Assumption 1, πi ≡ ρ.

Expression (29) is within a class of estimators in the missing
data literature with the form

n1/2
1 (τ̂ − τ) = n−1/2

1∑
i∈S1

{
Ii
πi

s(Ai, Xi, Ui, Yi) −
(

Ii
πi

− 1
)

κ(Ai, Xi, Yi)

}
+ oP(1),

(30)

where π = E(I | A, X, U, Y), s(A, X, U, Y) satisfies
E{s(A, X, U, Y)} = 0, and s(A, X, U, Y) and κ(A, X, Y) are
square integrable. Given s(A, X, U, Y), the optimal choice of
κ(A, X, Y) is κopt(A, X, Y) = E{s(A, X, U, Y) | A, X, Y}, which
minimizes the asymptotic variance of (30) (Robins, Rotnitzky,
and Zhao 1994; Wang et al. 2009). However, κopt(A, X, Y)

requires a correct specification of the missing data model
f (U | A, X, Y). In our approach, instead of specifying the
missing data model, we specify the error-prone estimators
and utilize an estimator that is consistent for zero to improve
the efficiency of the initial estimator. This is more attractive
and closer to empirical practice than calculating κopt(A, X, Y),
because practitioners only need to apply their favorite estimators
to the main and validation data using existing software. See also
Chen and Chen (2000) for a similar discussion in the regression
context under Assumption 1.

8. Discussion

Depending on the roles in statistical inference, there are two
types of big data: one with large-sample sizes and the other with
richer covariates. In our discussion, the main observational data
have a larger sample size, and the validation observational data
have more covariates. Although some counterexamples exist
(Pearl 2009, 2010; Ding and Miratrix 2015; Ding, Vanderweele,
and Robins 2017), it is more reliable to draw causal inference
from the validation data. The proposed strategy is applicable
even the number of covariates is high in the validation data.
In this case, we can consider τ̂2 to be the double machine
learning estimators (Chernozhukov et al. 2018) that use flex-
ible machine learning methods for estimating regression and
propensity score functions while retain the property in (4). Our
framework allows for more efficient estimators of the causal
effects by further combining information in the main data, with-
out imposing any parametric models for the partially observed
covariates. Coupled with the bootstrap, our estimators require
only software implementations of standard estimators, and thus
are attractive for practitioners who want to combine multiple
observational data sources.

The key insight is to leverage an estimator of zero to improve
the efficiency of the initial estimator. If a certain feature is
transportable across datasets (Bareinboim and Pearl 2016), we
can construct a consistent estimator of zero. We have shown
that if the validation data are simple random samples from the

main data, the distribution of (A, X, Y) is transportable from the
validation data to the main data. We then construct a consistent
estimator of zero by taking the difference of the estimators
based on (A, X, Y) from the two datasets. In the presence of
heterogeneity between two data sources, the transportability of
the whole distribution of (A, X, Y) can be stringent. However, if
we are willing to assume the conditional distribution of Y given
(A, X) is transportable, we can then take the error prone estima-
tors to be the regression coefficients of Y on (A, X) from the two
datasets. As suggested by one of the reviewers, if the subgroups
of two samples are comparable, we can construct the error prone
estimators based on the subgroups. Similarly, this construction
of error prone estimators can adapt to different transportability
assumptions based on the subject matter knowledge.

In the worst case, the heterogeneity is intrinsic between the
two samples, and we cannot construct two error prone esti-
mators with the same probability limit. We can still conduct
a sensitivity analysis combining two data. Instead of (4), we
assume

n1/2
2

(
τ̂2 − τ

τ̂2,ep − τ̂1,ep − δ

)
→ N

{
0L+1,

(
v2 �T

� V

)}
,

(31)

where δ is the sensitivity parameter, quantifying the system-
atic difference between τ̂2,ep and τ̂1,ep. The adjusted estimator
becomes τ̂adj(δ) = τ̂2 − �̂TV̂−1(τ̂2,ep − τ̂1,ep −δ). With different
values of δ, the estimator τ̂adj(δ) can provide valuable insight
on the impact of the heterogeneity of the two data, allowing an
investigator to assess the extent to which the heterogeneity may
alter causal inferences.
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S1 Proof of Remark 1
For simplicity, we show the result in Remark 1 for RAL estimators in Section 3.3. Suppose that
we construct τ̂1,ep and τ̂2,ep based on different subsets subsets of O1 and O2, respectively, and
that τ̂2,ep − τ̂1,ep is consistent for zero. We express

n
1/2
2 (τ̂2,ep − τ̂1,ep) ∼= n

−1/2
2

∑
j∈S2

γjφ(Aj, Xj, Yj) +
∑

i∈S1\S2

γiφ(Ai, Xi, Yi)

 , (S1)

for a vector of constants γ = {γi: i ∈ S1}. Because we require that τ̂1,ep − τ̂2,ep is consistent
for zero, we have that

∑
i∈S1 γi = 0. For example, if we compute error-prone estimators τ̂1,ep

and τ̂2,ep based on O1 and O2 , respectively, then this choice corresponds to γj = n2/n1 for
j ∈ S2 and γi = n2/n1 − 1 for i ∈ S1\S2; if we compute error-prone estimators τ̂1,ep and τ̂2,ep
based on O1\O2 and O2, respectively, then this choice corresponds to γj = 1 for j ∈ S2 and
γi = n2/(n1 − n2) for i ∈ S1\S2.

We now show that our choice achieves the largest variance reduction ΓTV −1Γ for τ̂2 over all
γ satisfying

∑
i∈S1 γi = 0.

Considering (8) and (S1), we calculate ΓTV −1Γ asplim

(
n−12

∑
j∈S2 γj

)2
n−12

∑
i∈S1 γ

2
i

× Vψ|φ,
where Vψ|φ = cov{ψ(A,X,U, Y ), φ(A,X, Y )}Tvar{φ(A,X, Y )}−1cov{ψ(A,X,U, Y ), φ(A,X, Y )}.

