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Abstract
Propensity score matching has been a long-standing tra-
dition for handling confounding in causal inference,
however, requiring stringent model assumptions. In this
article, we propose novel double score matching (DSM)
utilizing both the propensity score and prognostic score.
To gain the protection of possible model misspecifica-
tion, we posit multiple candidate models for each score.
We show that the debiasing DSM estimator achieves the
multiple robustness property in that it is consistent if
any one of the score models is correctly specified. We
characterize the asymptotic distribution for the DSM
estimator requiring only one correct model specification
based on themartingale representations of thematching
estimators and theory for local normal experiments. We
also provide a two-stage replication method for variance
estimation and extend DSM for quantile estimation.
Simulation demonstrates DSMoutperforms single-score
matching and prevailing multiply robust weighting
estimators in the presence of extreme propensity
scores.
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1 INTRODUCTION

Causal inference plays an important role in science, education, medicine, policy, and economics.
If all confounders of the treatment–outcome relationship are observed, one can use standard
techniques, such as regression adjustment, inverse probability of treatmentweighting (IPW), aug-
mented IPW (AIPW), and matching to adjust for confounding (Imbens & Rubin, 2015). Among
them, the AIPW estimator is most popular because it achieves the so-called double robustness
property by combining the use of models for the probability of treatment assignment, also known
as the propensity score (Rosenbaum & Rubin, 1983b), and the outcome mean function. More
specifically, it consistently estimates the treatment effect if either one of these functions is mod-
eled correctly (e.g., Bang & Robins, 2005; Lunceford & Davidian, 2004). However, inevitably,
weighting estimators can have a high variability by inverting the estimated propensity scores (e.g.,
Guo & Fraser, 2014; Kang & Schafer, 2007), especially if these probabilities are close to zero or
one. Matching has multiple features that are desirable:

(a) Matching does not involve weighting by the inverse of the propensity score and therefore
avoids the possibly large variability due to weighting (Frölich, 2004);

(b) Matching is transparent and intuitively appealing with the goal of replicating a randomized
experiment froman observational study (Dehejia&Wahba, 1999, 2002;Heckman et al., 1997;
Rosenbaum, 1989; Rubin, 2006; Stuart, 2010);

(c) Matching can be viewed as a hot deck imputation method that can provide valid estimators
of general parameters depending on the entire distribution, such as quantiles (Ford, 1983).

Although matching has a substantial promise, it suffers from the issue of the curse of dimen-
sionality. In the presence of many covariates, matching directly on high-dimensional covariates
is incapable of removing all confounding biases. To overcome this challenge, researchers have
proposed different dimension reduction techniques to facilitate matching. On the one hand,
Rosenbaum and Rubin (1983b) demonstrated the central role of the propensity score as being a
balancing score in the sense that the same propensity score distributions in different treatment
groups lead to the same covariate distributions. Therefore, propensity score matching (PSM) can
remove all confounding biases (e.g., Abadie& Imbens, 2016). However, PSMhas recently received
major backlash for emulating an unconditional randomized experiment, contrary to matching
on covariates that mimics a block randomized experiment (King & Nielsen, 2019). On the other
hand,Hansen (2008) proposed an alternative balancing score: the prognostic score, also called the
disease risk score (i.e., a sufficient statistic for the potential outcomes given which the potential
outcomes and covariates are independent). This score provides a balance of disease risks between
the treatment groups, as distinct from the balance of treatment propensities provided by the
propensity score. In economics, prognostic score matching (PGM) has been previously proposed
in Imbens (2004) and Zhao (2004), where the prognostic score is a vector of linear predictors in
treatment-specific outcome regressions. PGM is also similar to predictive mean matching (Yang
& Kim, 2018; Yang & Kim, 2020) in the missing data literature to compensate for nonresponse.
As analogous to AIPW, it is advantageous to combine the use of the propensity and prognostic
score in matching (Hansen, 2008). Leacy and Stuart (2014) showed empirically that the joint use
of two scores in matching (which we refer to as double score matching, DSM) improves the treat-
ment effect estimation. Antonelli et al. (2018) later established the double robustness of matching
jointly on propensity and prognostic scores in the sense that the matching estimator is consistent
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for theATE if either one of the scoremodels is correctly specified.However, they only provided the
rate of convergence but not the asymptotic distribution of the doubly robust matching estimator.

In this article, we propose new DSM estimators based on the propensity score and the prog-
nostic score. Because each score creates a balance between the treated and control groups, the
augmented score serves as a “double balancing score.” To estimate the ATEs, existing DSMwould
require adjusting for the vector of the propensity score and possibly multiple treatment-specific
prognostic scores (i.e., one for each treatment group). Instead of estimating the ATEs directly,
we focus on estimating the average of the potential outcomes separately for each treatment level,
which requires adjusting only for the propensity score and the prognostic score for that particular
level of the treatment. This insight allows us to reduce the dimension of the double score further
without giving up the double balancing property. This strategy also plays an important role in
dimension reduction for constructing improved DSM estimators.

In practice, the double score is unknown and therefore requiresmodeling and estimation. The
new DSM estimator is doubly robust, which includes one propensity score model and one prog-
nostic score model. With an unknown data generating process, there is no guarantee that either
of the twomodels is correctly specified. To gain additional protection against model misspecifica-
tion, we posit multiple models for the propensity score and prognostic score. Doing so, however,
may introduce bias due tomatching discrepancy based on amoderately high-dimensionalmatch-
ing variable (Abadie & Imbens, 2011), although our strategy of estimating the average of potential
outcomes separately helps dimension reduction. In this case, we propose the debiasing DSM esti-
mator that corrects for the bias due to matching discrepancy. The current matching literature
has focused primarily on estimating the ATEs; however, other aspects of the distribution such
as quantiles may be more appropriate in certain applications. For example, a treatment strategy
may not decrease average health cost but instead lowers the upper tail of the cost distribution, so
focusing only on ATEs would not reveal the beneficial effect of the treatment strategy. In these
cases, it is more informative to study quantile treatment effects (QTEs), which are defined as the
differences in population quantiles of the potential outcome distributions. Taking the advantage
of matching as a hot deck imputation method, we extend the multiply robust DSM framework to
estimate QTEs.

We show that the DSM estimators have the multiple robustness property, which guarantees
the estimation consistency if any one of the candidatemodels for the propensity score or prognos-
tic score is correctly specified. This result is similar in essence to the multiply robust weighting
(MRW) estimators in the missing data and survey literature (Chen & Haziza, 2017a, 2017b;
Han, 2014; Han et al., 2019; Han&Wang, 2013; Li et al., 2020). Naik et al. (2016) andWang (2019)
proposedMRWestimators for estimating theATEs in causal inference. TheDSMestimator has an
intrinsic connection with the doubly robust AIPW estimator in that they exhibit similar asymp-
totic expansions; see (6) and (7). However, AIPW is extremely unstable when some estimated
propensity scores are close to zero or one due to the weight construction, and it is sensitive to
slight model misspecification (Kang & Schafer, 2007). Instead of inverting the estimated propen-
sity score, the DSM estimator uses the matching weights and hence is more robust to extreme
propensity score values. MRW also mitigates the instability of (A)IPW by estimating the weights
directly under balance constraints. However, it requires exact covariate balance and thus can
still have large variability in finite samples compared to DSM, especially when the overlap of the
covariate distribution is limited.

The rest of this paper proceeds as follows. Section 2 introduces notation, assumptions,
and lemmas for various balancing scores. Section 3 provides the new perspective of using
the double score as a dimension reduction tool and proposes the new DSM estimator of the
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ATE with multiple candidate models for the double score. Section 4 establishes the multiple
robustness of the DSM estimator and its limiting distribution, which allows quantifying the
impact of the nuisance parameter estimation. Section 5 extends the DSM framework to the
estimation of the QTE. Section 6 provides the extensions to the average treatment effect on
the treated (ATT) and QTE on the treated (QTT). Section 7 uses simulation to evaluate the
finite-sample properties of the DSM estimators. The simulation results demonstrate that match-
ing estimators outperform weighting estimators. Section 8 applies the DSM estimators to an
observational study from the job training program. Section 9 concludes, appendix and Data S1
contains the proofs and additional empirical results, and an R package dsmatch is available at
https://github.com/Yunshu7/dsmatch.

2 NOTATION, ASSUMPTIONS, AND BALANCING SCORES

Let Xi be a vector of pretreatment covariates, Ai the binary treatment, and Yi the outcome for unit
i = 1, … ,n. We follow the potential outcomes framework. Let Yi(a) be the potential outcome
had unit i been given treatment a (a = 0, 1). The observed outcome is Yi = Yi(Ai) = AiYi(1) +
(1 − Ai)Yi(0). We assume that {Xi,Ai,Yi(0),Yi(1)}, i = 1, … ,n, are independent and identically
distributed. Thus, (Xi,Ai,Yi), i = 1, … ,n, are also independent and identically distributed.
Various causal estimands are useful to provide a comprehensive assessment of treatment effects.
The ATE is 𝜏 = E{Y (1) − Y (0)}. For 𝜉 ∈ (0, 1), the overall 𝜉-QTE is Δ𝜉 = q1,𝜉 − q0,𝜉 , where
qa,𝜉 = infq[P{Y (a) ≤ q} ≥ 𝜉], a = 0, 1. When the outcome data follow a skewed distribu-
tion, QTEs may be more informative measures of treatment effect. Similarly, the ATT is
𝜏ATT = E{Y (1) − Y (0)|A = 1}, and the QTT is ΔQTT,𝜉 = q1,𝜉|A=1 − q0,𝜉|A=1, where qa,𝜉|A=1 =
infq[P{Y (a) ≤ q} ≥ 𝜉|A = 1], a = 0, 1.We illustrate themethodology development for estimating
𝜏 and Δ𝜉 and provide extensions to the ATT and QTT in Section 6. For simplicity of exposition,
for a generic variable V , denote

𝜇a(V) = E{Y (a)|V}, 𝜎2a(V) = V{Y (a)|V}, e(V) = P(A = 1|V),
where 𝜇a(V) is an outcome mean function, 𝜎2a(V) is a variance function, and e(V) is the propen-
sity score. Hansen (2008) introduced the notion of the prognostic score Ψa(X) as a sufficient
statistic for Y (a) in the sense that Y (a)⊥⊥X |Ψa(X) for a = 0, 1. For example, if Y (a) follows a
location-shift family fa{y − 𝜇a(X)}, then Ψa(X) = 𝜇a(X) for a = 0, 1.

We focus on the setting where the standard positivity and treatment ignorability assumptions
hold (Rosenbaum & Rubin, 1983b).

Assumption 1. (i) There exist constants c1 and c2 such that 0 < c1 ≤ e(X) ≤ c2 < 1 almost surely;
and (ii) {Y (0),Y (1)}⊥⊥A|X , where ⊥⊥means “independent of.”

Assumption 1 (i) implies a sufficient overlap of the covariate distribution between the treat-
ment groups. If this assumption is violated, a common approach is to trim the sample; see Yang
and Ding (2018). Generally, Assumption 1 (ii) can be made plausible by collecting detailed infor-
mation on characteristics of the units that are related to treatment assignment and outcome. As
a result, the dimension of X may be high. Balancing scores have been proposed for dimension
reduction.

