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Summary

It is important to draw causal inference from observational studies, but this becomes challeng-
ing if the confounders have missing values. Generally, causal effects are not identifiable if the
confounders are missing not at random. In this article we propose a novel framework for non-
parametric identification of causal effects with confounders subject to an outcome-independent
missingness, which means that the missing data mechanism is independent of the outcome, given
the treatment and possibly missing confounders. We then propose a nonparametric two-stage
least squares estimator and a parametric estimator for causal effects.

Some key words: Completeness; Identifiability; Ill-posed inverse problem; Integral equation; Outcome-independent
missingness; Two-stage least squares estimator.

1. Introduction

Causal inference plays an important role in biomedical studies and social sciences. If all the
confounders of the treatment-outcome relationship are observed, one can use standard techniques,
such as propensity score matching, subclassification and weighting, to adjust for confounding
(e.g., Rosenbaum & Rubin, 1983; Imbens & Rubin, 2015).

Much less work has been done on the case where confounders have missing values. Rosenbaum
& Rubin (1984) and D’Agostino Jr & Rubin (2000) developed a generalized propensity score
approach. Under a modified unconfoundedness assumption, they showed that adjusting for the
missing pattern and the observed values of confounders removes all confounding bias, and hence
the causal effects are identifiable. Moreover, the balancing property of the propensity score carries
over to the generalized propensity score. Standard propensity score methods can therefore be used
to estimate the causal effects. However, the modified unconfoundedness assumption implies that
units may have different confounders depending on the missing pattern, which is often difficult
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876 S. Yang, L. Wang AND P. Ding

to justify scientifically. An alternative approach assumes that the confounders are missing at
random (Rubin, 1976). Under this assumption, both the full data distribution and the causal
effects are identifiable, and multiple imputation can be used to obtain estimates of the causal
effects (Rubin, 1987; Qu & Lipkovich, 2009; Crowe et al., 2010; Mitra & Reiter, 2011; Seaman
& White, 2014). In practice, however, the missing pattern often depends on the missing values
themselves, a scenario commonly known as missing not at random (Rubin, 1976). Multiple-
imputation methods may fail to provide valid inference in this scenario. See Mattei (2009) for a
comparison of various methods and Lu & Ashmead (2018) for a sensitivity analysis.

Causal inference with confounders missing not at random is challenging because neither the full
data distribution nor the causal effects are identifiable without further assumptions. We consider
a novel setting in which the confounders are subject to an outcome-independent missingness; that
is, the missing data mechanism is independent of the outcome, given the treatment and possibly
missing confounders. This outcome-independent missingness is plausible if the outcome happens
after the covariate measurements and missing data indicators. To identify the causal effects in
this setting, we formulate the identification problem as solving an integral equation, and show
that the identification of the full data distribution is equivalent to the existence of a unique
solution to an inverse problem. This new perspective allows us to establish a general condition
for identifiability of the causal effects. Our condition generalizes existing results for discrete
covariates and outcome (Ding & Geng, 2014). Motivated by the identification result, we develop
a nonparametric two-stage least squares estimator by solving the sample analogue of the integral
equation. To avoid the curse of dimensionality, we further develop parametric likelihood-based
methods.

2. Set-up and assumptions

2.1. Potential outcomes, causal effects and unconfoundedness

We use potential outcomes to define causal effects (Neyman, 1923; Rubin, 1974). Suppose
that the binary treatment is A ∈ {0, 1}, with 0 and 1 being the labels for the control and active
treatments, respectively. Each level of treatment a corresponds to a possibly multi-dimensional
potential outcome Y (a), representing the outcome had the subject, possibly contrary to the fact,
been given treatment a. The observed outcome is Y = Y (A) = AY (1) + (1 − A)Y (0). Let
X = (X1, . . . , Xp) be a vector of p-dimensional pre-treatment covariates. We assume that a
sample of size n consists of independent and identically distributed draws from the distribution
of {A, X , Y (0), Y (1)}. The covariate-specific causal effect is τ(X ) = E{Y (1) − Y (0) | X }, and
the average causal effect is τ = E{Y (1)−Y (0)} = E{τ(X )}. We focus on τ ; a similar discussion
applies to the average causal effect on the treated, τATT = E{Y (1) − Y (0) | A = 1} = E{τ(X ) |
A = 1}. The following assumptions are standard in causal inference with observational studies
(Rosenbaum & Rubin, 1983).

Assumption 1. We have that {Y (0), Y (1)} ⊥⊥ A | X .

Assumption 2. There exist constants c1 and c2 such that 0 < c1 � e(X ) � c2 < 1 almost
surely, where e(X ) = pr(A = 1 | X ) is the propensity score.