Therefore, to maximize ΓTV −1Γ, it suffices to maximize
(∑

j∈S2 γj

)2
/(
∑

i∈S1 γ
2
i ), subject to

1



the constraint
∑

i∈S1 γi = 0. Using the Lagrange multiplier technique, we maximize the objec-
tive function

f(γ, λ) =

(∑
j∈S2 γj

)2∑
i∈S1 γ

2
i

− 2λ
∑
i∈S1

γi.

We take partial derivatives of f(γ, λ) with respect to γ and λ, and consider the system of equa-
tions

∂f(γ, λ)

∂γj
=

2
(∑

j∈S2 γj

) (∑
i∈S1 γ

2
i

)
− 2γj

(∑
j∈S2 γj

)2
(∑

i∈S1 γ
2
i

)2 − 2λ = 0 (j ∈ S2), (S2)

∂f(γ, λ)

∂γi
=
−2γi

(∑
j∈S2 γj

)2
(∑

i∈S1 γ
2
i

)2 − 2λ = 0 (i ∈ S1\S2), (S3)

and
∑

i∈S1 γi = 0. The above system of equations suggests that the optimal choice γ∗ satisfies
that γ∗i = c∗1 for i ∈ S1\S2 , γ∗j = c∗2 for i ∈ S2, and (n1 − n2)c

∗
1 + n2c

∗
2 = 0 or c∗1/c

∗
2 =

−n2/(n1 − n2). This implies that the largest variance reduction isplim

(
n−12

∑
j∈S2 γ

∗
j

)2
n−12

∑
i∈S1 γ

∗2
i

× Vψ|φ =

{
plim

c∗22
n−12 {(n1 − n2)c∗21 + n2c∗22 }

}
× Vψ|φ = (1− ρ)× Vψ|φ.

As shown in Theorem 1, our choice achieves the largest variance reduction.

S2 Proof of Remark 2
For a smooth function f(x, y, z), let ∂f(x, y, z)/∂x, ∂f(x, y, z)/∂y and ∂f(x, y, z)/∂z be its
partial derivatives. By the Taylor expansion, we have

τ̂ = f(τ̂2, τ̂1,ep, τ̂2,ep)

∼= f(τ, τep, τep) +
∂f

∂x
(τ, τep, τep)(τ̂2 − τ)

+
∂f

∂yT
(τ, τep, τep)(τ̂1,ep − τep) +

∂f

∂zT
(τ, τep, τep)(τ̂2,ep − τep)

≡ l0 + l1τ̂2 + lT2 τ̂1,ep + lT3 τ̂2,ep, (S4)

where

l0 = f(τ, τep, τep)− ∂f(τ, τep, τep)

∂x
τ −

{
∂f(τ, τep, τep)

∂yT
+
∂f(τ, τep, τep)

∂zT

}
τep,

l1 =
∂f(τ, τep, τep)

∂x
, l2 =

∂f(τ, τep, τep)

∂y
, l3 =

∂f(τ, τep, τep)

∂z
.

Because τ̂ is consistent for τ , letting n2 go to infinity in (S4), we have τ = l0 + l1τ + lT2 τep + lT3 τep
for all τ and τep. Then, it follows l0 = 0, l1 = 1, and l2 = −l3. Therefore, τ̂ ∼= τ̂2−lT3 (τ̂2,ep−τ̂1,ep).
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By the joint normality of (τ̂ , τ̂1,ep, τ̂2,ep), the optimal l3 minimizing var {τ̂2 − lT3 (τ̂2,ep − τ̂1,ep)}
is ΓTV −1. Therefore, the proposed estimator in (5) is optimal among the class of consistent
estimators that is a smooth function of (τ̂ , τ̂1,ep, τ̂2,ep).

S3 Proof of Remark 3
We can view v2 − ΓTV −1Γ and ΓT

1V
−1
11 Γ1 as the conditional variances in a multivariate normal

vector. Then the conclusion holds immediately because conditioning on more variables will
decrease the variance for a multivariate normal vector. For algebraic completeness, we give a
formal proof below.

Decompose the L-dimensional error-prone estimator τ̂d,ep into two components with L1 and
L2 dimensions respectively. Then, Γ and V have the corresponding partitions:

Γ =

(
Γ1

Γ2

)
, V =

(
V11 V12
V T
12 V22

)
.

We assume V is invertable, and therefore V11 and V22 are also invertable. To show that increasing
the dimension of the error-prone estimator would not decrease the efficiency gain, according to
(6), it suffices to show that ΓTV −1Γ ≥ ΓT

1V
−1
11 Γ1. Toward this end, note that

V −1 =

(
V −111 + V −111 V12(V22 − V T

12V
−1
11 V12)

−1V T
12V

−1
11 −V −111 V12(V22 − V T

12V
−1
11 V12)

−1

−(V22 − V T
12V

−1
11 V12)

−1V T
12V

−1
11 (V22 − V T

12V
−1
11 V12)

−1

)
,

so that

ΓTV −1Γ = ΓT

1V
−1
11 Γ1 + ΓT

1{V −111 V12(V22 − V T

12V
−1
11 V12)

−1V T

12V
−1
11 }Γ1

−ΓT

1V
−1
11 V12(V22 − V T

12V
−1
11 V12)

−1Γ2

−ΓT

2 (V22 − V T

12V
−1
11 V12)

−1V T

12V
−1
11 Γ1

+ΓT

2 (V22 − V T

12V
−1
11 V12)

−1Γ2. (S5)

Let θ = (V22−V T
12V

−1
11 V12)

−1/2V T
12V

−1
11 Γ1 and δ = (V22−V T

12V
−1
11 V12)

−1/2Γ2. Then, (S5) becomes

ΓTV −1Γ = ΓT

1V
−1
11 Γ1 + θTθ − θTδ − δTθ + δTδ = ΓT

1V
−1
11 Γ1 + (θ − δ)T(θ − δ) ≥ ΓT

1V
−1
11 Γ1.