Lemma 1 (Balancing score; Antonelli et al. (2018)). Under Assumption 1, (i) {Y (0),
Y (1)}⊥⊥ A|{e(X), h(X)}, and ii) {Y (0), Y (1)}⊥⊥ A | {h(X),Ψ(X)} for any h(X).

https://github.com/Yunshu7/dsmatch
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In particular, if h(X) is a null set, Lemma 1 (i) shows that the propensity score is a balanc-
ing score (Rosenbaum & Rubin, 1983b) and (ii) shows that the prognostic score is a balancing
score (Hansen, 2008). Antonelli et al. (2018) proposed matching based on the estimated double
score {̂e(X), Ψ̂(X)}. If either ê(X) or Ψ̂(X) is consistent for the corresponding score, the matching
estimator is consistent for the ATE by either (i) or (ii) in Lemma 1.

DSM is an attractive alternative to PSM; however, the dimension reduction property of
Lemma 1 depends on the dimension of the prognostic score. The problem is that if the dimen-
sion of the matching variable is higher, the bias order of the matching estimator becomes larger,
see Section 3.1, suggesting that the advantages of PSM do not carry over to DSM. To preserve the
simplicity of matching (avoiding de-biasing), we show that further improvement of the dimen-
sion reduction property of the double score is possible without additional assumptions. Then,
the advantage of PSM carries over to DSM, see Section 3.2. Moreover, because the double score
is unknown in practice, one must posit models and estimate the double score from the observed
data. To gain robustness to model misspecification, we posit multiple candidate models for
the double score. We propose a multiply robust DSM procedure and show that the de-biasing
matching estimator achieves multiple robustness, see Section 3.3.

3 DSM ESTIMATORS OF THE ATE

3.1 General matching estimators

To fix ideas, we consider matching with replacement with the number of matches fixed at M.
Matching estimators hinge on imputing the missing potential outcome for each unit. In prac-
tice, the most common choice ofM is 1, then the matching procedure becomes nearest neighbor
imputation (Chen & Shao, 2000, 2001; Little & Rubin, 2002). To be precise, for unit i, the poten-
tial outcome under Ai is the observed outcome Yi; the (counterfactual) potential outcome under
1 − Ai is not observed but can be imputed by the observed outcomes of the nearestM units with
1 − Ai.

To illustrate the properties of the matching estimator, we first consider a generic variable V
as the matching variable. Table 1 summarizes the choices of V . To stabilize the numerical per-
formance, it is desirable to standardize V such that each component has mean zero and variance
one. Without loss of generality, we use the Euclidean distance to determine neighbors; the dis-
cussion applies to other distances (Abadie & Imbens, 2006). We denote V ,i as the index set for
these matched units for unit i and KV ,i =

∑n
l=11(i ∈ V ,l) as the number of times that unit i is used

as a match, where the subscript “V” in V ,i and KV ,i indicates the name of the matching variable.
Table 1 (I) illustrates the above matching scheme to impute the missing potential outcomes. For
unit i with Ai = 1, the imputed potential outcomes are Ŷi(1) = Yi and Ŷi(0) = M−1∑

j∈V ,i
Yj. For

unit i′ with Ai′ = 0, Ŷi′ (1) = M−1∑
j∈V ,i′

Yj and Ŷi′ (0) = Yi′ . Once we approximate both potential
outcomes for all units, a simple matching estimator of 𝜏 is

𝜏mat = n−1
n∑
i=1

{Ŷi(1) − Ŷi(0)} = n−1
n∑
i=1

(2Ai − 1)(1 +M−1KV ,i)Yi.

To establish the asymptotic properties of 𝜏mat, Abadie and Imbens (2006) derived the following
decomposition

n1∕2(𝜏mat − 𝜏) = Bn + Cn,
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where

Bn = n−1∕2
n∑
i=1

(2Ai − 1)

[
M−1

∑
j∈V ,i

{
𝜇1−Ai(Vi) − 𝜇1−Ai(Vj)

}]
,

Cn = n−1∕2
n∑
i=1

[
𝜇1(Vi) − 𝜇0(Vi) − 𝜏 + (2Ai − 1)

(
1 +M−1KV ,i

) {
Yi − 𝜇Ai (Vi)

}]
. (1)

By Assumption 1, for V to be X , propensity score, prognostic score or double score, we have
E{𝜇1(V) − 𝜇0(V)} = 𝜏, and therefore E(Cn) = 0. The difference 𝜇Ai(Vi) − 𝜇Ai (Vj) in (1) accounts
for the matching discrepancy, so Bn contributes to the asymptotic bias of the matching esti-
mator. In general, if the matching variable is dV -dimensional, we have E(Bn) = O(n1∕2−2∕dV )
(Abadie & Imbens, 2006, theorem 1). Table 2 demonstrates the relationship of the bias
order and dV . If dV ≥ 4, the bias is nonnegligible. If dV = 3, the bias shrinks to zero as n
increases but the convergence rate −1∕6 is slow. If dV = 2 and 1, the bias shrinks to zero
at much faster rates −1∕2 and −3∕2, respectively. Therefore, in finite samples, matching
based on a three-dimensional double score {e(X),Ψ(X)} is likely to have a noticeable bias.
Reducing dV to 2 or 1 is worthwhile to make the bias achieve faster rates of converging to
zero.

TABLE 1 Two matching schemes for imputing potential outcomes. V ,i denotes the index set for the
matched units for unit i, where the subscript “V” represents the name of the matching variable. In (I), the
matching variable V is the same for imputing the missing values of Y (0) and Y (1). In (II), the matching variables
V0 and V1 are different for imputing the missing values of Y (0) and Y (1)

(I) Matching imputation (II) Newmatching imputation

Unit A Y Ŷ (0) Ŷ (1) Unit A Y Ŷ (0) Ŷ (1)
i 0 Yi Yi M−1∑

l∈V,i
Yl i 0 Yi Yi M−1∑

l∈V1 ,i
Yl

i′ 1 Yi′ M−1∑
l∈V,i′

Yl Yi′ i′ 1 Yi′ M−1∑
l∈V0 ,i′

Yl Yi′

(I) Matching Variable (II) Matching Variable

V dV V0 V1 dV
M.X X dim(X) X X dim(X)

PSM e(X) 1 e(X) e(X) 1

PGM {Ψ0(X),Ψ1(X)} 2 Ψ0(X) Ψ1(X) 1

DSM S = {e(X),Ψ0(X),Ψ1(X)} 3 S0 = {e(X),Ψ0(X)} S1 = {e(X),Ψ1(X)} 2

DSM S = {ej(X),Ψk
0(X),Ψ

k
1(X) ∶ J + 2K S0 = {ej(X),Ψk

0(X) ∶ S1 = {ej(X),Ψk
1(X) ∶ J + K

j = 1, … J; k = 1, … ,K} j = 1, … J; k = 1, … ,K} j = 1, … J; k = 1, … ,K}

Abbreviations: DSM, double score matching; PGM, prognostic score matching; PSM, propensity score matching.

TABLE 2 The order of bias of the matching variable in terms of the dimension of the matching variable

dV 1 2 3 4 > 4
O(n1∕2−2∕dV ) O(n−3∕2) O(n−1∕2) O(n−1∕6) O(1) O(n1∕10)
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3.2 New simple DSM estimator

Lemma 2 is the key result (Antonelli et al., 2018).

Lemma 2. Under Assumption 1, Y (a)⊥⊥A|{h(X),Ψa(X)}, Y (a)⊥⊥A|{e(X), h(X)} for any h(X) and
a = 0, 1.

Lemma 2 implies that E{Y (a)} = E
[
E{Y |A = a, e(X),Ψa(X)}

]
, (a = 0, 1). For its interpreta-

tion, it is useful to compare it to the result in Lemma 1. By Lemma 1, we create subpopulations
where we can simultaneously compare the treated units and the control units. These subpop-
ulations were defined by common values for {e(X),Ψ(X)}. By Lemma 2, we do not construct
such populations. The key insight is that in order to estimate 𝜏, it is not necessary to do so.
Instead, we construct subpopulations where we can estimate the average value of the potential
outcomes for a = 0 and 1 separately. For a given a, these subpopulations are defined by the value
of {e(X),Ψa(X)}. This difference allows us to reduce the dimension of the double score from three
to two, a small reduction of the dimension of the matching variable, a big reduction of the bias
order of the matching estimator.

We focus on estimating 𝜇a = E{Y (a)} separately for a = 0, 1. Let the matching variable be the
double score Sa(X) = {e(X),Ψa(X)} or Sa for shorthand. Table 1 (II) illustrates the new matching
scheme to impute the missing potential outcomes. For unit i with Ai = 1, Ŷi(1) = Yi and Ŷi(0) =
M−1∑

l∈S0 ,i
Yl. For unit i′ with Ai′ = 0, Ŷi′ (1) = M−1∑

l∈S1 ,i′
Yl and Ŷi′ (0) = Yi′ . Importantly, the

newmatching scheme uses differentmatching variables, namely S0 and S1, to impute themissing
values of Y (0) and Y (1). This is in contrast to matching scheme (I) that uses the same matching
variable for imputing the missing values of Y (0) and Y (1). Once we approximate both potential
outcomes for all units, a simple DSM estimator of 𝜏 is

𝜏
(0)
dsm = �̂�

(0)
1,dsm − �̂�

(0)
0,dsm, (2)

where �̂�
(0)
a,dsm = n−1

∑n
i=1Ŷi(a) = n−1

∑n
i=11(Ai = a)

(
1 +M−1KSa,i

)
Yi, for a = 0, 1. Because

dim(Sa) = 2, 𝜏(0)dsm is asymptotically unbiased.

3.3 Multiply robust DSM

In practice, S0 and S1 are unknown, requiring modeling and estimation from the observed data.
Following the empirical literature, one can posit a logistic regression model for the propensity
score and a generalized linear model for the prognostic score. To provide additional protection
against model misspecification, we can posit multiple candidate models for both scores. The
intuition is that if at least one of the candidatemodels is correctly specified, whether it is a propen-
sity score model or a prognostic score model, balancing at least one score suffices to remove
confounding biases. Therefore, the DSM estimator achieves the so-called multiple robustness.

Following Han and Wang (2013), we postulate multiple candidate models

• (𝛼) = {ej(X; 𝛼j) ∶ j = 1, … , J} for e(X) with unknown parameters 𝛼 = (𝛼1,T, … , 𝛼J,T)T;
• 0(𝛽0) = {Ψk

0(X; 𝛽k0 ) ∶ k = 1, … ,K} and 1(𝛽1) = {Ψk
1(X; 𝛽k1 ) ∶ k = 1, … ,K} for

Ψ0(X) and Ψ1(X), respectively, with unknown parameters 𝛽0 = (𝛽1,T0 , … , 𝛽K,T0 )T and
𝛽1 = (𝛽1,T1 , … , 𝛽K,T1 )T.
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Let �̂�j, 𝛽k0, and 𝛽
k
1 be themaximum likelihood estimators or themethod ofmoments estimators

of 𝛼j, 𝛽k0 , and 𝛽
k
1 under the corresponding working model, respectively.

For each treatment level a ∈ {0, 1}, let Sa(𝜃a) = {(𝛼),a(𝛽a)}, where 𝜃Ta = (𝛼T, 𝛽Ta ), be the
set of candidate models for the propensity score and the prognostic score for treatment a, for
a = 0, 1. Under matching scheme (II), we use Sa(�̂�a) to impute the missing values of Y (a), sep-
arately for a = 0, 1. The corresponding dimension of the matching variable is J + K. Let S(𝜃) =
{(𝛼),0(𝛽0),1(𝛽1)}, where 𝜃 = (𝛼T, 𝛽T0 , 𝛽

T
1 )

T, be the set of candidate models for the propen-
sity score and the prognostic score for both treatment groups. Under matching scheme (I), one
would use S(�̂�) as thematching variable; the corresponding dimension is thus J + 2K. If the num-
ber of candidate models for the prognostic score is large, the dimension reduction of the double
score under new matching scheme (II) can be much larger than under matching scheme (I).