Under Assumptions 1 and 2, τ = E{E(Y | A = 1, X ) − E(Y | A = 0, X )} is identifiable from
the joint distribution of the observed data (A, X , Y ). Rosenbaum & Rubin (1983) showed that
{Y (0), Y (1)} ⊥⊥ A | e(X ), so adjusting for the propensity score removes all confounding. We can
estimate τ through propensity score matching, subclassification or weighting.
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Causal inference with missing confounders 877

2.2. Confounders with missing values and the generalized propensity score

We consider the case where X contains missing values. Let R = (R1, . . . , Rp) be the vector of
missing indicators such that Rj = 1 if the jth component Xj is observed and 0 if Xj is missing.
Let R be a subset of all possible values of R. We use 1p to denote the p-vector of 1s and 0p the
p-vector of 0s. The missingness pattern R = r ∈ R partitions the covariates X into Xr and Xr̄ ,
the observed and missing parts of X , respectively. Using the standard notation, XR = Xobs and
XR̄ = Xmis are the realized observed and missing covariates, respectively. For example, if R1 = 1
and Rj = 0 for j = 2, . . . , p, then XR = X1 and XR̄ = (X2, . . . , Xp). Assume that the full data
are independent and identically distributed draws from {A, X , Y (0), Y (1), R}, and so the observed
data are independent and identically distributed draws from (A, R, XR, Y ). Rosenbaum & Rubin
(1984) introduced the following modified unconfoundedness assumption.

Assumption 3. We have that {Y (0), Y (1)} ⊥⊥ A | (XR, R).

Under Assumption 3, the generalized propensity score e(XR, R) = pr(A = 1 | XR, R) plays
the same role as the usual propensity score e(X ) = pr(A = 1 | X ) in the settings without
missing covariates. Rosenbaum & Rubin (1984) showed that adjusting for e(XR, R) balances
(XR, R) and removes all confounding on average. Their approach has the advantage of requiring
no assumptions on the missing data mechanism of X for the identification of causal effects.
However, Assumption 3 implies that a pre-treatment covariate can be a confounder when it is
observed, but is not a confounder when it is missing; this is often hard to justify scientifically.
Moreover, if the covariate measurement occurs after the treatment assignment, then R is a post-
treatment variable affected by A. In this case, even if A is completely randomized,Assumption 3 is
unlikely to hold when conditioning on the post-treatment variable R (Frangakis & Rubin, 2002).

2.3. Missing data mechanisms of the confounders

Without Assumption 3, identification of causal effects relies on alternative assumptions on
the missing data mechanism. We now describe existing approaches under different missingness
mechanisms of the confounders, the first of which is missing completely at random (Rubin, 1976).

Assumption 4 (Missing completely at random). We have that R ⊥⊥ (A, X , Y ).

Assumption 4 requires that the missingness of confounders be independent of all variables
(A, X , Y ). It implies τ = E{τ(X ) | R = 1p} and thus justifies the complete-case analysis that
uses only the units with fully observed confounders. This complete-case analysis is, however,
inefficient as it discards all units with missing confounders. Moreover, confounders are rarely
missing completely at random.

The second missingness mechanism is missing at random (Rubin, 1976).

Assumption 5 (Missing at random). We have that R ⊥⊥ X | (A, Y ).

Under Assumption 5, conditioning on the treatment and outcome, the missing mechanism of
confounders is independent of the missing values themselves.Assumption 5 implies f (A, X , Y ) =
f (A, Y )f (X | A, Y , R = 1p), and therefore the joint distribution f (A, X , Y ) and its functionals,
including τ , are all identifiable. Rubin (1976) showed that the missing data mechanism can be
ignored in the likelihood-based and Bayesian inferences underAssumption 5. In this case, multiple
imputation is a popular tool for causal inference (e.g., Qu & Lipkovich, 2009; Crowe et al., 2010;
Mitra & Reiter, 2011; Seaman & White, 2014).
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Fig. 1. A direct acyclic graph illustrating Assumptions 1
and 6; white nodes represent observed variables, the light
grey node represents the variable with missing values, and

the dark node represents an unmeasured variable U .

However, imputing the missing confounders based on f (XR̄ | XR, A, Y ) ∝ f (X )f (A | X )f (Y |
A, X ) involves an outcome model in general (U.S. Department of Education, 2017), which is
contrary to the suggestion of Rubin (2007) that the outcome should not be used in the design
of an observational study. More importantly, missing at random is not plausible if the missing
pattern depends on the missing values themselves. Instead, we consider the following missing
data mechanism.

Assumption 6 (Outcome-independent missingness). We have that R ⊥⊥ Y | (A, X ).

Assumption 6 is plausible for prospective observational studies with covariates measured long
before the outcome takes place (e.g., Hsu & Small, 2013; Hanna-Attisha et al., 2016). Figure 1
is a special causal diagram (Pearl, 1995) illustrating Assumptions 1 and 6. Graphically, A and Y
have no common parents except for X , encoding Assumption 1, and R and Y have no common
parents except A and X , encoding Assumption 6. Our framework allows for unmeasured common
causes of R and A, as well as the dependence of R on the missing confounders XR̄. Moreover, it
allows R to be a post-treatment variable affected by A. We give more graphical illustrations of
Assumption 6 in the Supplementary Material.

We also make the following assumption to rule out degeneracy of the missing data mechanism.

Assumption 7. We have that pr(R = 1p | A, X , Y ) > c3 > 0 almost surely for some constant c3.