S4 Proof for Theorem 1
The asymptotic normality holds for n1/2

2 (τ̂2 − τ, τ̂2,ep − τ̂1,ep) by the moment conditions for the
RAL estimators and the central limit theorem. We then show the asymptotic variance formula in
(4).

Based on the linear form in (8), v2 = var {ψ(A,X,U, Y )}. Based on the linear form in (9),

n
1/2
2 (τ̂2,ep − τ̂1,ep) ∼= n

−1/2
2

∑
j∈S2

φ(Aj, Xj, Yj)− ρ1/2n−1/21

∑
i∈S1

φ(Ai, Xi, Yi). (S6)
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The first term in (S6) contributes var{φ(A,X, Y )}, the second term contributes ρvar{φ(A,X, Y )},
and their correlation contributes −2ρ1/2ρ1/2var{φ(A,X, Y )}. Therefore,

V = var{φ(A,X, Y )}+ ρvar{φ(A,X, Y )} − 2ρ1/2ρ1/2var{φ(A,X, Y )}
= (1− ρ)× var{φ(A,X, Y )}.

To obtain the expression for Γ, we re-write

n
1/2
2 (τ̂2,ep − τ̂1,ep) ∼= n

−1/2
2

∑
j∈S2

(1− ρ)φ(Aj, Xj, Yj)− ρn−1/22

∑
i∈S1\S2

φ(Ai, Xi, Yi).

Because observations in S2 and S1\S2 are independent, simple calculations give

Γ = (1− ρ)cov{ψ(A,X,U, Y ), φ(A,X, Y )}.

S5 Influence functions for RAL estimators based on the vali-
dation data

We review the influence functions for τ̂reg,2 and τ̂IPW,2 based on the validation data.

Lemma S1 (Regression imputation) Under Assumption 4, τ̂reg,2 has the influence function

ψreg(Aj, Xj, Uj, Yj) = µ1(Xj, Uj; β
∗
1)− µ0(Xj, Uj; β

∗
0)− τ

−E
{
∂µ1(X,U ; β∗1)

∂βT
1

}
E

{
∂S1(A,X,U, Y ; β∗1)

∂βT
1

}−1
S1(Aj, Xj, Uj, Yj; β

∗
1)

+E

{
∂µ0(X,U ; β∗0)

∂βT
0

}
E

{
∂S0(A,X,U, Y ; β∗0)

∂βT
0

}−1
S0(Aj, Xj, Uj, Yj; β

∗
0).

Lemma S2 (Inverse probability weighting) Under Assumption 5, τ̂IPW,2 has the influence func-
tion

ψIPW(Aj, Xj, Uj, Yj) =
AjYj

e(Xj, Uj;α∗)
− (1− Aj)Yj

1− e(Xj, Uj;α∗)
− τ −HIPWΣ−1ααS(Aj, Xj, Uj;α

∗),

where

HIPW = E

([
AY

e(X,U ;α∗)2
− (1− A)Y

{1− e(X,U ;α∗)}2

]
∂e(X,U ;α∗)

∂αT

)
.

Lunceford and Davidian (2004) derive Lemmas S1 and S2.
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S6 Proof of Lemma 1
We write τ̂AIPW,2 = τ̂AIPW,2(α̂, β̂0, β̂1) to emphasize its dependence on the parameter estimates
(α̂, β̂0, β̂1). By the Taylor expansion,

τ̂AIPW,2(α̂, β̂0, β̂1)

∼= τ̂AIPW,2(α
∗, β∗0 , β

∗
1) + E

{
∂τ̂AIPW,2(α

∗, β∗0 , β
∗
1)

∂αT

}
(α̂− α∗)

+E

{
∂τ̂AIPW,2(α

∗, β∗0 , β
∗
1)

∂βT
0

}
(β̂0 − β∗0) + E

{
∂τ̂AIPW,2(α

∗, β∗0 , β
∗
1)

∂βT
1

}
(β̂1 − β∗1)

∼= τ̂AIPW,2(α
∗, β∗0 , β

∗
1)

+n−12

∑
j∈S2

E

{
∂τ̂AIPW,2(α

∗, β∗0 , β
∗
1)

∂αT

}
E

{
∂S(A,X,U ;α∗)

∂αT

}−1
S(Aj, Xj, Uj;α

∗) (S7)

−n−12

∑
j∈S2

E

{
∂τ̂AIPW,2(α

∗, β∗0 , β
∗
1)

∂βT
0

}
E

{
∂S0(A,X,U, Y ; β∗0)

∂βT
0

}−1
S0(Aj, Xj, Uj, Yj; β

∗
0)

−n−12

∑
j∈S2

E

{
∂τ̂AIPW,2(α

∗, β∗0 , β
∗
1)

∂βT
1

}
E

{
∂S0(A,X,U, Y ; β∗0)

∂βT
1

}−1
S1(Aj, Xj, Uj, Yj; β

∗
1).

We have the following calculations:

E

{
∂τ̂AIPW,2(α

∗, β∗0 , β
∗
1)

∂αT

}
= HAIPW,

E

{
∂τ̂AIPW,2(α

∗, β∗0 , β
∗
1)

∂βT
0

}
= −E

[{
1− 1− A

1− e(X,U ;α∗)

}
∂µ0(X; β∗0)

∂βT
0

]
,

E

{
∂τ̂AIPW,2(α

∗, β∗0 , β
∗
1)

∂βT
1

}
= E

[{
1− A

e(X,U ;α∗)

}
∂µ1(X,U ; β∗1)

∂βT
1

]
.

Under Assumption 4, HAIPW = 0. Under Assumption 5,

E

{
∂S(A,X,U ;α∗)

∂αT

}
= E

{
S(A,X,U ;α∗)⊗2

}
= Σαα.

Therefore, we can always replace E {∂S(A,X,U ;α∗)/∂αT} by Σαα in expression (S7) if either
Assumption 4 or 5 holds. Thus, we can derive the influence function for the AIPW estimator.