The initial DSM estimator of 𝜏 is given by 𝜏 (0)dsm in (2) with Sa replaced by Sa(�̂�a) for a = 0, 1.We
denote the initial estimator as 𝜏(0)dsm(�̂�) to reflect its dependence on �̂�. As discussed in Section 3.2,
if J = K = 1, the dimension of Sa(�̂�) is two for a = 0, 1. In this case, the asymptotic bias of the
matching estimator due to the matching discrepancy is negligible. We do not require further
steps to correct the asymptotic bias of 𝜏(0)dsm. This preserves the simplicity of matching in prac-
tice. However, if J,K ≥ 2, the dimension of each matching variable is larger than or equal to four.
Consequently, as shown in Table 2, the bias of the matching estimator due to matching discrep-
ancy is not asymptotic negligible. In this case, we propose the de-biasing matching estimator that
corrects the asymptotic bias due to matching discrepancy.

Let �̂�a(Sa) be a nonparametric estimator of 𝜇a(Sa), for a = 0, 1, for example, using the method
of sieves (Chen, 2007). The de-biasing DSM estimator of 𝜏 is

𝜏dsm(�̂�) = 𝜏
(0)
dsm(�̂�) − n−1∕2B̂n, (3)

where B̂n is an estimator of Bn by replacing 𝜇a(Sa) with �̂�a(Sa) for a = 0, 1.
Before delving into the discussion of the theoretical properties of 𝜏dsm(�̂�), we summarize the

DSM algorithm that contains nuts and bolts as follows.

Step 1. Posit multiple candidate parametric models(𝛼),0(𝛽0), and1(𝛽1) for e(X),
Ψ0(X), andΨ1(X), respectively. Obtain the parameter estimators �̂�, 𝛽0, and 𝛽1. For each
unit i, calculate Sa,i(�̂�a) = {(�̂�),a(𝛽a)} for a = 0, 1. The propensity scores are
probability estimates, ranging from zero to one. To stabilize the numerical
performance, it is desirable to use a monotone mapping to transform each propensity
score estimate ej(Xi; �̂�j) ∈ (0, 1) in(�̂�), for example, to logit{ej(Xi; �̂�j)} ∈ . We also
recommend standardize Sa,i(�̂�a) such that each component has mean zero and
variance one for a = 0, 1.

Step 2. For each unit i with treatment Ai = a, findM nearest neighbors from the treatment
group 1 − a based on the matching variable S1−a,i = S1−a,i(�̂�). Obtain S1−a(�̂�),i that
contains the indexes of the matched units for unit i and calculate KSa(�̂�),i that counts
the number of time that unit i is matched to other units. Obtain the initial matching
estimator 𝜏(0)dsm(�̂�) in (2) with Sa replaced by Sa(�̂�a).

If J = K = 1, let the DSM estimator be 𝜏dsm(�̂�) = 𝜏
(0)
dsm(�̂�). If J,K ≥ 2, we proceed to Steps 3 and

4 below. Even with J = K = 1, Steps 3 and 4 can help to reduce the matching discrepancy in finite
samples.
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Step 3. Obtain a nonparametric estimator of 𝜇a(Sa), denoted by �̂�a(Sa), for example, by the
method of sieves based on [{Yi, Sa,i(�̂�a)} ∶ Ai = a], for a = 0, 1.

Step 4. The DSM estimator of 𝜏 is given by 𝜏dsm(�̂�) in (3) with Sa,i replaced by Sa,i(�̂�a).

4 MAIN RESULTS

In this section, we establish the asymptotic properties of 𝜏dsm(�̂�), which depends on the estima-
tors of all nuisance parameters in the propensity score and prognostic score models. Without loss
of generality, we consider the prognostic score Ψa(X) = 𝜇a(X; 𝛽a) and multiple candidate mod-
els Ψk

a(X; 𝛽ka) = 𝜇ka(X; 𝛽ka), for k = 1, … ,K and a = 0, 1 . Consider �̂�j, 𝛽k0, and 𝛽
k
1 that solve the

estimating equation

n−1∕2
n∑
i=1

⎛⎜⎜⎜⎝
Uj
1(Ai,Xi; 𝛼j)

Uk
2
(
Ai,Xi,Yi; 𝛽k0

)
Uk
3
(
Ai,Xi,Yi; 𝛽k1

)
⎞⎟⎟⎟⎠ = 0, (4)

where

Uj
1(A,X; 𝛼

j) = 𝜕ej(X; 𝛼j)
𝜕𝛼j

A − ej(X; 𝛼j)
ej(X; 𝛼j){1 − ej(X; 𝛼j)}

,

Uk
2
(
A,X ,Y ; 𝛽k0

)
= (1 − A)

𝜕𝜇k0
(
X; 𝛽k0

)
𝜕𝛽

q
0

{Y − 𝜇k0(X; 𝛽
k
0 )},

Uk
3
(
A,X ,Y ; 𝛽k1

)
= A

𝜕𝜇k1
(
X; 𝛽k1

)
𝜕𝛽k1

{
Y − 𝜇k1

(
X; 𝛽k1

)}
,

for j = 1, … , J and k = 1, … ,K. Then, �̂� solves the joint estimating equation n(𝜃) =
n−1∕2

∑n
i=1U(Ai,Xi,Yi; 𝜃) = 0, where U(𝜃) stacks Uj

1(Ai,Xi, 𝛼j) for j = 1, … , J, Uk
2
(
Ai,Xi,Yi; 𝛽k0

)
and Uk

3
(
Ai,Xi,Yi; 𝛽k1

)
for k = 1, … ,K.

Let 𝜃∗ be the probability limit of �̂�. We divide our theoretical investigation into two steps:
first, we establish the asymptotic results for the DSM estimator when 𝜃∗ is known, and second,
building on the step-one results, we quantify the impact of the estimation of 𝜃∗ on the asymptotic
distribution.

4.1 Asymptotic results with known 𝜽∗

We allow possible model misspecification, so 𝜃∗ may not be the true parameter values. If ej(X; 𝛼j)
is a correctly specified model, we have ej(X; 𝛼j∗) = e(X); if 𝜇ka(X; 𝛽ka) is a correctly specified model,
we have 𝜇ka(X; 𝛽k∗a ) = 𝜇a(X), for a = 0, 1. The key insight is that if any model of the propensity
score or prognostic score is correctly specified, Sa(𝜃∗) remains as a balancing score in the sense
that Y (a) ⟂⊥ A|Sa(𝜃∗) holds for a = 0, 1 (Lemma 2). In the following theorem, we establish the
multiple robustness and asymptotic distribution of 𝜏dsm(𝜃∗).

Theorem 1. Under Assumption 1 and regularity conditions in Assumption A1, if any model of the
propensity score or prognostic score is correctly specified, we have n1∕2 {𝜏dsm(𝜃∗) − 𝜏} →  (0,V𝜏),
in distribution, as n→ ∞, where
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V𝜏 = E
[
{𝜇1(S1) − 𝜇0(S0) − 𝜏}2

]
+ E

(
𝜎21(S1)

[
1

e(S1)
+ 1
2M

{
1

e(S1)
− e(S1)

}])
+ E

(
𝜎20 (S0)

[
1

1 − e(S0)
+ 1
2M

{
1

1 − e(S0)
− 1 + e(S0)

}])
. (5)

Remark 1 (Connection with AIPW). The de-biased matching estimator has an intrinsic connec-
tion with the AIPW estimator. The AIPW estimator of 𝜏 is

𝜏aipw = n−1
n∑
i=1

[
𝜇1(Xi) − 𝜇0(Xi) +

2Ai − 1
P̂(Ai |Xi) {Yi − 𝜇A(Xi)}

]
+ oP

(
n−1∕2

)
. (6)

It is well-known that 𝜏aipw is doubly robust and semiparametrically efficient when the outcome
model and the propensity score model are correctly specified. In the proof of Theorem 1, we show
that the DSM estimator 𝜏dsm(𝜃∗) exhibits a similar asymptotic expansion as the AIPW estimator

𝜏dsm(𝜃∗) = n−1
n∑
i=1

[
𝜇1(S1,i) − 𝜇0(S0,i) + (2Ai − 1)

(
1 +M−1KSA,i

) {
Yi − 𝜇A(SA,i)

}]
+ oP(n−1∕2). (7)

When one of the prognostic scoremodels is correctly specified, 𝜇a(Sa,i) = 𝜇a(Xi) for a = 0, 1. From
Theorem 1, the asymptotic variance of 𝜏dsm(𝜃∗) (5) does not achieve the semiparametric efficiency
bound (Hahn, 1998) for a fixed M, but it becomes closer when M is larger. However, 𝜏aipw is
extremely unstablewhen the estimated propensity scores are close to zero or one due to theweight
construction, and it is sensitive to slightmodelmisspecification. Instead of inverting the estimated
propensity score, the DSM estimator uses the matching weights, 1 +M−1KSA,i, for covariate bal-
ancing and hence is more robust in the scenarios with extreme propensity score values. This is
confirmed in the simulation study.

Remark 2. From Theorem 1, the consistency of the DSM estimator is guaranteed if any model
for the propensity score or prognostic score is correctly specified. Both the number of the posited
models and their functional forms can affect the efficiency of theDSMestimator in a very complex
way. In addition, with a finite sample size, the matching performance can be unstable if there are
a large number of working models. In particular, the discrepancy of the matched units may be
largewhen some of themodels are poorly constructed. To reduce the chance of running into these
issues, we suggest positing a few well-constructed working models instead of a large number of
poorly built ones.

4.2 Asymptotic results with estimated 𝜽∗

To acknowledge the fact that 𝜃∗ is estimated prior to matching, we will establish the approxi-
mate distribution of 𝜏dsm(�̂�) and examine the impact of nuisance parameter estimation on the
properties of the DSM estimator. As in Abadie and Imbens (2016), the typical Taylor expansion
technique can not be used because of the nonsmooth nature of matching. Our derivation is based
on the technique developed by Andreou and Werker (2012), which offers a general approach for
deriving the limiting distribution of statistics that involve estimated nuisance parameters. This
technique has been successfully used by Abadie and Imbens (2016) for the PSM estimators of the
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ATE and ATT based on a correctly specified propensity score model. We extend their results to
the DSM estimator requiring only one of the double score models to be correctly specified.

Theorem 2. Under Assumption 1 and regularity conditions in Assumptions A1–A4, if any model
of the propensity score or prognostic score is correctly specified, the approximate distribution of
n1∕2

{
𝜏dsm(�̂�) − 𝜏

}
is (0,V𝜏,adj), where

V𝜏,adj = V𝜏 − 𝛾T1 Σ
−1
U 𝛾1 + 𝛾T2 Σ𝜃∗𝛾2, (8)

where V𝜏 is given in (5), ΣU = E{U(A,X ,Y ; 𝜃∗) U(A,X ,Y ; 𝜃∗)T}, Σ𝜃∗ = Γ−1
𝜃∗
ΣU(Γ−1

𝜃∗
)T, Γ𝜃∗ =

E
{
𝜕U(A,X , Y ; 𝜃∗)∕𝜕𝜃T

}
, 𝛾1 and 𝛾2 are given in (A14) and (A10), respectively.