3. Nonparametric identification

3.1. Identification strategy

Assume that the distribution of (A, X , Y , R) is absolutely continuous with respect to some
measure, with f (A, X , Y , R) being the density or probability mass function. Under Assumptions 1
and 2, the key is to identify the joint distribution of f (A, X , Y ) because τ is its functional. The
following identity relates the full data distribution to the observed data distribution:

f (A, X , Y , R = 1p) = f (A, X , Y ) pr(R = 1p | A, X , Y ). (1)

The left-hand side of (1) is identifiable under Assumption 7. Therefore, the identification of
f (A, X , Y ) relies on the identification of pr(R = 1p | A, X , Y ). We now discuss how to identify
pr(R = 1p | A, X , Y ) = pr(R = 1p | A, X ) under Assumption 6.
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Causal inference with missing confounders 879

3.2. Integral equation representation

Under Assumption 6, let

ξra(X ) = pr(R = r | A = a, X , Y )

pr(R = 1p | A = a, X , Y )
= pr(R = r | A = a, X )

pr(R = 1p | A = a, X )
(a = 0, 1; r ∈ R).

It then suffices to identify ξra(X ), because it determines the missing data mechanism via

pr(R = r | A = a, X , Y ) = pr(R = r | A = a, X , Y )∑
r′∈R pr(R = r′ | A = a, X , Y )

= ξra(X )∑
r′∈R ξr′a(X )

. (2)

The following theorem shows that ξra(X ) is a key term connecting the observed data distribution
f (A, Xr , Y , R = r) and the complete-case distribution f (A, X , Y , R = 1p). Throughout the paper,
ν(·) denotes a generic measure, such as the Lebesgue measure for a continuous variable or the
counting measure for a discrete variable.

Theorem 1. Under Assumption 6, for any r and a, the following integral equation holds:

f (A = a, Xr , Y , R = r) =
∫

ξra(X )f (A = a, X , Y , R = 1p) dν(Xr̄). (3)

Proof. The result follows because the observed data distribution is the complete-data
distribution averaged over the missing data:

f (A = a, Xr , Y , R = r) =
∫

f (A = a, X , Y , R = r) dν(Xr̄)

=
∫

pr(R = r | A = a, X , Y )

pr(R = 1p | A = a, X , Y )
f (A = a, X , Y , R = 1p) dν(Xr̄)

=
∫

ξra(X )f (A = a, X , Y , R = 1p) dν(Xr̄). �

Theorem 1 is the basis of our identification analysis. In (3), f (A = a, Xr , Y , R = r) and f (A =
a, X , Y , R = 1p) are identifiable from the observed data. We have thus turned the identification
of ξra(X ) into the problem of solving for ξra(X ) from (3). This requires additional technical
assumptions, given below.

3.3. Bounded completeness and identification of the joint distribution

To motivate our identification conditions, we first consider the case of discrete X and Y , so
that (3) becomes a linear system. To solve for ξra(X ) from (3), we need the linear system to be
nondegenerate.

Proposition 1. Under Assumption 6, suppose that X and Y are discrete, with Xj ∈
{xj1, . . . , xjJj } for j = 1, . . . , p and Y ∈ {y1, . . . , yK }. Let q = J1 × · · · × Jp, and let �a be
a K × q matrix with the kth row being f (X , yk , R = 1p, A = a) evaluated at all possible values
of X . The distribution of (A, X , Y , R) is identifiable if Rank(�a) = q for a = 0, 1.

We relegate the proof to the Supplementary Material. For the special case of a binary X and a
discrete Y , the rank condition in Proposition 1 is equivalent to X �⊥⊥ Y | (A = a, R = 1) for a = 0
and 1, which is testable based on the observed data (Ding & Geng, 2014). For general cases, we
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need to extend the rank condition that ensures the unique existence of ξra(X ). We use the notion
of bounded completeness for general X and Y , which is related to the concept of a complete
statistic (Lehmann & Scheffé, 1950; Newey & Powell, 2003). Below, we say that a function g(x)
is bounded in L1-metric if supx |g(x)| � c for some 0 < c < ∞.

Definition 1. A function f (X , Y ) is bounded complete in Y if
∫

g(X )f (X , Y ) dν(X ) = 0
implies g(X ) = 0 almost surely for any measurable function g(X ) bounded in L1-metric.

D’Haultfoeuille (2011) gave sufficient conditions for bounded completeness. Bounded com-
pleteness has also appeared in other identification analyses, such as nonparametric instrumental
variable regression models (Darolles et al., 2011) and measurement error models (An & Hu,
2012).

We invoke the following assumption motivated by Theorem 1 and Definition 1.

Assumption 8. The joint distribution f (A = a, X , Y , R = 1p) is bounded complete in Y for
a = 0, 1.

Remark 1. When X and Y are discrete with finite supports, Assumption 8 is equivalent to
the rank condition in Proposition 1. For continuous X and Y , Assumption 8 requires that the
dimension of Y be at least as large as the dimension of X in general. Moreover, Assumption 8
implies Assumption 2. We give more details for these results in the Supplementary Material.

Under Assumption 7, Assumption 8 is sufficient to ensure the existence and uniqueness of
ξra(X ) from (3). We state the result in the following theorem.

Theorem 2. Under Assumptions 6–8, the distribution of (A, X , Y , R) is identifiable.