S7 Lemmas for error-prone estimators
The error-prone estimators can be viewed as the initial estimators in Examples 3–5 with U being
null. The following results are similar to Lemmas S1–1 with a subtle difference that neither the
propensity score or the outcome model is correctly specified. For completeness, we establish the
results for the error-prone estimators.
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Let µa(X; ηa) be a working model for µa(X), for a = 0, 1, and e(X; γ) be a working model
for e(X). Let Sa(A,X, Y ; ηa) be the estimating function for ηa, e.g.,

Sa(A,X, Y ; ηa) =
∂µa(X; ηa)

∂ηa
{Y − µa(X; ηa)},

for a = 0, 1. Let S(A,X; γ) be the estimating function for γ, e.g.,

S(A,X; γ) =
A− e(X; γ)

e(X; γ){1− e(X; γ)}
∂e(X; γ)

∂γ
.

We further define

Σγγ = E

{
∂S(A,X; γ∗)

∂γT

}
,

which does not necessarily equal to the Fisher information matrix for a misspecified propensity
score model. Let η̂d,a (a = 0, 1) and γ̂d be the estimators solving the corresponding estimating
equations based on Sd, and let η∗a (a = 0, 1) and γ∗ satisfy E{Sa(A,X, Y ; η∗a)} = 0 (a = 0, 1)
and E{S(A,X; γ∗)} = 0. Under suitable regularity conditions, η̂d,a (a = 0, 1) and γ̂d have
probability limits η∗a (a = 0, 1) and γ∗.

Lemma S3 (Regression imputation) The error-prone regression imputation estimator for τ is
τ̂reg,d,ep = n−1d

∑
j∈Sd τ̂reg,d,ep,j, where

τ̂reg,d,ep,j = µ1(Xj; η̂d,1)− µ0(Xj; η̂d,0).

It has probability limit τep = E {µ1(X; η∗1)− µ0(X; η∗0)} and influence function

φreg(Aj, Xj, Yj) = µ1(Xj; η
∗
1)− µ0(Xj; η

∗
0)− τep

−E
{
∂µ1(X; η∗1)

∂ηT
1

}
E

{
∂S1(A,X, Y ; η∗1)

∂ηT
1

}−1
S1(Aj, Xj, Yj; η

∗
1)

+E

{
∂µ0(X; η∗0)

∂ηT
0

}
E

{
∂S0(A,X, Y ; η∗0)

∂ηT
0

}−1
S0(Aj, Xj, Yj; η

∗
0).

Lemma S4 (Inverse probability weighting) The error-prone IPW estimator for τ is τ̂IPW,d,ep =
n−1d

∑
j∈Sd τ̂IPW,d,ep,j, where

τ̂IPW,d,ep,j =
AjYj

e(Xj; γ̂d)
− (1− Aj)Yj

1− e(Xj; γ̂d)
.

It has probability limit

τep = E

{
AY

e(X; γ∗)
− (1− A)Y

1− e(X; γ∗)

}
and influence function

φIPW(Aj, Xj, Yj) =

{
AjYj

e(Xj; γ∗)
− (1− Aj)Yj

1− e(Xj; γ∗)
− τep

}
− H̃IPWΣ−1γγS(Aj, Xj; γ

∗),

where

H̃IPW = E

([
AY

e(X; γ∗)2
− (1− A)Y

{1− e(X; γ∗)}2

]
∂e(X; γ∗)

∂γT

)
.
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Lemma S5 (Augmented inverse probability weighting) Define the residual outcome as R̃d,j =
Yj − µ1(Xj; η̂d,1) for treated units and R̃d,j = Yj − µ0(Xj; η̂d,0) for control units, for d = 1, 2.
The error-prone AIPW estimator for τ is τ̂AIPW,d,ep = n−1d

∑
j∈Sd τ̂AIPW,d,ep,j, where

τ̂AIPW,d,ep,j =
AjR̃d,j

e(Xj; γ̂d)
+ µ1(Xj; η̂d,1)−

(1− Aj)R̃d,j

1− e(Xj; γ̂d)
− µ0(Xj; η̂d,0). (S8)

It has probability limit

τep = E

[
AY

e(X; γ∗)
+

{
1− A

e(X; γ∗)

}
µ1(X; η∗1)− (1− A)Y

1− e(X; γ∗)
−
{

1− 1− A
1− e(X; γ∗)

}
µ0(X; η∗0)

]
and influence function

φAIPW(Aj, Xj, Yj)

=
AjYj

e(Xj; γ∗)
+

{
1− Aj

e(Xj; γ∗)

}
µ1(Xj; η

∗
1)

− (1− Aj)Yj
1− e(Xj; γ∗)

−
{

1− 1− Aj
1− e(Xj; γ∗)

}
µ0(Xj; η

∗
0)− τep + H̃AIPWΣ−1γγS(Aj, Xj; γ

∗)

+E

[{
1− 1− A

1− e(X; γ∗)

}
∂µ0(X; η∗0)

∂ηT
0

]
E

{
∂S0(A,X, Y ; η∗0)

∂ηT
0

}−1
S0(Aj, Xj, Yj; η

∗
0)

−E
[{

1− A

e(X; γ∗)

}
∂µ1(X; η∗1)

∂ηT
1

]
E

{
∂S1(A,X, Y ; η∗1)

∂ηT
1

}−1
S1(Aj, Xj, Yj; η

∗
1), (S9)

where

H̃AIPW = E

([
A{Y − µ1(X; η∗1)}

e(X; γ∗)2
− (1− A){Y − µ0(X; η∗0)}

{1− e(X; γ∗)}2

]
∂e(X; γ∗)

∂γT

)
.

The results in Lemmas S3 and S4 can be obtained by the Taylor expansion. The proof for
Lemma S5 is similar to that for Lemma 1 and therefore omitted.

S8 Assumptions for the matching estimator
We review the assumptions for the matching estimators, which can also be found in Abadie and
Imbens (2006).