We discuss the impact of estimating the nuisance parameters on the matching estimators.
Abadie and Imbens (2016) showed that for 𝜏, matching on the estimated propensity score always
improves the estimation efficiency compared to matching on the true propensity score. This
improvement is due to the correlation of the matching estimator and the score function for the
parameters in the propensity score. In our context, comparing the asymptotic variances in The-
orems 1 and 2, the difference between V𝜏,adj and V𝜏 , −𝛾T1 Σ

−1
U 𝛾1 + 𝛾T2 Σ𝜃∗𝛾2, can be either positive,

negative, or zero; that is, matching on the estimated double score can either increase, decrease,
or maintain the estimation efficiency compared to matching on the true double score. To explain
the difference, we note that the variance reduction term −𝛾T1 Σ

−1
U 𝛾1 is still due to the correla-

tion of the matching estimator and the score function for the parameters in the double score,
while the variance inflation term 𝛾T2 Σ𝜃∗𝛾2 is because if either the prognostic score model or
the propensity score model is misspecified, 𝜏 may depend on the nuisance parameters through
𝜏 = E [𝜇1{S1(𝜃∗)} − 𝜇0{S0(𝜃∗)}] , which contributes to the variance inflation term. On the other
hand, Abadie and Imbens (2016) focused on the setting when the propensity score model is the
only nuisance model and is correctly specified. In this case, 𝜏 does not depend on 𝛼∗, 𝛾2 is zero,
and therefore the variance inflation term is zero.

4.3 Variance estimation and inference

Theorem 2 provides guidance for variance estimation of the DSM estimators that can take all
sources of variability into account. However, such variance estimators are complicated to con-
struct.We consider variance estimation based on replicationmethods (Efron, 1979;Wolter, 2007).
Lack of smoothness makes the standard replication methods invalid for the matching estimator.
When the number of matches remains fixed, Abadie and Imbens (2008) demonstrated the failure
of the bootstrap formatching estimators. This is because the nonparametric bootstrap cannot pre-
serve the distribution of the number of times that each unit is used as a match. In this case, Otsu
and Rai (2017) proposed a wild bootstrap procedure for the matching estimator when matching
is directly based on the covariates. Yang and Kim (2020) proposed a replication-based procedure
for predictive mean matching in survey data.

Given the two-stage estimation procedure for the DSM estimator, the variability of the match-
ing estimator results from two sources: first, the estimation of the double score function, and
second, matching. Following Yang and Kim (2020), we propose a two-stage replication variance
estimation procedure, in parallel to the two-stage point estimation procedure. First, we con-
struct replicates of the nuisance parameter estimators in the double score. Second, based on
the asymptotic linear representations of the DSM estimator, we construct replicates of the DSM
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estimator directly based on the linear terms with the replicated nuisance parameters. In this way,
the distribution of the number of times that each unit is used as a match can be retained.

Specifically, the replication variance estimation algorithm proceeds as follows.

VE-Step 1. Obtain a bootstrap sample, or equivalently the bootstrap replication weights
𝜔∗
i = n−1m∗

i with (m∗
1, … ,m∗

n) is a multinomial random vector with n draws on n
equal probability cells. Obtain a bootstrap replicate of �̂�, �̂�∗, by solving the
estimating equation n−1∕2

∑n
i=1{𝜔∗

i U(Ai,Xi,Yi; 𝜃)} = 0. For each unit i, calculate
Sa,i(�̂�

∗) for a = 0, 1.
VE-Step 2. Obtain a bootstrap replicate of 𝜏dsm(�̂�) as

𝜏∗dsm(�̂�
∗) = n−1

n∑
i=1

𝜔∗
i

[
�̂�1{S1,i(�̂�

∗)} − �̂�0{S0,i(�̂�
∗)}
]

+ n−1
n∑
i=1

𝜔∗
i (2Ai − 1)

{
1 +M−1KSAi (�̂�),i

}[
Yi − �̂�Ai{SAi,i(�̂�

∗)}
]
.

VE-Step 3. Repeat VE-Steps 1 and 2 a large number of times. Calculate the bootstrap variance
estimator of 𝜏dsm(�̂�) as the empirical variance of 𝜏∗dsm(�̂�

∗) over a large number of
bootstrap replicates.

5 MULTIPLY ROBUST MATCHING ESTIMATOR
OF THE QTE

Matching is attractive for general causal estimation because it can be viewed as a hot deck impu-
tation method (Ford, 1983), where for each unit the donors for the missing potential outcome are
actually observed values from the opposite treatment group. An advantage of hot deck imputation
is that it preserves the distribution of the potential outcomes so that valid estimators for parame-
ters depending on the entire distribution of the potential outcomes such as themean and quantiles
can be obtained based on the imputed dataset. In this section, we extend the DSM framework to
estimate the QTE.

We focus on estimating qa,𝜉 separately for a = 0, 1. By Lemma 1, we have

qa,𝜉 = inf
q
(E[P{Y ≤ q |A = a, e(X),Ψa(X)}] ≥ 𝜉) .

Based on the above equation, we propose the DSM estimator of qa,𝜉 as

q̂a,𝜉,dsm = inf
q

{
F̂a,dsm(q) ≥ 𝜉

}
, (9)

where

F̂a,dsm(q) = F̂(0)
a,dsm(q) − n−1∕2B̂a,n(q), (10)

F̂(0)
a,dsm(q) = n−1

n∑
i=1
1(Ai = a)

(
1 +M−1KSa,i

)
1(Yi ≤ q),

B̂a,n(q) = −n−1∕2
n∑
i=1
1(Ai = 1 − a)M−1

∑
j∈Sa ,i

{
F̂a(q; Sa,i) − F̂a(q; Sa,j)

}
, (11)
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and F̂a(q; Sa) is a semi/nonparametric estimator of Fa(q; Sa) = P{Y (a) ≤ q |Sa}, for a = 0, 1. Note
that F̂(0)

a,dsm(q) is an initialmatching estimator ofFa(q) = P{Y (a) ≤ q}, B̂a,n(q) is the bias correction
term. Then the DSM estimator of Δ𝜉 is Δ̂𝜉,dsm = q̂1,𝜉,dsm − q̂0,𝜉,dsm.

For estimatingΔ𝜉 , Steps 1 and 2 ofDSM in Section 3.3 remain the same; Steps 3′ and 4′ proceed
as follows:

Step 3′. Obtain a semiparametric estimator of Fa(q; Sa) based on [{Yi, Sa,i(�̂�)} ∶ Ai = a], for
a = 0, 1.

Step 4′. The DSM estimator of qa,𝜉 is given by (9) with Sa replaced by Sa(�̂�). We denote the final
estimator of qa,𝜉 as q̂a,𝜉dsm(�̂�) to reflect its dependence on �̂�, for a = 0, 1. Then, the DSM
estimator of Δ𝜉 is Δ̂𝜉,dsm(�̂�) = q̂1,𝜉,dsm(�̂�) − q̂0,𝜉,dsm(�̂�).

Remark 3. In Step 3′, many choices can be considered for estimating Fa(q; Sa): for example,
the method of sieves for the normal linear model after a Box-Cox transformation of Zhang
et al. (2012), the single-index conditional distribution model of Chiang and Huang (2012), or the
distribution regression models of Foresi and Peracchi (1995) and Chernozhukov et al. (2013).
The data at hand and subject matter knowledge can be used to guide the choice of the mod-
els. For example, if the transformed outcome is believed to follow a normal distribution,
Zhang et al. (2012)’s method is preferable; otherwise, other semiparametric approaches are
desirable.

Under Assumption 1, regularity conditions in Assumptions A1 (i) and S1, if any
model of the propensity score or prognostic score is correctly specified, similar to the
proof in Section A.1, we have dF̂a,dsm(qa,𝜉)∕dq = fa(qa,𝜉) + oP(n−1∕2), and then we express
q̂a,𝜉,dsm as

q̂a,𝜉,dsm − qa,𝜉 = −
F̂a,dsm(qa,𝜉) − Fa(qa,𝜉)

fa(qa,𝜉)
+ oP

(
n−1∕2

)
, (12)

qa,𝜉 lies in a closed interval . Expression (12) is called the Bahadur-type representation
for q̂a,𝜉,dsm (Francisco & Fuller, 1991). With the representation (12), we can then extend the
multiple robustness and asymptotic distributions of the ATE estimation to Δ̂𝜉,dsm(𝜃∗) and
Δ̂𝜉,dsm(�̂�).

Theorem 3. Under Assumption 1, regularity conditions in Assumptions A1 (i) and S1, if any
model of the propensity score or prognostic score is correctly specified, for all 𝜉 ∈ ̃ = {𝜉 ∶
Fa(x) = 𝜉, x ∈ }, n1∕2{Δ̂𝜉,dsm(𝜃∗) − Δ𝜉} →  (0,V𝜉), in distribution, as n → ∞, where V𝜉 is given
in (S3).

Theorem 4. Under Assumption 1, regularity conditions in Assumptions A1 (i) and S1, if any
model of the propensity score or prognostic score is correctly specified, the approximate distribution
of n1∕2

{
Δ̂𝜉,dsm(𝜃∗) − Δ𝜉

}
is (0,V𝜉,adj), where

V𝜉,adj = V𝜉 − 𝛾T3 Σ
−1
U 𝛾3 + 𝛾T4 Σ𝜃∗𝛾4, (13)

V𝜉 is given in (S3), ΣU and Σ𝜃∗ are given in Theorem 3, 𝛾3 and 𝛾4 are given in (S4) and (S5),
respectively.
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For variance estimation of Δ̂𝜉,dsm(�̂�), VE-Step 1 in Section 4.3 remains the same; VE-Steps 2
and 3 proceed as follows:

VE-Step 2′. For a = 0, 1, obtain a bootstrap replicate of q̂a,𝜉dsm(�̂�), q̂
∗
a,𝜉dsm(�̂�

∗), by solving

F̂∗
a,dsm(q) = n−1

n∑
i=1

𝜔∗
i F̂a{q; Sa,i(�̂�

∗)}

+ n−1
n∑
i=1

𝜔∗
i 1(Ai = a)

{
1 +M−1KSa(�̂�),i

}[
1(Yi ≤ q) − F̂a{q; Sa,i(�̂�

∗)}
]
= 𝜉,

for q. Then a bootstrap replicate of Δ̂𝜉,dsm(�̂�) is Δ̂
∗
𝜉,dsm(�̂�

∗) = q̂∗1,𝜉,dsm(�̂�
∗) − q̂∗0,𝜉,dsm(�̂�

∗).
VE-Step 3′. Repeat VE-Steps 1 and 2′ for a large number of times. Calculate the bootstrap

variance estimator of Δ̂𝜉,dsm(�̂�) as the empirical variance of Δ̂
∗
𝜉,dsm(�̂�

∗) over a large
number of bootstrap replicates.

6 EXTENSIONS TO THE CAUSAL EFFECTS
ON THE TREATED

In this extension, we estimate the average causal effect on the treated 𝜏ATT and the QTE on the
treated ΔATT,𝜉 = q1,𝜉|A=1 − q0,𝜉|A=1, where qa,𝜉|A=1 = infq[P{Y (a) ≤ q} ≥ 𝜉 |A = 1], a = 0, 1. Here,
because f {Y (1) |A = 1} = f (Y |A = 1), the outcome distribution for the treated is identifiable.
Therefore, E{Y (1) |A = 1} = E(Y |A = 1) and q1,𝜉|A=1 = infq {P(Y ≤ q |A = 1) ≥ 𝜉}.