Proof. Suppose that ξ
(1)
ra (X ) and ξ

(2)
ra (X ) are two solutions to (3):

f (A = a, Xr , Y , R = r) =
∫

ξ (k)
ra (X )f (A = a, X , Y , R = 1p) dν(Xr̄) (k = 1, 2),

implying that
∫ {ξ (1)

ra (X ) − ξ
(2)
ra (X )}f (A = a, X , Y , R = 1p) dν(Xr̄) = 0. Integrating this identity

with respect to Xr gives

∫
{ξ (1)

ra (X ) − ξ (2)
ra (X )}f (A = a, X , Y , R = 1p) dν(X ) = 0.

Assumption 7 implies that ξra(X ) is bounded in L1-metric, which further implies that ξ
(1)
ra (X ) −

ξ
(2)
ra (X ) is bounded in L1-metric. Under Assumption 8, Definition 1 implies that ξ

(1)
ra (X ) −

ξ
(2)
ra (X ) = 0 almost surely. Therefore, (3) has a unique solution ξra(X ). Based on the definition

of ξra(X ), we can identify pr(R = 1p | A, X , Y ) by (2). Finally, we identify f (A, X , Y ) through
(1) as f (A, X , Y ) = f (A, X , Y , R = 1p)/pr(R = 1p | A, X , Y ). �

If the distribution of (A, X , Y ) is identifiable, we can use a standard argument to show that τ and
τATT are identifiable under Assumption 1. In the next subsection we give explicit identification
formulas for τ and τATT, which form the basis for constructing the nonparametric estimator.
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3.4. Nonparametric identification formulas for average causal effects

Under Assumptions 1 and 6–8, we can identify τ and τATT in two steps. First,

τ(X ) = E(Y | A = 1, X ) − E(Y | A = 0, X ) (4)

= E(Y | A = 1, X , R = 1p) − E(Y | A = 0, X , R = 1p), (5)

where (4) follows from Assumption 1 and (5) follows from Assumption 6. Therefore, we can
identify τ(X ) using a complete-case analysis based on (5).

Second, under Assumptions 6–8, Theorem 2 shows that the distribution of (A, X , Y , R) is iden-
tifiable, which implies that the marginal distribution of X , f (X ), and the conditional distribution of
X , f (X | A = 1), are also identifiable. Therefore, both τ = E{τ(X )} and τATT = E{τ(X ) | A = 1}
are identifiable. The following theorem summarizes these results and gives the explicit formulas.

Theorem 3. Under Assumptions 1 and 6–8, the average causal effect τ is identified by

τ =
1∑

a=0

∫
τ(X )

f (A = a, X , R = 1p)

pr(R = 1p | A = a, X )
dν(X ), (6)

and the average treatment effect on the treated, τATT, is identified by

τATT =
∫

τ(X )
f (X , R = 1p | A = 1)

pr(R = 1p | A = 1, X )
dν(X ), (7)

where τ(X ) is identified by (5), pr(A = a, R = 1p) and f (A = a, X , R = 1p) depend only on the
observed data, and pr(R = 1p | A = a, X ) can be identified from (2) and (3) for a = 0, 1.

Proof. First, we can identify the conditional distribution of X given A = a by

f (X | A = a) = f (X , R = 1p | A = a)

pr(R = 1p | A = a, X )
(a = 0, 1).

Averaging τ(X ) over f (X | A = 1) yields the identification formula (7).
Second, we can identify the marginal distribution of X by

f (X ) =
1∑

a=0

f (A = a, X ) =
1∑

a=0

f (A = a, X , R = 1p)

pr(R = 1p | A = a, X )
.

Averaging τ(X ) over the above distribution gives the identification formula (6). �

4. Estimation of the average causal effect

4.1. Nonparametric two-stage least squares estimator

Theorem 3 gives the nonparametric identification formulae at the population level. Based
on (6), we propose a nonparametric two-stage least squares estimator of τ with finite samples
(Ai, Ri, XRi , Yi)

n
i=1. Estimation of τATT is similar in spirit and hence omitted. We can use stan-

dard nonparametric or machine learning methods to estimate τ(X ), pr(A = a, R = 1p) and
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882 S. Yang, L. Wang AND P. Ding

f (X | A = a, R = 1p); let τ̂ (X ), p̂r(A = a, R = 1p) and f̂ (X | A = a, R = 1p) denote the
respective estimators. Therefore, the key is to estimate pr(R = 1p | A = a, X ) or, equivalently,
ξra(X ) based on (3).

In the first stage, we obtain f̂ (Xr , Y , R = r | A = a) and f̂ (X , Y , R = 1p | A = a) as the
nonparametric sample analogues of f (Xr , Y , R = r | A = a) and f (X , Y , R = 1p | A = a).
Substituting these estimates into (3) leads to

f̂ (Xr , Y , R = r | A = a) =
∫

ξra(X )f̂ (X , Y , R = 1p | A = a) dν(Xr̄), (8)

which is a Fredholm integral equation of the first kind. Solving (8) presents several challenges.
First, although Theorem 2 states that the population equation (3) has a unique solution, the sample
equation (8) may not have a unique solution. Second, ξra(X ) is an infinite-dimensional parameter,
and its estimation often relies on some approximation. Third, solving for ξra(X ) from (8) is an
ill-conditioned problem, in the sense that even a slight perturbation of f̂ (Xr , Y , R = r | A = a)

and f̂ (X , Y , R = 1p | A = a) can lead to a large variation in the solution for ξra(X ). As a result,
replacing f (Xr , Y , R = r | A = a) and f (X , Y , R = 1p | A = a) in (3) by their consistent
estimators does not necessarily yield a consistent estimator of ξra(X ) (Darolles et al., 2011).