Assumption S1 (Population distributions) (i) (X,U) is continuously distributed on a compact
and convex support. The density of (X,U) is bounded and bounded away from zero on its support.

(ii) For a = 0, 1, µa(x, u) and σ2
a(x, u) are Lipschitz, σ2

a(x, u) is bounded away from zero,
and E(Y 4 | A = a,X = x, U = u) is bounded uniformly over its support.

(iii) for a = 0, 1, µa(x) and σ2
a(x) are Lipschitz, σ2

a(x) is bounded away from zero, and
E(Y 4 | A = a,X = x) is bounded uniformly over its support.
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Assumption S1 (i) can be relaxed by allowing (X,U) to have discrete components. We only
need to obtain results on each level of discrete covariates and derive the same result. Assumption
S1 (ii) requires the conditional mean and variance functions to be bounded and satisfy certain
smoothness conditions, which are rather mild. In fact, Assumption S1 (ii) implies Assumption
S1 (iii). To be more transparent, we state Assumption S1 (iii) explicitly.

Assumption S2 (Estimators of mean functions) For a = 0, 1, the estimators µ̂a(x, u) and µ̂a(x)

satisfy the following asymptotic conditions: (i) |µ̂a(x, u) − µa(x, u)| = oP

{
n
−1/2+1/dim(x,u)
2

}
;

and (ii) |µ̂a(x)− µa(x)| = oP

{
n
−1/2+1/dim(x)
2

}
.

If µ̂a(x, u) and µ̂a(x) are obtained under correctly specified parametric models, then Assump-
tion S2 holds. If µ̂a(x, u) and µ̂a(x) are obtained using nonparametric methods, such as power
series regression (Newey; 1997) or kernel regression (Fan and Gijbels; 1996) estimators, we need
to select their tuning parameters properly to ensure Assumption S2. Assumption S2 is needed so
that the bias correction terms achieve fast convergence; e.g., n1/2

2 (B̂2 − B2) → 0 in probability,
as n2 →∞.

S9 Proof of Theorem 2
First, we express

n
1/2
2 (τ̂mat,2 − τ)

= n
−1/2
2

∑
j∈S2

ψ̂mat,j + oP (1)

= n
−1/2
2

∑
j∈S2

{µ1(Xj, Uj)− µ0(Xj, Uj)− τ}

+n
−1/2
2

∑
j∈S2

(2Aj − 1)
{

1 +M−1K2,(X,U),j

}{
Yj − µAj

(Xj, Uj)
}

+ oP (1).

Second, let

T µ ≡ n
−1/2
2

∑
j∈S2

{µ1(Xj, Uj)− µ0(Xj, Uj)− τ},

T e ≡ n
−1/2
2

∑
j∈S2

(2Aj − 1){1 +M−1K2,(X,U),j}{Yj − µAj
(Xj, Uj)},

FX,U ≡ {(Xj, Uj) : j ∈ S2}.

We verify that the covariance between T µ and T e is zero:

cov (T µ, T e) = E {cov (T µ, T e | FX,U)}+ cov {E(T µ | FX,U), E(T e | FX,U)}
= E(0) + cov {E(T µ | FX,U), 0}
= 0.
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Ignoring the oP (1) term, the variance of n1/2
2 (τ̂mat,2 − τ) is

var

[
n
−1/2
2

∑
j∈S2

{µ1(Xj, Uj)− µ0(Xj, Uj)− τ}

]

+ var

[
n
−1/2
2

∑
j∈S2

(2Aj − 1)
{

1 +M−1K2,(X,U),j

}{
Yj − µAj

(Xj, Uj)
}]

.

As n2 →∞, the first term becomes

vτ2 = var {τ(X,U)} ,

and the second term becomes

ve2 = plim

[
n−12

∑
j∈S2

{
1 +M−1K2,(X,U),j

}2
σ2
Aj

(Xj, Uj)

]
.

Under Assumption S1, K2,(X,U),j = OP (1) and E{K2,(X,U),j} and E{K2
2,(X,U),j} are uniformly

bounded over n2 (Abadie and Imbens; 2006, Lemma 3). Therefore, a simple algebra yields
ve2 = O(1). Combining all results, the asymptotic variance of n1/2

2 (τ̂mat,2 − τ) is vτ2 + ve2.
The derivations for Γ and V are similar and thus omitted.

S10 Proof of Theorem 3
For the matching estimators, Otsu and Rai (2016) showed that the distribution of τ̂ ∗2 − τ̂2 given
the observed data approximates the sampling distribution of τ̂2. In what follows, we prove that
v̂ar(τ̂2) is consistent for var(τ̂2), which covers both cases with RAL and matching estimators and
is simpler than Otsu and Rai (2016) for the matching estimators.

Let (M1, . . . ,Mn2) be a multinomial random vector with n2 draws on n2 cells with equal
probabilities. Let W ∗

j = n
−1/2
2 Mj for j = 1, . . . , n2, and W̄ ∗ = n−12

∑
j∈S2 W

∗
j . Then, the

bootstrap weights {W ∗
j : j = 1, . . . , n2} satisfy that as n2 →∞,

max
j∈S2
|W ∗

j − W̄ ∗| P→ 0, (S10)∑
j∈S2

(W ∗
j − W̄ ∗)2

P→ 1. (S11)

See, e.g., Mason and Newton (1992). The bootstrap replicate of (τ̂2 − τ) can be written as

τ̂ ∗2 − τ̂2 = n
−1/2
2

∑
j∈S2

(
W ∗
j − W̄ ∗) ψ̂j. (S12)

For RAL estimators, following (S12), we have τ̂ ∗2 − τ̂2 = T ∗1 + T ∗2 , where

T ∗1 = n
−1/2
2

∑
j∈S2

(
W ∗
j − W̄ ∗)ψ(Aj, Xj, Uj, Yj),

T ∗2 = n
−1/2
2

∑
j∈S2

(
W ∗
j − W̄ ∗){ψ̂(Aj, Xj, Uj, Yj)− ψ(Aj, Xj, Uj, Yj)