To identify the outcome distribution for the control, Assumption 1 can be relaxed (Heckman
et al., 1997).

Assumption 2. (i) Y (0)⊥⊥A |X ; and (ii) there exists a constant c such that e(X) ≤ c < 1 almost
surely.

For the causal effects on the treated, the prognostic scoreΨ0(X) is a sufficient statistic for Y (0)
in the sense that Y (0)⊥⊥X|Ψ0(X) according to Hansen (2008). Then, under Assumption 2,

𝜏ATT = E[E(Y |A = 1) − E{Y |A = 0, e(X)} |A = 1]
= E[E(Y |A = 1) − E{Y |A = 0,Ψ0(X)} |A = 1],

and

q0,𝜉|A=1 = inf
q
(E[P{Y ≤ q |A = 0, e(X)} |A = 1] ≥ 𝜉)

= inf
q
(E[P{Y ≤ q |A = 0,Ψ0(X)} |A = 1] ≥ 𝜉) ,

encoding the double balancing properties of S = {e(X),Ψ0(X)}.
The DSM estimators for 𝜏ATT and ΔATT,𝜉 follow similar steps as for 𝜏 and Δ𝜉 . We describe the

differences below.
In the matching step, for each unit iwith treatmentAi = 1, findM nearest neighbors from the

control group Ai = 0 based on the matching variable Si = Si(�̂�). Let these matched units for unit
i be indexed by S(�̂�),i.
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The initial and de-biasing DSM estimators of 𝜏ATT are

𝜏
(0)
ATT,dsm = n−11

n∑
i=1
Ai
{
Yi − Ŷi(0)

}
, Ŷi(0) = M−1

∑
j∈S,i

Yj,

𝜏ATT,dsm = 𝜏
(0)
ATT,dsm − n−11

n∑
i=1
Ai

{
�̂�0(Si) −M−1

∑
j∈S,i

�̂�0(Sj)

}
.

Let the estimator of F1(q|A = 1) = P{Y (1) < q |A = 1} be

F̂1(q |A = 1) = n−11
n∑
i=1
Ai1(Yi ≤ q).

Then, we estimate q1,𝜉|A=1 by
q̂1,𝜉|A=1 = inf

q
{F̂1(q |A = 1) ≥ 𝜉}.

The initial and de-biasing DSM estimators of F0(q |A = 1) = P{Y (0) < q |A = 1} are

F̂(0)
0,dsm(q|A = 1) = n−11

n∑
i=1
AiM−1

∑
j∈S,i

1(Yj ≤ q) = n−11
n∑
i=1

(1 − Ai)M−1KS,i1(Yi ≤ q),

F̂0,dsm(q|A = 1) = F̂(0)
0,dsm(q|A = 1) − n−1∕21 B̂0,n(q),

B̂0,n(q) = −n−1∕21

n∑
i=1
AiM−1

∑
j∈S,i

{
F̂0(q; Si) − F̂0(q; Sj)

}
.

Then, we estimate q0,𝜉|A=1 by
q̂0,𝜉|A=1,dsm = inf

q
{F̂0,dsm(q|A = 1) ≥ 𝜉}.

Lastly, the DSM estimator of ΔATT,𝜉 is Δ̂ATT,𝜉,dsm = q̂1,𝜉|A=1 − q̂0,𝜉|A=1,dsm.
For variance estimation, we replace the VE-Step 2 andVE-Step 2’ for 𝜏 andΔ𝜉 by the following

steps:

ATT-VE-Step 2. Obtain a bootstrap replicate of 𝜏ATT,dsm(�̂�),

𝜏∗ATT,dsm(�̂�
∗) = n−11

n∑
i=1

𝜔∗
i Ai

[
�̂�1{Si(�̂�

∗)} − �̂�0{Si(�̂�
∗)}
]

+ n−11
n∑
i=1

𝜔∗
i
{
Ai − (1 − Ai)M−1KS(�̂�),i

} [
Yi − �̂�Ai{Si(�̂�

∗)}
]
.

QTT-VE-Step 2′. For a = 1, obtain a bootstrap replicate of q̂1,𝜉|A=1(�̂�), q̂∗1,𝜉|A=1(�̂�∗), by solving

F̂∗
1(q|A = 1) = n−11

n∑
i=1

𝜔∗
i Ai1(Yi ≤ q) = 𝜉.
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For a = 0, obtain a bootstrap replicate of q̂0,𝜉|A=1,dsm(�̂�), q̂∗0,𝜉|A=1,dsm(�̂�∗), by
solving

F̂∗
0,dsm(q|A = 1) = n−11

n∑
i=1

𝜔∗
i AiF̂0{q; Si(�̂�

∗)}

+ n−11
n∑
i=1

𝜔∗
i 1(Ai = 0)M−1KS(�̂�),i

[
1(Yi ≤ q) − F̂0{q; Si(�̂�

∗)}
]
= 𝜉,

for q. Then a bootstrap replicate of Δ̂ATT,𝜉,dsm(�̂�) is Δ̂
∗
ATT,𝜉,dsm(�̂�

∗) = q̂∗1,𝜉|A=1(�̂�∗) −
q̂∗0,𝜉|A=1,dsm(�̂�∗).

7 SIMULATION STUDY

We conduct a simulation study to investigate the finite-sample performance of the proposed DSM
estimators relative to existing weighting and matching estimators. In the causal inference and
missing data literature, previous simulations (e.g., Kang & Schafer, 2007) have found that weight-
ing estimators can have high variability, especially if the probabilities are close to zero or one.
Frölich (2004) found that the weighting estimator was inferior to matching estimators in terms
of root mean squared error. It has been found that matching on high-dimensional covariates is
not practical for commonly found sample sizes (e.g., Abadie & Imbens, 2006). In the compara-
tive effectiveness research, PGM has been shown to be more advantageous than PSM when the
propensity score distributions are strongly separated (Kumamaru et al., 2016; Wyss et al., 2015).
Imbens (2004) noted that if the regression models are misspecified, PGM may be inconsistent.
These results motivate us to compare the weighting and matching estimators in a setting with
complex data generative models, and where the propensity scores may be extreme (i.e., close to
zero or one) or nonextreme.

Let the sample size be n = 1000. Confounder X ∈ R10 is generated by Xj
iid∼ Uniform [1 −√

3, 1 +
√
3] for j = 1, … , 10. To introduce nonlinear relationships between X and depen-

dent variables, let Z ∈ R10 be a nonlinear transformation of X , where Z1 = exp(X1∕2), Z2 =
exp(X2∕3), Z3 = log{(X3 + 1)2}, Z4 = log{(X4 + 1)2}, Z5 = 1(X5 > 0.5), Z6 = 1(X6 > 0.75), Z7 =
sin(X7 − X8), Z8 = cos(X7 + X8), Z9 = sin(X9), and Z10 = cos(X10), which are further scaled and
centered such thatE(Zj) = 1 andV(Zj) = 1 for all j. The potential outcomes are Y (0) = 𝛽T0 Z + 𝜖(0)
and Y (1) = Y (0) − 𝜖(0) + 𝜖(1), where 𝛽T0 = (0.1, 1, 1, 1, 1,−1,−1,−1,−1,−1), 𝜖(0) ∼  (0, 22), and
𝜖(1) ∼  (0, 1). Under the data generative model, the ATE 𝜏 is 0 and the 75th QTE is −0.45.
An additional simulation with heterogeneous treatment effects and log-normal errors is pre-
sented in the supplementary material. The treatment indicator A follows Bernoulli{e(X)}, where
logit{e(X)} = 𝛼T0Z. We consider two scenarios for the propensity score distribution: in the first
case, 𝛼T0 = (5,−5, 1, 1, 2,−2,−2, 1,−1,−1), resulting in some extreme values of e(X) that are close
to zero or one; and in the second case, the propensity score distribution is not extreme, where
𝛼T0 = (5,−5, 1, 1, 2,−2,−2, 1,−1,−1)∕4. Visualization of the propensity score distributions in the
two cases is presented in Figure S2.

To assess the multiple robustness property of the DSM estimators, we consider two model
specifications for the propensity score: (1) a correctly specified logistic regression model
logit{e1(X; 𝛼1)} = 𝛼1,TZ; and (2) a misspecified logistic regressionmodel logit{e2(X; 𝛼2)} = 𝛼2,TX ;
we also consider two model specifications for the prognostic score; (3) a correctly specified
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regression model 𝜇1a(X; 𝛽1a) = 𝛽1,Ta Z for a = 0, 1; and (4) a misspecified regression model
𝜇2a
(
X; 𝛽2a

)
= 𝛽2,Ta X for a = 0, 1.

We compare the following estimators:

(a) naive, which is the simple difference of standard estimators from two treatment groups;
(b) the weighting estimators including the IPW, AIPW, andMRWestimators (“ipw,” “aipw,” and

“mrw”);
c) the matching estimators based on X (“m.x”; bias-corrected Abadie & Imbens, 2011), or

propensity score (“psm”) or prognostic score (“pgm”) or double score (“dsm”) withM = 5.

Each weighting and matching estimator is assigned a name in the form of “method-0000,”
where each digit of the four-digit number, from left to right, indicates if e1(X; 𝛼1), e2(X; 𝛼2),
{𝜇1a(X; 𝛽1a)}1a=0, or {𝜇

2
a(X; 𝛽2a)}1a=0 is used in the construction of the method, with “1” meaning

yes and “0” meaning no, respectively. For example, “ipw1000” is the IPW estimator with the
propensity score model e1(X; 𝛼1) and “dsm1110” is the DSM estimator with two propensity score
models e1(X; 𝛼1), e2(X; 𝛼2) and one prognostic score model {𝜇1a(X; 𝛽1a)}1a=0. We implement stan-
dard IPW and AIPW estimators for the ATE estimation and the corresponding estimators of
Zhang et al. (2012) for the QTE estimation. MRW is implemented by the R package “MultiRo-
bust.” For all matching estimators, the conditional outcome mean functions are approximated
using power series, and the conditional distribution functions are approximated based on the
power series for the normal linear model (Zhang et al., 2012).

Figure 1 shows the distributions of the estimation error (i.e., the estimator minus the true
parameter value) based on 1000 repeated sampling. The naive estimator is biased for the 75th

F IGURE 1 Simulation results of various weighting and matching estimators. There are four panels of
results: the left for the 75th quantile treatment effect, the right for the ATE, the top for the extreme propensity
score, and the bottom for the nonextreme propensity score. Each box plot shows the distribution of the estimator
subtracting the true parameter value based on 1000 Monte Carlo simulated datasets



18 YANG and ZHANG

QTE and ATE. Matching directly based on 10-dimensional X (indicated by “m.x”) is biased for
the QTE and ATE even with bias correction. This suggests that matching on high-dimensional
covariates is not practical and calls for dimension reduction. IPW is unstable and sensitive to
the extreme values of the propensity score. Even when the propensity score model is correctly
specified (indicated by “ipw1000”), IPW is biased of the QTE and ATE. By theory, AIPW is sup-
posed to be doubly robust: it should have small biases if either the propensity score model or
the prognostic model is correctly specified. However, as indicated by “aipw1001,” AIPW is biased
of the QTE and ATE when the propensity score is extreme even if its model is correctly speci-
fied. We examine the empirical distribution of the estimated propensity score weights and find
that there are extremely large weights that dominate other weights. Therefore, weighting esti-
mators by inverting the estimated propensity scores are sensitive to outliers of the propensity
score estimates. To mitigate this issue, one can stabilize the weighting estimators by normal-
izing the weights (Hernán et al., 2001). However, this strategy is not effective in our setting.
Although AIPW is constructed to be semiparametrically efficient, its performance can be poor
when it involves large weights. By construction, matching does not invert the estimated propen-
sity scores and therefore is more robust to outliers of the propensity score estimates. We now
compare the performances of the score-based matching estimators. The single score matching
estimators (indicated by “psm1000,” “psm0100,” “pgm0010,” “pgm0001”) are singly robust and
rely on a correct specification of the underlying score model. DSM and MRW are multiply robust
in that they have small biases for the QTE and the ATE if any model of the propensity score or
prognostic score is correctly specified. Compared to MRW, DSM is more robust to extreme val-
ues of the propensity score estimates. Therefore, DSM is advantageous in practice compared to
weighting.