To deal with these issues, we use a series approximation (Kress et al., 1999; Newey & Powell,
2003) in the second stage. Let the set HJ = {h j(X ) = exp(−X TX )X λj : j = 1, . . . , J } form

a Hermite polynomial basis, where X λj = X
λj1
1 · · · X

λjp
p with λj = (λj1, . . . , λjp) and |λj| =∑p

l=1 λjl increasing in j. Let X̃ = �−1/2(X − μ) be a standardized version of X , where μ and

� are a constant vector and matrix. We approximate ξra(X ) by ξra(X ) ≈ ∑J
j=1 β

j
rah j(X̃ ). Thus,

for each missing pattern R = r, we approximate (3) by

f (Xr , Y , R = r | A = a) ≈
J∑

j=1

β
j

ra

∫
h j(X̃ )f (X , Y , R = 1p | A = a) dν(Xr̄)

=
J∑

j=1

β
j

raH j
ra(Xr , Y )f (Xr , Y , R = 1p | A = a), (9)

where the conditional expectation H j
ra(Xr , Y ) = E{h j(X̃ ) | A = a, Xr , Y , R = 1p} is over the

distribution f (Xr̄ | A = a, Xr , Y , R = 1p).

We need the empirical versions of H j
ra(Xr , Y ) and f (Xr , Y , R = 1p | A = a) for estimation.

First, for unit i, let Ĥ j
ra,i = Ê{h j(X̃ ) | Ai = a, Xr,i, Yi, Ri = 1p} be a nonparametric estimator

of the conditional expectation. Second, we obtain f̂ (Xr , Y , R = 1p | A = a), a nonparametric
estimator of f (Xr , Y , R = 1p | A = a). Although we obtain these estimators based on the
complete cases, we still need to partition the confounders into (Xr , Xr̄) based on the missing
pattern R = r. Because the sample version of the approximation (9) is linear, we can estimate
the β

j
ra by minimizing the residual sum of squares

n∑
i=1

I (Ri = r)

⎧⎨
⎩f̂ (Xr,i, Yi, Ri = r | Ai = a) −

J∑
j=1

β
j

raĤ j
ra,i f̂ (Xr,i, Yi, Ri = 1p | Ai = a)

⎫⎬
⎭

2

.

(10)
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Causal inference with missing confounders 883

To ensure the estimates from (10) are well-behaved asymptotically, we need a large number
of observations for each pattern r ∈ R. To solve the ill-conditioned problem, we restrict the
parameter space of ξra(X ) to a compact space, which effectively regularizes the problem, making
it well-posed. Given the approximation of ξra(X ), we require the vector of coefficients βra, the
concatenation of (β1

ra, . . . , βJ
ra), to satisfy βT

ra	βra � B, where 	 is a positive-definite J × J
matrix and B is a positive constant. Therefore, we propose to estimate βra by minimizing (10)
subject to the constraint βT

ra	βra � B. More details of the regularization are presented in the
Supplementary Material.

We then estimate ξra(X ) and the probability pr(R = 1p | A = a, X ) by

ξ̂ra(X ) =
J∑

j=1

β̂
j

rah j(X̃ ), p̂r(R = 1p | A = a, X ) =
⎧⎨
⎩1 +

∑
r |=1p

ξ̂ra(X )

⎫⎬
⎭

−1

and finally estimate τ by

τ̂ =
1∑

a=0

p̂r(A = a, R = 1p)

∫
τ̂ (X )

f̂ (X | A = a, R = 1p)

p̂r(R = 1p | A = a, X )
dν(X ). (11)

We now comment on some subtle technical issues in implementing the above estimator. First,
we standardize the confounders by X̃ = �−1(X −μ) for numerical stability.We chooseμ and� to
be the mean and covariance matrix of confounders for the complete cases. This choice is innocuous
because HJ remains the same for other values of μ and �. Second, we use the importance
sampling technique to approximate the integral in (11), because it is difficult to directly sample
from the nonparametric density estimators. Third, we use the bootstrap to construct confidence
intervals. Newey (1997) proposed a relatively simple variance estimation approach that treats
the nonparametric estimators as if they were parametric given the fixed tuning parameters. For
all bootstrap samples we use the same tuning parameters, such as the smoothing parameter in
the smoothing splines and the bandwidth in the kernel density estimator. In the Supplementary
Material, we give more technical details and illustrate the procedure with an example involving
a scalar confounder.