}
.
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By (S10) and the fact that ψ̂(Aj, Xj, Uj, Yj) is root-n consistent for ψ(Aj, Xj, Uj, Yj), we have
T ∗2 = oP

(
n−12

)
. By (S11), we have

τ̂ ∗2 − τ̂2 = T ∗1 + oP (1) = n
−1/2
2

∑
j∈S2

(
W ∗
j − W̄ ∗)ψ(Aj, Xj, Uj, Yj) + oP (1). (S13)

For matching estimators, following (S12), we have

τ̂ ∗2 − τ̂2 = n
−1/2
2

∑
j∈S2

(
W ∗
j − W̄ ∗) ψ̂mat,j

≡ T ∗mat,1 + T ∗mat,2 + T ∗mat,3,

where

T ∗mat,1 = n
−1/2
2

∑
j∈S2

(
W ∗
j − W̄ ∗)ψmat,j,

T ∗mat,2 = n
−1/2
2

∑
j∈S2

(
W ∗
j − W̄ ∗) [{µ̂1(Xj, Uj)− µ̂0(Xj, Uj)− τ̂2} − {µ1(Xj, Uj)− µ0(Xj, Uj)− τ}] ,

T ∗mat,3 = n
−1/2
2

∑
j∈S2

(
W ∗
j − W̄ ∗) (2Aj − 1)

{
1 +M−1K2,(X,U),j

}{
µAj

(Xj, Uj)− µ̂Aj
(Xj, Uj)

}
.

Under Assumption S1, for any ζ > 0, E{Kζ
2,(X,U),j} is uniformly bounded over n2 (Abadie and

Imbens; 2006). Together with Assumption S2 and the property of the bootstrap weights that
maxj∈S2 |W ∗

j − W̄ ∗| → 0 in probability, as n2 →∞, we have T ∗mat,2 = oP

{
n
−1+1/ dim(x,u)
2

}
and

T ∗mat,3 = oP

{
n
−1+1/ dim(x,u)
2

}
. By (S11), we have

τ̂ ∗2 − τ̂2 = T ∗mat,1 + oP (1) = n
−1/2
2

∑
j∈S2

(
W ∗
j − W̄ ∗)ψmat,j + oP (1). (S14)

Unifying (S13) and (S14), τ̂ ∗2 − τ̂2 = n
−1/2
2

∑
j∈S2

(
W ∗
j − W̄ ∗)ψj + oP (1). Let ψ(i) be the

ith order statistic of {ψj : j ∈ S2}. Because E
(
ψγj
)
<∞ for 0 ≤ γ ≤ 4, we have

|τ̂ ∗2 − τ̂2|
n
1/γ
2

≤ 2
|ψ(1)|+ |ψ(n2)|

n
1/γ
2

→ 0,

almost surely, as n2 → ∞, leading to max{W ∗
j :j∈S2} |τ̂

∗
2 − τ̂2|/n1/γ

2 → 0, almost surely, as
n2 →∞, where the maximum is taken over all possible bootstrap replicates. By Theorem 3.8 of
Shao and Tu (2012),

v̂ar(τ̂2)

var(τ̂2)
→ 1,

almost surely, as n2 →∞. This proves that v̂ar(τ̂2) is consistent for var(τ̂2).
The proofs for the consistency of Γ̂ and V̂ for Γ and V are similar and thus omitted. Therefore,

v̂ar(τ̂) is consistent for var(τ̂).
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S11 Derivation of the optimal sample allocation
The goal is to minimize (20) subject to the constraint (19). By the Lagrange multipliers technique,
it suffices to find the minimizer of

L(n1, n2, λ) = n−12 v2 − (n−12 − n−11 )γ − λ(C − n1C1 − n2C2).

Solving ∂L(n1, n2, λ)/∂n1 = 0 and ∂L(n1, n2, λ)/∂n2 = 0, we have

n1 =

(
γ

λC1

)1/2

, n2 =

(
v2 − γ
λC2

)1/2

,

and therefore, (21) follows.

S12 Proof of Theorem 4
Following the discussion in Section 7.1, we can express

n
1/2
2 (τ̂2 − τ) = ρ1/2n

−1/2
1

∑
j∈S1

π−1j Ijψ(Aj, Xj, Uj, Yj) + oP (1),

n
1/2
2 (τ̂2,ep − τ̂1,ep) = ρ1/2n

−1/2
1

∑
j∈S1

(π−1j Ij − 1)φ(Aj, Xj, Yj) + oP (1).

Then, the asymptotic normality of {n1/2
2 (τ̂2−τ), n

1/2
2 (τ̂2,ep−τ̂1,ep)}T follows from the multivariate

central limit theorem. The corresponding asymptotic covariance matrix can be obtained by the
following calculation. First, v2 is

var

{
ρ1/2n

−1/2
1

∑
j∈S1

π−1j Ijψ(Aj, Xj, Uj, Yj)

}
= ρ× var{π−1Iψ(A,X,U, Y )}.

Second, Γ is

cov

{
ρ1/2n

−1/2
1

∑
j∈S1

π−1j Ijψ(Aj, Xj, Uj, Yj), ρ
1/2n

−1/2
1

∑
j∈S1

(π−1j Ij − 1)φ(Aj, Xj, Yj)

}
= ρ× cov{π−1Iψ(A,X,U, Y ), (π−1I − 1)φ(A,X, Y )}.

Third, V is

var

{
ρ1/2n

−1/2
1

∑
j∈S1

(π−1j Ij − 1)φ(Aj, Xj, Yj)

}
= ρ× var{(π−1I − 1)φ(A,X, Y )}.
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S13 Error-prone matching estimators in Section 7.2
Let the error-prone matching estimators be

τ̂
(0)
mat,1,ep = n−11

∑
i∈S1

(2Ai − 1)

Yi − 1

M

∑
l∈J1,X,i

Yl

 ,

τ̂
(0)
mat,2,ep =

(∑
j∈S2

π−1j

)−1∑
j∈S2

π−1j (2Aj − 1)

Yj − 1

M

∑
l∈J2,X,j

Yl

 .