Table 3 reports the coverage rates of theDSMestimators of the 75thQTEand theATEusing the
proposed replication-based method. Under the multiple robustness condition (i.e., if any model
of the propensity score or prognostic score is correctly specified), the coverage rates are all close
to the nominal coverage except for “dsm0101.”

TABLE 3 Simulation results based on 1000 Monte Carlo simulated datasets for the coverage properties of
the double score matching estimators using the replication-based method: empirical coverage rate and
(empirical coverage rate ± 1.96×Monte Carlo standard error)

Nonextreme PS Extreme PS

75th QTE ATE 75th QTE ATE
“dsm1010” 94.8 (93.4,96.2) 95.2 (93.9,96.5) 96.0 (94.8, 97.2) 95.8 (94.6, 97.0)

“dsm0110” 94.4 (93.0,95.8) 96.0 (94.8,97.2) 95.7 (94.4, 97.0) 95.2 (93.9, 96.5)

“dsm1001” 95.4 (94.1,96.7) 95.9 (94.7,97.1) 95.9 (94.7, 97.1) 95.7 (94.4, 97.0)

“dsm0101” 72.9 (70.1,75.6) 29.2 (26.4,32.0) 19.4 (16.9, 21.9) 0.2 (-0.1, 0.5)

“dsm1111” 95.0 (93.6,96.4) 95.5 (94.2,96.8) 95.4 (94.1, 96.7) 95.8 (94.6, 97.0)

“dsm1110” 95.4 (94.1,96.7) 95.6 (95.5,97.7) 95.7 (94.4, 97.0) 96.2 (95.0, 97.4)

“dsm1101” 94.8 (93.4,96.2) 95.4 (94.1,96.7) 96.3 (95.1, 97.5) 95.4 (94.1, 96.7)

“dsm1011” 94.0 (92.5,95.5) 95.8 (94.6,97.0) 95.7 (94.4, 97.0) 95.8 (94.6, 97.0)

“dsm0111” 95.3 (94.0,96.6) 95.2 (93.9,96.5) 96.0 (94.8, 97.2) 95.4 (94.1, 96.6)
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8 REAL-DATA APPLICATION

In this section, we apply the proposed DSM method as well as other matching methods in
Section 7 to the well-known National Supported Work (NSW) data (Firpo, 2007; LaLonde, 1986).
This dataset documented the effect of a job training program for the unemployed on future
earnings. Following Dehejia and Wahba (1999), we include the comparison group from Westat’s
Matched Current Population Survey-Social Security (CPS) Administration File. In our analysis,
we include 185 treated units and 689 control units from the NSW, as well as 429 comparison
units from the CPS-3, a subset of the CPS data (Firpo, 2007; LaLonde, 1986). Seven baseline
confounding covariates are used for this application: age, education, race, Hispanic,married, hav-
ing no college degree, and real earnings in 1975. The outcome of interest is the real earnings
in 1978.

Because the outcome distributions are highly skewed (see Figure S3), the average treatment
effect may not provide a comprehensive evaluation of the job training program. Therefore, we
estimate the ATT and QTTs. To gain the robustness and reliability of the results, we posit two
propensity score models and two prognostic score models. Following Dehejia and Wahba (1999),
one propensity score model is a logistic regression model with all first-order terms of the covari-
ates and second-order terms of numerical variables, and one prognostic score model is a linear
regression of the earnings with the same predictors as in the propensity score models for the con-
trol group. Given the popularity of probit models, we consider the second propensity score model
to be a probit regressionmodel with the same predictors in the first propensity scoremodel. Given
the skewness of the outcome distribution, we consider the second prognostic score to be a linear
regression model for the logarithm of the real earnings in 1978.

Matching admits a transparent assessment of covariate balance before and after matching.
Table 4 presents the means of all covariates by treatment group and the standardized difference
in means before and after DSM. The standardized difference is calculated as the difference of
the group means divided by the overall standard error in the original sample. DSM makes stan-
dardized differences fall between−0.05 and 0.05 for all covariates, reducing the differences of the
observed covariates in the treated and the control.

Table 5 shows the estimated ATTs and QTTs at the 0.1, 0.25, 0.3, 0.5, 0.75, and 0.9 quantiles,
and 95% Wald confidence intervals from the four matching methods, as well as ATE and QTE
estimated by the naive method. All four matching estimators show that the job training program
does not have a significant effect on the average earning for the treated. Figure 2 shows the QTT
plot estimated by DSM algorithm. A closer inspection of the QTT plot reveals that the effect is, in
fact, significant around the percentile of 0.3, which suggests that the program is beneficial for the
lower middle class.

TABLE 4 Covariate balance check before and after double score matching

age educ black hisp married nodegr re75
Before Matching Treatment group mean 24.63 10.38 0.80 0.09 0.17 0.73 3066

Control group mean 26.25 10.21 0.50 0.13 0.34 0.70 2745

Stand diff. in means −0.19 0.08 0.61 −0.10 −0.37 0.06 0.07

After Matching Treatment group mean 24.63 10.38 0.80 0.09 0.17 0.73 3066

Control group mean 25.01 10.31 0.69 0.12 0.21 0.73 2876

Stand diff. in means −0.04 −0.03 0.22 −0.08 −0.10 0.00 0.04
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F I GURE 2 Quantile effect plot on the treated from the double score matching algorithm

9 DISCUSSION

Wehave developedmultiply robustmatching estimators for general causal estimands. This frame-
work offers a new “metric” to summarize the differential roles of different covariates and also
serves as a powerful dimensional reduction tool in high-dimensional confounding. The improved
robustness comes from multiple model specifications for the propensity score and prognos-
tic score. The proposed DSM thus provides multiple protections to model misspecification and
therefore is an attractive alternative to existing weighting estimators.

Several issues are worth discussing. As with PSM, although the matching variables are well
balanced, individual covariates may not for a given application. In this case, if the researchers
know important confounders based on substantive knowledge, they can augment the double
score by adding those confounders to ensure balance for these confounders; however, adding too
many variables will results in potential bias as demonstrated in our simulation. Alternatively,
one can use regression adjustment for the matched sample Abadie and Spiess (2016), which
can remove remaining confounding biases. We focus on a binary treatment. Yang et al. (2016)
have developed the generalized PSM for estimating the treatment effects for more than two treat-
ments. It is of interest to extend our DSM algorithm to more than two treatment comparisons.
The current DSM framework focuses on continuous and binary outcomes, and it would be an
important task to extend DSM to handle survival outcomes (Tang et al., 2019) and clustered
data (Yang, 2018) and estimate the heterogeneous treatment effects Huang and Yang (2022).
It is crucial to highlight that as for all existing matching methods, the DSM method cannot
account for unmeasured confounding. Following Rosenbaum and Rubin (1983a) and Yang and
Lok (2017), we will develop sensitivity analyses to no unmeasured confounding in the matching
framework.
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APPENDIX

Sections A.1 and A.2 present the proofs of Theorems 1 and 2 for ATE estimation. Parallel proofs
of Theorems 3 and 4 for QTE estimation are presented in Data S1.

A.1 Proof of Theorem 1
Before presenting the asymptotic properties of 𝜏dsm(𝜃∗), we require technical conditions. For sim-
plicity, let Sa = Sa(𝜃∗a) and let f1(Sa) and f0(Sa) be the conditional density of Sa given A = 1 and
A = 0, respectively.

Assumption A1. For a = 0, 1, (i) the matching variable Sa has a compact and convex support  ,
with a continuous density bounded and bounded away from zero: there exist constants C1L and
C1U such that C1L ≤ f1(Sa)∕f0(Sa) ≤ C1U for any Sa ∈  ; (ii) 𝜇a(Sa) and 𝜎2a(Sa) satisfy Lipschitz
continuity conditions: there exists a constant C2 such that |𝜇a(Sa,i) − 𝜇a(Sa,j)| < C2||Sa,i − Sa,j||
for any Sa,i and Sa,j, and similarly for 𝜎2a(Sa); (iii) there exists 𝛿 > 0 such that E

{|Y (a)|2+𝛿|Sa} is
uniformly bounded for any Sa ∈  ; and (iv) B̂n = Bn + oP(1).

https://doi.org/10.1111/sjos.12429
https://doi.org/10.1111/sjos.12429
https://doi.org/10.1111/sjos.12585
https://doi.org/10.1111/sjos.12585
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Assumption A1 has been considered by Abadie and Imbens (2006) and Abadie and
Imbens (2016) for matching estimators based on the covariates and the propensity score.
Assumption A1 (i) is a convenient regularity condition. Assumption A1 (ii) imposes smooth-
ness conditions for the outcome mean function 𝜇a(Sa) and the variance function 𝜎2a(Sa).
Assumption A1 (iii) is a moment condition for establishing the central limit theorem.
Assumption A1 (iv) requires regularity conditions on 𝜇a(Sa) (a = 0, 1) and the nonparametric
estimators; detailed discussions have appeared in Abadie and Imbens (2011, 2012) and Otsu and
Rai (2017).

UnderAssumptionA1, similar to the proof of theorem2 inAbadie and Imbens (2011), 𝜏dsm(𝜃∗)
has the following asymptotic linear form:

n1∕2 {𝜏dsm(𝜃∗) − 𝜏} = n−1∕2
n∑
i=1

{
𝜇1(S1,i) − 𝜇0(S0,i) − 𝜏

}
(A1)

+ n−1∕2
n∑
i=1
Ai
(
1 +M−1KS1,i

) {
Yi − 𝜇1(S1,i)

}
(A2)

− n−1∕2
n∑
i=1

(1 − Ai)
(
1 +M−1KS0,i

) {
Yi − 𝜇0(S0,i)

}
+ oP(1). (A3)

If anymodel of the propensity score or prognostic score is correctly specified, by Lemma 2, we
have E{𝜇1(S1,i) − 𝜇0(S0,i)} = 𝜏 and therefore the asymptotic bias of n1∕2 {𝜏dsm(𝜃∗) − 𝜏} is zero.

Let the three terms in (A1) be

T1n = n−1∕2
n∑
i=1

{
𝜇1(S1,i) − 𝜇0(S0,i) − 𝜏

}
,

T2n = n−1∕2
n∑
i=1
Ai
(
1 +M−1KS1,i

) {
Yi − 𝜇1(S1,i)

}
,

T3n = −n−1∕2
n∑
i=1

(1 − Ai)
(
1 +M−1KS0,i

) {
Yi − 𝜇0(S0,i)

}
.