4.2. Parametric estimation: likelihood-based and Bayesian inferences

The nonparametric estimator above suffers from the curse of dimensionality. We propose a
parametric approach for moderate- or high-dimensional covariates. Let Zi = (Ai, Xi, Yi, Ri) be
the complete data and ZR,i = (Ai, Ri, XR,i, Yi) the observed data for unit i. The complete-data
likelihood is L(θ | Z1, . . . , Zn) = ∏n

i=1 f (Zi; θ), where θ = (α, β0, β1, η0, η1, λ) and

f (Zi; θ) = pr(Ri | Ai, Xi; ηAi) f (Yi | Ai, Xi; βAi) pr(Ai | Xi; α)f (Xi; λ). (12)

The observed-data likelihood is

L(θ | ZR,1, . . . , ZR,n) =
n∏

i=1

{ ∑
r∈R

I (Ri = r)
∫

f (Zi; θ) dν(Xr̄,i)

}
.

Under Assumptions 6–8 as in Theorem 2, θ is identifiable if the parametric models in (12) are not
overparameterized. The bounded completeness condition holds for many commonly used models,
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such as generalized linear models and a location family of absolutely continuous distributions
with compact support; see Blundell et al. (2007), Hu & Shiu (2018) and the Supplementary
Material for additional examples. Moreover, parametric assumptions can further help to identify
the model parameters even without the bounded completeness assumption. We illustrate this later.

We first discuss likelihood-based inference. Let τ(Xi; θ) = E(Yi | Ai = 1, Xi; β1) − E(Yi |
Ai = 1, Xi; β0) be the covariate-specific average causal effect, and let

τ̂ (θ) = n−1
n∑

i=1

τ(Xi; θ), τ = τ(θ) = E{τ(Xi; θ)} = E{τ̂ (θ)}.

We first obtain the maximum likelihood estimate θ̂ and then estimate τ by τ(θ̂). The formula
τ(θ) involves integrating over the distribution of the confounders. To avoid this complexity, we
use τ̂ (θ̂ ) to estimate τ . The bootstrap can be used to construct confidence intervals.

Next, we discuss Bayesian inference. Suppose that we can simulate the posterior distributions
of the missing confounders and the parameter θ . These further induce posterior distributions of
τ̂ (θ) and τ = τ(θ). Technically, the posterior distribution of τ̂ (θ) is different from that of τ . The
former depends on the observed confounder values, but the latter does not. See Ding & Li (2018)
for more discussion.

We give more computational details in the Supplementary Material, including a fractional
imputation algorithm (Yang & Kim, 2016) and a Bayesian procedure for a parametric model. In
future work we will develop multiple-imputation methods under Assumptions 6–8. From (12),
we need to use both treatment and outcome models in the imputation step as in the full Bayesian
procedure.

5. Simulation

5.1. Design of the simulation

We use simulation to compare our estimators with existing ones. First, we consider the
unadjusted estimator, which is the simple difference-in-means of the outcomes between the
treated and control groups. We use it to quantify the degree of confounding. Second, we consider
the generalized propensity score weighting estimator, with the generalized propensity scores
estimated separately by a logistic regression for each missing pattern (Rosenbaum & Rubin,
1984). Third, we consider three multiple-imputation estimators. The first uses the outcome in the
imputation model, but the second does not (Mitra & Reiter, 2011); the third estimator uses the
missingness pattern in the propensity score model (Qu & Lipkovich, 2009).

We evaluate the finite-sample performance of these estimators with the missingness of con-
founders satisfying Assumption 6. In the first setting, in § 5.2, one confounder has missing values
and we investigate the performance of the proposed nonparametric estimator and the sensitivity
to the choice of tuning parameters. In the second setting, in § 5.3, multiple confounders have
missing values and we investigate the performance of the proposed parametric estimator. In each
setting, we choose the sample size to be n = 400, 800 and 1600, and we generate 2000 Monte
Carlo samples for each sample size. For the multiple-imputation estimators, we generate 100
imputed datasets. For all estimators, we use the bootstrap with 500 replicates to estimate the
variances.

5.2. One confounder subject to missingness

The confounders Xi = (X1i, X2i) follow X1i ∼ N (1, 1) and X2i ∼ Ber(0.5). The potential
outcomes follow Yi(0) = 0.5 + 2X1i + X2i + εi(0) and Yi(1) = 3X1i + 2X2i + εi(1), where
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Table 1. Simulation results: bias (×10−2) and variance (×10−3) of the point estimator of τ ,
variance estimate (×10−3), and coverage (%) of 95% confidence intervals

Method Bias Var VE Cvg Bias Var VE Cvg Bias Var VE Cvg

(a) Comparing the nonparametric estimator with existing estimators
n = 400 n = 800 n = 1600

Unadj −127.5 77.4 73.7 0.3 −127.4 38.0 37.5 0.0 −127.2 17.5 18.6 0.0
GPSW −55.1 42.4 44.2 22.2 −54.9 20.9 20.7 5.8 −54.4 9.5 9.9 0.4

MI1 41.5 35.4 36.7 40.6 41.0 15.5 17.2 9.5 40.8 7.6 8.3 0.5
MI2 −10.8 60.0 63.8 91.4 −9.2 28.8 30.8 91.4 −9.1 13.7 14.9 86.6