Let the bias-corrected matching estimators be

τ̂mat,d,ep = τ̂
(0)
mat,d,ep − n

−1/2
1 B̂d,ep, (d = 1, 2),

where

B̂d,ep = n
−1/2
1

∑
j∈S2

π−1j (2Aj − 1)

 1

M

∑
l∈Jd,X,j

{
µ̂1−Aj

(Xj)− µ̂1−Aj
(Xl)

} .

S14 Proof of Theorem 5
First, with the new definition (26), we can express

n
1/2
2 (τ̂mat,2 − τ)

= n
1/2
2 (τ̂

(0)
mat,2 − n

−1/2
1 B̂2 − τ)

= n
1/2
2


(∑
j∈S2

π−1j

)−1∑
j∈S2

π−1j (2Aj − 1)
{

1 +M−1K2,(X,U),j

}
Yj − τ


−n1/2

2 n−11

∑
j∈S2

π−1j (2Aj − 1)

M−1
∑

l∈J2,(X,U),j

{
µ̂1−Aj

(Xj, Uj)− µ̂1−Aj
(Xl, Ul)

}
= ρ1/2n

−1/2
1

∑
j∈S2

π−1j {µ1(Xj, Uj)− µ0(Xj, Uj)− τ}

+ρ1/2n
−1/2
1

∑
j∈S2

π−1j (2Aj − 1)
{

1 +M−1K2,(X,U),j

}{
Yj − µAj

(Xj, Uj)
}

+ oP (1),

where the third equality follows by some algebra.
Second, let

T µ ≡ n
−1/2
1

∑
j∈S2

π−1j {µ1(Xj, Uj)− µ0(Xj, Uj)− τ},

T e ≡ n
−1/2
1

∑
j∈S2

π−1j (2Aj − 1){1 +M−1K2,(X,U),j}{Yj − µAj
(Xj, Uj)},

FX,U ≡ {(Xj, Uj) : j ∈ S2}.
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We verify that the covariance between T µ and T e is zero:

cov (T µ, T e) = E {cov (T µ, T e | FX,U)}+ cov {E(T µ | FX,U), E(T e | FX,U)}
= E(0) + cov {E(T µ | FX,U), 0}
= 0.

Ignoring the oP (1) term, the variance of n1/2
2 (τ̂mat,2 − τ) is

ρ× var

[
n
−1/2
1

∑
j∈S2

π−1j {µ1(Xj, Uj)− µ0(Xj, Uj)− τ}

]

+ ρ× var

[
n
−1/2
1

∑
j∈S2

π−1j (2Aj − 1)
{

1 +M−1K2,(X,U),j

}{
Yj − µAj

(Xj, Uj)
}]

.

As n2 →∞, the first term becomes

ṽτ2 = ρ× E
[

1− π
π
{τ(X,U)− τ}2

]
,

and the second term becomes

ṽe2 = ρ× plim

[
n−11

∑
j∈S1

1− πj
πj

{
1 +M−1K2,(X,U),j

}2
σ2
Aj

(Xj, Uj)

]
.

Because πj’s are bounded away from zero, under Assumption S1, we have K2,(X,U),j = OP (1),
and E{K2,(X,U),j} and E{K2

2,(X,U),j} are uniformly bounded over n2 (Abadie and Imbens; 2006,
Lemma 3). Therefore, a simple algebra yields ṽe2 = O(1). Combining all results, the asymptotic
variance of n1/2

2 (τ̂mat,2 − τ) is ṽτ2 + ṽe2.
The derivations for Γ and V are similar and thus omitted.

S15 Proof of (23)
We write τ̂2 = τ̂2(α̂, β̂0, β̂1) and τ̂AIPW,2,j = τ̂AIPW,2,j(α̂, β̂0, β̂1) to emphasize its dependence on
the parameter estimates (α̂, β̂0, β̂1).

First, we write

τ̂2(α
∗, β∗0 , β

∗
1) =

∑
j∈S2 π

−1
j τ̂AIPW,2,j(α

∗, β∗0 , β
∗
1)∑

j∈S2 π
−1
j

=
n−11

∑
j∈S1 π

−1
j Ij τ̂AIPW,2,j(α

∗, β∗0 , β
∗
1)

n−11

∑
j∈S1 π

−1
j Ij

≡ T̂1

T̂2
,
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where T̂1 ≡ n−11

∑
j∈S1 π

−1
j Ij τ̂AIPW,2,j(α

∗, β∗0 , β
∗
1) and T̂2 ≡ n−11

∑
j∈S1 π

−1
j Ij . Then, T̂1 is

consistent for T1 ≡ τ , and T̂2 is consistent for T2 ≡ 1. By the Taylor expansion, we have

τ̂2(α
∗, β∗0 , β

∗
1)− τ ∼=

T1
T2

+
1

T2
(T̂1 − T1)−

T1
T 2
2

(T̂2 − T2)− τ,

=

{
n−11

∑
j∈S1

π−1j Ij τ̂AIPW,2,j(α
∗, β∗0 , β

∗
1)− τ

}
− τ

(
n−11

∑
j∈S1

π−1j Ij − 1

)
= n−11

∑
j∈S1

π−1j Ij {τ̂AIPW,2,j(α
∗, β∗0 , β

∗
1)− τ} .