We show the covariances of the three terms are zero:

cov(T1n,T2n) = n−1
n∑
i=1

n∑
j=1
cov

[
𝜇1(S1,i) − 𝜇0(S0,i) − 𝜏,Aj

(
1 +M−1KS1,j

) {
Yj − 𝜇1(S1,j)

}]
= n−1

n∑
i=1
cov

[
𝜇1(S1,i) − 𝜇0(S0,i) − 𝜏,Ai

(
1 +M−1KS1,i

) {
Yi − 𝜇1(S1,i)

}]
= n−1

n∑
i=1
cov

(
E
{
𝜇1(S1,i) − 𝜇0(S0,i) − 𝜏 |S1,i, S0,i} ,

E
[
Ai
(
1 +M−1KS1,i

) {
Yi − 𝜇1(S1,i)

} |S1,i, S0,i])
+ n−1

n∑
i=1

E
(
cov

{
𝜇1(S1,i) − 𝜇0(S0,i) − 𝜏 |S1,i, S0,i,

Ai
(
1 +M−1KS1,i

) {
Yi − 𝜇1(S1,i)

} |S1,i, S0,i})
= 0,
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similarly, cov(T1n,T3n) = 0, and by construction, cov(T2n,T3n) = 0. Thus, the asymptotic variance
of n1∕2 {𝜏dsm(𝜃∗) − 𝜏} is

V

[
n−1∕2

n∑
i=1

{
𝜇1(S1,i) − 𝜇0(S0,i) − 𝜏

}]
+ V

[
n−1∕2

n∑
i=1
Ai
(
1 +M−1KS1,i

) {
Yi − 𝜇1(S1,i)

}]

+ V

[
n−1∕2

n∑
i=1

(1 − Ai)
(
1 +M−1KS0,i

) {
Yi − 𝜇0(S0,i)

}]
.

The first term becomes E
[
{𝜇1(S1) − 𝜇0(S0) − 𝜏}2

]
. Following Abadie and Imbens (2006), the

second and third term, as n → ∞, becomes

plimn→∞

[
n−1

n∑
i=1
Ai
(
1 +M−1KS1,i

)2
V(Yi |S1,i)]

+ plimn→∞

[
n−1

n∑
i=1

(1 − Ai)
(
1 +M−1KS0,i

)2
V(Yi |S0,i)]

= E

(
𝜎21(S1)

[
1

e(S1)
+ 1
2M

{
1

e(S1)
− e(S1)

}])
+ E

(
𝜎20 (S0)

[
1

1 − e(S0)
+ 1
2M

{
1

1 − e(S0)
− 1 + e(S0)

}])
.

This completes the proof of Theorem 1.

A.2 Proof of Theorem 2
We follow the technique inAndreou andWerker (2012) andAbadie and Imbens (2016). In Abadie
and Imbens (2016), the PSM estimators rely on the nuisance parameter estimator under a correct
specification of the propensity score model. In our setting, the nuisance parameters include both
parameters in the propensity score model and the prognostic score model, and require only one
of the models to be correctly specified. Without loss of generality, we assume one working model
e(X; 𝛼) for the propensity score and one working model Ψ(X; 𝛽) = {Ψ0(X; 𝛽0),Ψ1(X; 𝛽1)} for the
prognostic score. The proof for the case with more than two working models for each score is
similar at the expense of heavier notation. Let P be the distribution of {(Ai,Xi,Yi) ∶ i = 1, … ,n}.
Consider P = P𝜃∗ to be indexed by 𝜃∗ = (𝛼∗T, 𝛽∗T0 , 𝛽∗T1 )T, which satisfies

E{U(A,X ,Y ; 𝜃∗)} = E

⎧⎪⎨⎪⎩
⎛⎜⎜⎜⎝
U1(A,X; 𝛼∗)
U2(A,X ,Y ; 𝛽∗0 )
U3(A,X ,Y ; 𝛽∗1 )

⎞⎟⎟⎟⎠
⎫⎪⎬⎪⎭ = 0. (A4)

We invoke standard regularity conditions on Z-estimation (van der Vaart, 2000) as follows.

Assumption A2. (i) Under P𝜃∗ , n(𝜃∗) →  (0,ΣU) in distribution, as n → ∞, where ΣU =
E{U(A,X ,Y ; 𝜃∗)U(A,X ,Y ; 𝜃∗)T}; (ii) Γ𝜃 = E{𝜕U(A,X ,Y ; 𝜃)∕𝜕𝜃T} is nonsingular around 𝜃∗; and
(iii) for any vector of constant h, exp{n1∕2hTΓ𝜃∗Σ−1

U n(𝜃∗)} is uniformly integrable.
Under Assumption A2,

n1∕2(�̂� − 𝜃∗) = −Γ−1
𝜃∗ n(𝜃∗) + oP(1) →  (0,Σ𝜃∗ ), (A5)
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in distribution, as n → ∞, where Σ𝜃∗ = Γ−1
𝜃∗
ΣU(Γ−1

𝜃∗
)T.

To derive the large sample distribution of 𝜏dsm(�̂�), following Abadie and Imbens (2016), we
impose the following regularity conditions.

AssumptionA3. There exists a neighborhood of 𝜃∗, such that for any 𝜃 in this region, the follow-
ing conditions hold: for a = 0, 1, (i) thematching variable Sa(𝜃) has a compact and convex support
 , with a continuous density bounded and bounded away from zero; (ii) 𝜇a{Sa(𝜃)} and 𝜎2a{Sa(𝜃)}
satisfy the Lipschitz continuity condition; and (iii) there exists 𝛿 > 0 such thatE

{|Y (a)|2+𝛿|Sa(𝜃)}
is uniformly bounded for any Sa(𝜃) ∈  .

FollowingAndreou andWerker (2012), becausewe consider a semiparametricmodel for 𝜃∗, to
invoke the Le Cam’s lemma, we specify an auxiliary parametric model P𝜃n defined locally though
𝜃∗, 𝜃n = 𝜃∗ + n−1∕2h, with a density

exp
{
n1∕2(𝜃n − 𝜃∗)TΓ𝜃∗Σ−1

U n(𝜃∗) − 2−1n(𝜃n − 𝜃∗)TΣ−1
𝜃∗
(𝜃n − 𝜃∗)

}
E
[
exp

{
n1∕2(𝜃n − 𝜃∗)TΓ𝜃∗Σ−1

U n(𝜃∗) − 2−1n(𝜃n − 𝜃∗)TΣ−1
𝜃∗ (𝜃n − 𝜃∗)

}] . (A6)

By Assumption A2 (iii), exp{n1∕2(𝜃n − 𝜃∗)TΓ𝜃∗Σ−1
U n(𝜃∗)} is uniformly integrable, and thus

model (A6) is uniformly locally asymptotically normal. Because underP𝜃∗ ,n(𝜃∗) →  (0,ΣU) in
distribution, the normalizing constant in the denominator converges to one as n → ∞. The Fisher
information under the parametric model (A6) is nΣ−1

𝜃∗ . Therefore, �̂� is efficient under model (A6).
Now consider (Ai,Xi,Yi), for i = 1, … ,n, with the local shift P𝜃n (Bickel et al., 1993). Under

model (A6), the likelihood ratio under P𝜃n is

log(dP
𝜃∗∕dP

𝜃n ) = −hTΓ𝜃∗Σ−1
U n(𝜃∗) +

1
2
hTΣ−1

𝜃∗ h + oP(1)

= −hTΓ𝜃∗Σ−1
U n(𝜃n) −

1
2
hTΣ−1

𝜃∗ h + oP(1), (A7)

where the second equality follows by the Taylor expansion ofn(𝜃∗) at 𝜃n. Moreover, under P𝜃n :
n(𝜃n) →  (0,ΣU) in distribution, as n → ∞, and

n1∕2(�̂� − 𝜃n) = Γ−1
𝜃∗ n(𝜃n) + oP(1). (A8)

We also assume the following regularity condition.

Assumption A4. For all bounded continuous functions h(A,X ,Y ), the conditional expectation
E𝜃n{h(A,X ,Y )} converges in distribution to E{h(A,X ,Y ) }, where E𝜃n (⋅) is the expectation taken
with respect to P𝜃n .

We derive the results in Theorem 2 in two steps.
In the first step, under P𝜃n , we write 𝜏 = 𝜏(𝜃n) to reflect its dependence on 𝜃n; to be specific,

we have
𝜏(𝜃n) = E [𝜇1{S1(𝜃n)} − 𝜇0{S0(𝜃n)}] .

We derive that under P𝜃n ,

⎛⎜⎜⎜⎝
n1∕2{𝜏dsm(𝜃n) − 𝜏(𝜃n)}

n1∕2(�̂� − 𝜃n)
log(dP𝜃∗∕dP𝜃n )

⎞⎟⎟⎟⎠ → 

⎧⎪⎨⎪⎩
⎛⎜⎜⎜⎝

0
0

− 1
2
hTΣ−1

𝜃∗
h

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝

V𝜏 𝛾T1 Γ
−1
𝜃∗

−𝛾T1 Σ
−1
U Γ𝜃∗h

Γ−1
𝜃∗
𝛾1 Σ𝜃∗ −h

−hTΓ𝜃∗Σ−1
U 𝛾1 −hT hTΣ−1

𝜃∗
h

⎞⎟⎟⎟⎠
⎫⎪⎬⎪⎭ , (A9)
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in distribution, as n → ∞. We then express 𝜏(𝜃n) = 𝜏(𝜃∗) + 𝛾T2 (n
−1∕2h) + o(n−1∕2), where

𝛾2 =
𝜕𝜏(𝜃)
𝜕𝜃

||||𝜃=𝜃∗ = E

[
𝜕𝜇1{S1(𝜃)} − 𝜇0{S0(𝜃)}

𝜕𝜃

||||𝜃=𝜃∗
]
. (A10)

By Le Cam’s third lemma, under P𝜃∗ ,

(
n1∕2{𝜏dsm(𝜃n) − 𝜏}

n1∕2(�̂� − 𝜃n)

)
→ 

{(
−𝛾T1 Σ

−1
U Γ𝜃∗h − 𝛾T2 h
−h

)
,

(
V𝜏 𝛾T1 Γ

−1
𝜃∗

Γ−1
𝜃∗
𝛾1 Σ𝜃∗

)}
,

in distribution, as n → ∞. Replacing 𝜃n by 𝜃∗ + n−1∕2h yields that under P𝜃∗ ,

(
n1∕2{𝜏dsm(𝜃∗ + n−1∕2h) − 𝜏}

n1∕2(�̂� − 𝜃∗)

)
→ 

{(
−𝛾T1 Σ

−1
U Γ𝜃∗h − 𝛾T2 h

0

)
,

(
V𝜏 𝛾T1 Γ

−1
𝜃∗

Γ−1
𝜃∗
𝛾1 Σ𝜃∗

)}
, (A11)

in distribution, as n → ∞.
In the second step, we provide a heuristic derivation for (A11) to obtain the approximate

distribution (8). If the normal distribution were exact, then

n1∕2{𝜏dsm(𝜃∗ + n−1∕2h) − 𝜏}|n1∕2(�̂� − 𝜃∗) = h ∼ 
(
−𝛾T2 h,V𝜏 − 𝛾T1 Σ

−1
U 𝛾1

)
. (A12)

Given that n1∕2(�̂� − 𝜃∗) = h, we have 𝜃∗ + n−1∕2h = �̂�, and hence 𝜏dsm(𝜃∗ + n−1∕2h) = 𝜏dsm(�̂�).
Marginalizing (A12) over the asymptotic distribution of n1∕2(�̂� − 𝜃∗), we derive (8). The formal
technique to derive (8) can be find in Andreou andWerker (2012) and Abadie and Imbens (2016).
To avoid repetition, we omit this step.