MIMP 29.3 73.5 71.5 83.7 28.5 33.7 32.6 65.0 28.3 14.9 16.0 30.8
NonPara 1.2 19.4 18.8 95.1 0.9 9.6 8.1 95.2 0.8 3.9 3.8 94.9
(b) Comparing the parametric estimator with existing estimators

n = 400 n = 800 n = 1600
Unadj 32.2 85.2 85.8 81.5 32.2 44.3 42.9 65.8 31.9 20.3 21.6 43.1
GPSW 8.4 174.6 246.1 97.2 8.8 84.2 94.2 94.9 8.3 40.0 44.0 92.4

MI1 7.7 180.5 238.0 96.1 7.1 93.5 106.4 95.2 6.9 47.5 54.8 93.4
MI2 3.0 162.1 209.9 97.3 3.1 84.2 94.1 95.8 2.6 42.8 49.1 94.6

MIMP 12.9 177.0 239.2 95.7 12.2 93.9 107.5 93.8 12.1 47.4 55.0 91.8
Para 1.6 95.4 95.4 95.3 0.4 48.3 48.0 95.0 0.0 23.0 24.2 95.4

Var, variance of the point estimator of τ ; VE, variance estimate; Cvg, coverage of 95% confidence intervals; Unadj,
the unadjusted estimator; GPSW, the generalized propensity score weighting estimator; NonPara, the proposed
nonparametric estimator; Para, the proposed parametric estimator; for the multiple-imputation estimators, MI1 uses
the outcome in the imputation, MI2 does not use the outcome in the imputation, and MIMP is the multiple-imputation
missingness pattern method of Qu & Lipkovich (2009).

εi(0) ∼ N (0, 1) and εi(1) ∼ N (0, 1). The average causal effect τ is 1. The treatment indicator
Ai follows Ber(πi), where logit(πi) = 1.25 − 0.5X1i − 0.5X2i. The missing indicator of X1i, R1i,
follows Ber(pi), where logit(pi) = −2+2X1i +Ai(1.5+X2i). The average response rate is about
67%. Other variables do not have missing values.

For the proposed nonparametric estimator, we estimate τ̂ (X ) using cubic splines with five
knots and estimate the density functions using kernel-based estimators with the Gaussian kernel.
We use ten-fold crossvalidation to choose the smoothing parameters in the smoothing spline
estimator and the bandwidths in the kernel-based estimators. For ξ̂ra(X ), we choose J = 5
Hermite polynomial basis functions and B = 50 as the bound for regularization.

Table 1(a) compares the nonparametric estimator with the existing estimators. The
unadjusted estimator, the propensity score weighting estimator and multiple-imputation esti-
mators are biased. As a result, the coverage rates of the confidence intervals for these methods
are quite poor. Our proposed method has negligible biases and good coverages, with variances
decreasing with the sample size.

To assess the sensitivity of the nonparametric estimator to the choice of the tuning parame-
ters J and B, we specify a 4 × 3 design with (J , B) ∈ {(3, 50), (3, 100), (5, 50), (5, 100)} and
n ∈ {400, 800, 1600}. Table 2 shows the mean squared errors. For each (J , B), the mean squared
error decreases with the sample size. The mean squared error decreases with J , is relatively
insensitive to the choice of B, and remains small across all cases.

5.3. Multiple confounders subject to missingness

Let Xi = (X1i, . . . , X6i). We generate X1i and X2i from N (1, 1), X3i and X4i from {Ber(0.5) −
0.5}/0.5, X5i = X1i + X2i + X3i + X4i + ε5i with ε5i ∼ N (0, 1), and X6i from Ber(p6i) with
logit(p6i) = −X5i. The potential outcomes follow Yi(0) = (1, X T

i )β0 + εi(0) and Yi(1) =
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Table 2. Simulation results for different tuning parameters: mean
squared errors (×10−3) of the proposed estimator of τ for different

choices of (J , B) based on 2000 Monte Carlo samples
(J , B) n = 400 n = 800 n = 1600

(3, 50) 26.8 13.9 8.3
(3, 100) 27.0 14.1 8.7
(5, 50) 19.5 9.7 4.1
(5, 100) 21.3 10.2 4.5

(1, X T
i )β1 + εi(1), where β0 = (−1.5, 1, −1, 1, −1, 1, 1)T, β1 = (0, −1, 1, −1, 1, −1, −1)T,

εi(0) ∼ N (0, 1) and εi(1) ∼ N (0, 1). The average treatment effect is τ = −0.5. The treatment
indicator Ai follows Ber(πi), where logit(πi) = (1, X T

i )α and α = 0.5 × (2, 1, 1, 1, 1, −2, −2)T.
Covariates X5i and X6i have missing values, but the other variables do not. The missingness pat-
tern for X5i and X6i, Ri = (R5i, R6i) ∈ {(11), (10), (01), (00)}, follows a multinomial distribution
with parameters (p11,i, p10,i, p01,i, p00,i) where

logit(p11,i) = [1 + 3 exp{(1, Ai, X T
i )η}]−1, logit(pkl,i) = [exp{−(1, Ai, X T

i )η} + 3]−1

for kl ∈ {10, 01, 00}, with η = 0.25 × (−4, 1, 1, 1, 1, 1, −1, −1)T. The average percentages of
these missingness patterns are about 49%, 17%, 17% and 17%, respectively.