Second, by the Taylor expansion,

0 = n−11

∑
j∈S2

π−1j S(Aj, Xj, Uj; α̂)

∼= n−11

∑
j∈S2

π−1j S(Aj, Xj, Uj;α
∗) +

{
n−11

∑
j∈S2

π−1j
∂S(Aj, Xj, Uj;α

∗)

∂αT

}
(α̂− α∗)

∼= n−11

∑
j∈S2

π−1j S(Aj, Xj, Uj;α
∗) + E

{
∂S(A,X,U ;α∗)

∂αT

}
(α̂− α∗),

where the last line follows because by Assumption 6, n−11

∑
j∈S2 π

−1
j ∂S(Aj, Xj, Uj;α

∗)/∂αT

converges to E {∂S(A,X,U ;α∗)/∂αT} in probability. Therefore, we can establish

α̂− α∗ ∼= n−11

∑
j∈S2

E

{
∂S(A,X,U ;α∗)

∂αT

}−1
π−1j S(Aj, Xj, Uj;α

∗). (S15)

Similarly, we can establish

β̂a−β∗a ∼= n−11

∑
j∈S2

E

{
∂Sa(A,X,U, Y ; β∗a)

∂βT
a

}−1
π−1j Sa(Aj, Xj, Uj, Yj; β

∗
a) (a = 0, 1). (S16)

Third, by the Taylor expansion and (S15) and (S16), we obtain

τ̂2(α̂, β̂0, β̂1)

∼= τ̂2(α
∗, β∗0 , β

∗
1) + E

{
∂τ̂2(α

∗, β∗0 , β
∗
1)

∂αT

}
(α̂− α∗)

+E

{
∂τ̂2(α

∗, β∗0 , β
∗
1)

∂βT
0

}
(β̂0 − β∗0) + E

{
∂τ̂2(α

∗, β∗0 , β
∗
1)

∂βT
1

}
(β̂1 − β∗1)

∼= τ̂2(α
∗, β∗0 , β

∗
1)

+n−11

∑
j∈S1

E

{
∂τ̂2(α

∗, β∗0 , β
∗
1)

∂αT

}
E

{
∂S(A,X,U ;α∗)

∂αT

}−1
π−1j IjS(Aj, Xj, Uj;α

∗) (S17)

−n−11

∑
j∈S1

E

{
∂τ̂2(α

∗, β∗0 , β
∗
1)

∂βT
0

}
E

{
∂S0(A,X,U, Y ; β∗0)

∂βT
0

}−1
π−1j IjS0(Aj, Xj, Uj, Yj; β

∗
0)

−n−11

∑
j∈S1

E

{
∂τ̂2(α

∗, β∗0 , β
∗
1)

∂βT
1

}
E

{
∂S1(A,X,U, Y ; β∗0)

∂βT
1

}−1
π−1j IjS1(Aj, Xj, Uj, Yj; β

∗
1).
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Moreover, we have the following calculations:

E

{
∂τ̂2(α

∗, β∗0 , β
∗
1)

∂α

}
= HAIPW,

E

{
∂τ̂2(α

∗, β∗0 , β
∗
1)

∂β0

}
= −E

[{
1− 1− A

1− e(X,U ;α∗)

}
∂µ0(X; β∗0)

∂β0

]
,

E

{
∂τ̂2(α

∗, β∗0 , β
∗
1)

∂β1

}
= E

[{
1− A

e(X,U ;α∗)

}
∂µ1(X,U ; β∗1)

∂β1

]
.

Under Assumption 5,

E

{
∂S(A,X,U ;α∗)

∂αT

}
= E

{
S(A,X,U ;α∗)⊗2

}
= Σαα.

Under Assumption 4, we can still replace E {∂S(A,X,U ;α∗)/∂αT} by Σαα, because HAIPW =
0 and the term in (S17) is zero. Therefore, combining the above results, we have τ̂2 − τ =
τ̂2(α̂, β̂0, β̂1) − τ = n−11

∑
j∈S1 π

−1
j Ijψ(Aj, Xj, Uj, Yj), where ψ(A,X,U, Y ) is given by (11).

The result follows.

S16 Proof of Proposition 2
Based on (23) and (25) for RAL estimators or (27) and (28) for the matching estimators, we have

τ̂ − τ = τ̂2 − τ − Γ̂TV̂ −1(τ̂2,ep − τ̂1,ep)

∼= n−11

∑
i∈S1

π−1i Iiψi − ΓTV −1

(
n−11

∑
i∈S1

π−1i Iiφi − n−11

∑
i∈S1

φi

)
∼= n−11

∑
i∈S1

{
Ii
πi
ψi −

(
Ii
πi
− 1

)
ΓV −1φi

}
.

S17 Proof of Theorem 6
Let (M1, . . . ,Mn1) be a multinomial random vector with n1 draws on n1 cells with equal prob-
abilities. Let W ∗

i = n
−1/2
1 Mi for i = 1, . . . , n1, and W̄ ∗ = n−11

∑
i∈S1 W

∗
i . Then, the bootstrap

replicate of (τ̂2 − τ) can be written as

τ̂ ∗2 − τ̂ = n
−1/2
1

∑
i∈S1

(
W ∗
i − W̄ ∗) π−1i Iiψ̂i

∼= n
−1/2
1

∑
i∈S1

(
W ∗
i − W̄ ∗) π−1i Iiψi,

where the last line follows by a similar argument as in Section S10 for both RAL and matching
estimators.
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Let li denote π−1i Iiψi and l(i) be the ith order statistic of {li : i ∈ S1}. Because E
(
lγj
)
< ∞

for 0 ≤ γ ≤ 4, we have
|τ̂ ∗2 − τ̂ |
n
1/γ
1

≤ 2
|l(1)|+ |l(n1)|

n
1/γ
1

→ 0,

almost surely, as n1 →∞, leading to max{W ∗
i :i∈S1} |τ̂

∗
2−τ̂ |/n

1/γ
1 → 0, almost surely, as n1 →∞,

where the maximum is taken over all possible bootstrap replicates. By Theorem 3.8 of Shao and
Tu (2012),

v̂ar(τ̂2)

var(τ̂2)
→ 1,

almost surely, as n1 →∞. This proves that v̂ar(τ̂2) is consistent for var(τ̂2).
The proofs for the consistency of Γ̂ and V̂ for Γ and V are similar and thus omitted. Therefore,

v̂ar(τ̂) is consistent for var(τ̂).
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