In the following, we provide the proof to (A9) in the first step of the proof. Asymptotic normal-
ity of n1∕2{𝜏dsm(𝜃n) − 𝜏(𝜃n)} under P𝜃n follows from Theorem 1 and the uniform local asymptotic
normality of model (A6). Asymptotic joint normality of log(dP𝜃∗∕dP𝜃n ) and n1∕2(�̂� − 𝜃n) follows
from (A7) and (A8). Also, n1∕2{𝜏dsm(𝜃n) − 𝜏(𝜃n)} = Dn(𝜃n) + oP(1), where

Dn(𝜃n) = n−1∕2
n∑
i=1

[
𝜇1{S1,i(𝜃n)} − 𝜇0{S0,i(𝜃n)} − 𝜏(𝜃n)

]
+ n−1∕2

n∑
i=1
Ai
{
1 +M−1KS1(𝜃n),i

} [
Yi − 𝜇1{S1,i(𝜃n)}

]
− n−1∕2

n∑
i=1

(1 − Ai)
{
1 +M−1KS0(𝜃n),i

} [
Yi − 𝜇0{S0,i(𝜃n)}

]
+ oP(1).

Therefore, the remaining is to show that, under P𝜃n :

(
Dn(𝜃n)
n(𝜃n)

)
→ 

{(
0
0

)
,

(
V𝜏 𝛾T1

𝛾1 ΣU

)}
, (A13)
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in distribution, as n → ∞. To prove (A13), consider the linear combination

Tn = c0Dn(𝜃n) + cTn(𝜃n)

= c0n−1∕2
n∑
i=1

[
𝜇1{S1,i(𝜃n)} − 𝜇0{S0,i(𝜃n)} − 𝜏(𝜃n)

]
+ c0n−1∕2

n∑
i=1

(2Ai − 1)
{
1 +M−1KSAi (𝜃n),i

} [
Yi − 𝜇Ai{SAi,i(𝜃n)}

]
+ cT1n

−1∕2
n∑
i=1

[
𝜕e(Xi; 𝛼n)

𝜕𝛼

Ai − e(Xi; 𝛼n)
e(Xi; 𝛼n){1 − e(Xi; 𝛼n)}

]
+ cT2n

−1∕2
n∑
i=1

[
(1 − Ai)

𝜕𝜇0(Xi; 𝛽0,n)
𝜕𝛽0

{Yi − 𝜇0(Xi; 𝛽0,n)}
]

+ cT3n
−1∕2

n∑
i=1

[
Ai

𝜕𝜇1(Xi; 𝛽1,n)
𝜕𝛽1

{Yi − 𝜇1(Xi; 𝛽1,n)}
]
+ oP(1),

where c = (cT1 , c
T
2 , c

T
3 )
T. We analyze Tn using the martingale theory. We rewrite Tn =

∑2n
k=1𝜉n,k,

where

𝜉n,k =

{∑8
j=1𝜉

(j)
n,k, 1 ≤ k ≤ n,∑11

j=9𝜉
(j)
n,k, n + 1 ≤ k ≤ 2n,

𝜉
(1)
n,k = c0n−1∕2

[
𝜇1{S1,k(𝜃n)} − 𝜇0{S0,k(𝜃n)} − 𝜏(𝜃n)

]
,

𝜉
(2)
n,k = c0n−1∕2(2Ak − 1)

{
1 +M−1KSAk (𝜃n),k

} [
𝜇Ak (Xk) − 𝜇Ak{SAk ,k(𝜃n)}

]
𝜉
(3)
n,k = cT1n

−1∕2
[
𝜕e(Xk; 𝛼n)

𝜕𝛼

e(Xk) − e(Xk; 𝛼n)
e(Xk; 𝛼n){1 − e(Xk; 𝛼n)}

]
,

𝜉
(4)
n,k = cT2n

−1∕2{1 − e(Xk)}
𝜕𝜇0(Xk; 𝛽0,n)

𝜕𝛽0
{𝜇0(Xk) − 𝜇0(Xk; 𝛽0,n)},

𝜉
(5)
n,k = cT3n

−1∕2e(Xk)
𝜕𝜇1(Xk; 𝛽1,n)

𝜕𝛽1
{𝜇1(Xk) − 𝜇1(Xk; 𝛽1,n)},

𝜉
(6)
n,k = cT1n

−1∕2
[
𝜕e(Xk; 𝛼n)

𝜕𝛼

Ak − e(Xk)
e(Xk; 𝛼n){1 − e(Xk; 𝛼n)}

]
,

𝜉
(7)
n,k = −cT2n

−1∕2
[
{Ak − e(Xk)}

𝜕𝜇0(Xk; 𝛽0,n)
𝜕𝛽0

{𝜇0(Xk) − 𝜇0(Xk; 𝛽0,n)}
]
,

𝜉
(8)
n,k = cT3n

−1∕2
[
{Ak − e(Xk)}

𝜕𝜇1(Xk; 𝛽1,n)
𝜕𝛽1

{𝜇1(Xk) − 𝜇1(Xk; 𝛽1,n)}
]
,

𝜉
(9)
n,k = c0n−1∕2(2Ak−n − 1)

{
1 +M−1KSAk−n (𝜃n),k−n

}{
Yk−n − 𝜇Ak−n(Xk−n)

}
𝜉
(10)
n,k = cT2n

−1∕2(1 − Ak−n)
𝜕𝜇0(Xk−n; 𝛽0,n)

𝜕𝛽0
{Yk−n − 𝜇0(Xk−n)},

𝜉
(11)
n,k = cT3n

−1∕2Ak−n
𝜕𝜇1(Xk−n; 𝛽1,n)

𝜕𝛽1
{Yk−n − 𝜇1(Xk−n)}.
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Consider the 𝜎-fields

n,k =

{
𝜎(A1, … ,Ak,X1, … ,Xk), 1 ≤ k ≤ n,
𝜎(A1, … ,An,X1, … ,Xn,Yk−1, … ,Yk−n), 2n + 1 ≤ k ≤ 3n.

Then, we have
{∑i

k=1𝜉n,i,n,i, 1 ≤ i ≤ 2n
}
is a martingale for each n ≥ 1, which follows by the

following reasons:

(i) because Sa,k(𝜃n) is a double balancing score,

E𝜃n(𝜉
(1)
n,k|n,k−1) = E

(
c0n−1∕2

[
𝜇1{S1,k(𝜃n)} − 𝜇0{S0,k(𝜃n)} − 𝜏(𝜃n)

] |n,k−1) = 0;

(ii) let 0
n,k = 𝜎{A1, … ,Ak, S1(𝜃n), … , Sk(𝜃n)} for 1 ≤ k ≤ n, then

E𝜃n (𝜉
(2)
n,k|n,k−1) = E𝜃n{E𝜃n(𝜉

(2)
n,k|0

n,k−1) |n,k−1}
= c0n−1∕2E𝜃n

(
(2Ak − 1)

{
1 +M−1KSAk (𝜃n),k

}
×E𝜃n

[
𝜇Ak (Xk) − 𝜇Ak{SAk ,k(𝜃n)}|0

n,k−1

] |n,k−1)
= c0n−1∕2E𝜃n

[
(2Ak − 1)

{
1 +M−1KSAk (𝜃n),k

}
× 0 |n,k−1]

= 0;

(iii) E𝜃n

(
𝜉
(3)
n,k|n,k−1) = E𝜃n

(
𝜉
(4)
n,k|n,k−1) = E𝜃n

(
𝜉
(5)
n,k|n,k−1) = 0 because E𝜃n{U(𝜃n)} = 0;

(iv) by the conditioning argument,

E𝜃n

(
𝜉
(6)
n,k|n,k−1) = E𝜃n

[
cT1n

−1∕2 𝜕e(Xk; 𝛼n)
𝜕𝛼

E
{
Ak − e(Xk)|n,k−1,Xk}

e(Xk; 𝛼n){1 − e(Xk; 𝛼n)}
|n,k−1] = 0;

(v) E𝜃n

(
𝜉
(7)
n,k|n,k−1) = 0 and E𝜃n

(
𝜉
(8)
n,k|n,k−1) = 0 due to that fact that Ak − e(Xk) is unbiased

conditional on Xk;
(vi) E𝜃n

(
𝜉
(9)
n,k|n,k−1) = 0 because (1 − Ak−n){Yk−n − 𝜇0(Xk−n)} is unbiased given n,k−1;

(vii) E𝜃n

(
𝜉
(10)
n,k |n,k−1) = 0 because Ak−n{Yk−n − 𝜇1(Xk−n)} is unbiased given n,k−1.

Therefore, we can apply the martingale central limit theorem (Billingsley, 1995) to derive the
limiting distribution ofTn. Under AssumptionA3, we can verify the conditions for themartingale
central limit theorem hold. It follows that under P𝜃n , Tn →  (0, 𝜎2) in distribution, as n → ∞,
where 𝜎2 = plim

∑2n
k=1E𝜃n(𝜉

2
n,k|n,k−1). Under Assumption A4, we thus derive the expression of 𝜎2

and specify the components in (A13) with

𝛾1 = (𝛾T11, 𝛾
T
12, 𝛾

T
13)

T, (A14)

𝛾11 = E

([
𝜇1{S1(𝜃∗)} − 𝜇0{S0(𝜃∗)} − 𝜏

] 𝜕e(X; 𝛼∗)
𝜕𝛼

A − e(X; 𝛼∗)
e(X; 𝛼∗){1 − e(X; 𝛼∗)}

)
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+ E

([
𝜇1(X) − 𝜇1{S1(𝜃∗)}

] 𝜕e(X; 𝛼∗)
𝜕𝛼

1 − e(X; 𝛼∗)
e(X; 𝛼∗){1 − e(X; 𝛼∗)}

)
−E

([
𝜇0(X) − 𝜇0{S0(𝜃∗)}

] 𝜕e(X; 𝛼∗)
𝜕𝛼

−e(X; 𝛼∗)
e(X; 𝛼∗){1 − e(X; 𝛼∗)}

)
,

𝛾12 = −E

([
𝜇1{S1(𝜃∗)} − 𝜇0{S0(𝜃∗)} − 𝜏

]
(1 − A)

𝜕𝜇0(X; 𝛽∗0 )
𝜕𝛽0

{𝜇0(X) − 𝜇0(X; 𝛽∗0 )}
)

−E

([
𝜇0(X) − 𝜇0{S0(𝜃∗)}

] 𝜕𝜇0(X; 𝛽∗0 )
𝜕𝛽0

{𝜇0(X) − 𝜇0(X; 𝛽∗0 )}
)
− E

{
𝜕𝜇0(X; 𝛽∗0 )

𝜕𝛽0
𝜎20 (X)

}
,

and

𝛾13 = −E

([
𝜇1{S1(𝜃∗)} − 𝜇0{S0(𝜃∗)} − 𝜏

]
A
𝜕𝜇1(X; 𝛽∗1 )

𝜕𝛽1
{𝜇1(X) − 𝜇1(X; 𝛽∗1 )}

)
+ E

([
𝜇1(X) − 𝜇1{S1(𝜃∗)}

] 𝜕𝜇1(X; 𝛽∗1 )
𝜕𝛽1

{𝜇1(X) − 𝜇1(X; 𝛽∗1 )}
)
− E

{
𝜕𝜇1(X; 𝛽∗1 )

𝜕𝛽1
𝜎21 (X)

}
.