Table 1(b) compares the parametric maximum likelihood estimator with the existing estima-
tors. The unadjusted estimator has large biases due to confounding. The multiple-imputation
estimators have large biases, although the coverages of confidence intervals seem good due to the
overestimation of variances. In contrast, our estimator has negligible biases and good coverages.

6. Application

6.1. The causal effect of smoking on blood lead level

We use a dataset from the 2015–2016 U.S. National Health and Nutrition Examination Survey
to estimate the causal effect of smoking on blood lead level (Hsu & Small, 2013). The dataset
includes 2949 adults, consisting of 1102 smokers, denoted by A = 1, and 1847 nonsmokers,
denoted by A = 0. All subjects were at least 15 years old and had no tobacco use besides
cigarette smoking in the previous five days. The outcome Y is the lead level in blood, ranging
from 0.05 to 23.51 μg/dl. The confounders X include the income-to-poverty level ratio, age and
gender. The income-to-poverty level ratio has missing values, but the other variables do not.
The missingness of income-to-poverty level is likely to be not at random because subjects with
high incomes may be less likely to disclose their income information (Davern et al., 2005). It is
plausible that Assumption 6 holds, i.e., that this missingness is unrelated to the blood lead level
after controlling for income information. The missing rate of income-to-poverty level is 14.0%
for smokers and 15.2% for nonsmokers. We apply the proposed procedure to obtain estimates
separately for groups stratified by age and gender, and then average over the empirical distribution
of age and gender.

Table 3(a) shows the results. Note the substantial differences in point estimates between our
estimator and the competitors, illustrating the impact of the missing data assumption on causal
inference in the presence of missing confounders. In contrast to the existing estimators, our esti-
mator is better able to handle the confounders missing not at random. Based on the nonparametric
estimator, smoking increases blood lead level by 0.20 μg/dl on average.
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Table 3. Results from the analysis of datasets: point estimate, standard error by the bootstrap,
and 95% confidence interval

Est SE 95% CI Est SE 95% CI

(a) The causal effect of smoking on blood lead level in § 6.1
Unadj 0.44 0.05 (0.35, 0.54) MI1 0.34 0.05 (0.25, 0.44)
PSW 0.12 0.05 (0.02, 0.22) MI2 0.35 0.05 (0.25, 0.44)

NonPara 0.20 0.07 (0.05, 0.36) MIMP 0.35 0.05 (0.25, 0.44)
(b) The causal effect of education on general health satisfaction in § 6.2

Unadj −0.57 0.034 (−0.64, −0.51) MI1 −0.24 0.057 (−0.36, −0.13)

GPSW −0.25 0.054 (−0.36, −0.14) MI2 −0.26 0.057 (−0.38, −0.15)

Para −0.32 0.051 (−0.41, −0.21) MIMP −0.23 0.057 (−0.34, −0.11)

Est, point estimate; SE, standard error; CI, confidence interval; Unadj, the unadjusted estimator; GPSW, the generalized
propensity score weighting estimator; NonPara, the proposed nonparametric estimator; Para, the proposed parametric
estimator; for the multiple-imputation estimators, MI1 uses the outcome in the imputation, MI2 does not use the
outcome in the imputation, and MIMP is the multiple-imputation missingness pattern method of Qu & Lipkovich
(2009).

6.2. The causal effect of education on general health satisfaction

We use a dataset from the 2015–2016 U.S. National Health and Nutrition Examination Survey
to estimate the average causal effect of education on general health satisfaction. The dataset
includes 4845 subjects. Among them, 76% have at least high school education, denoted by A = 1,
and 24% do not, denoted by A = 0. The outcome Y is the general health satisfaction score, which
ranges from 1 to 5, with lower values indicating greater satisfaction. The observed outcomes have
mean 2.88 and standard deviation 0.96. The confounders X include age, gender, race, marital
status, income-to-poverty level ratio, and an indicator of ever having risk of prediabetes. The
income-to-poverty level and prediabetes risk variables have missing values, whereas the other
variables do not. The missingness of the income-to-poverty level ratio and the prediabetes risk
variable is likely to be related to the missing values themselves. It is plausible that this missingness
is unrelated to the outcome value conditioning on the treatment and confounders.

Table 3(b) reports the results. Although qualitatively all estimators show that education is
beneficial in improving general health satisfaction, differences can be observed in the point
estimates of our estimator and the competitors. This illustrates the impact of the missing data
assumption on causal inference with missing confounders. Based on the parametric estimator,
education improves general health satisfaction by 0.32 on average.
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Supplementary material available at Biometrika online includes additional proofs, further
discussions on the nonparametric and parametric estimators, and additional simulations.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/106/4/875/5573228 by N
orth C

arolina State U
niversity user on 03 June 2020

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz048#supplementary-data


888 S. Yang, L. Wang AND P. Ding

References

An, Y. & Hu, Y. (2012). Well-posedness of measurement error models for self-reported data. J. Economet. 168,
259–69.

Blundell, R., Chen, X. & Kristensen, D. (2007). Semi-nonparametric IV estimation of shape-invariant Engel curves.
Econometrica 75, 1613–69.

Crowe, B. J., Lipkovich, I. A. & Wang, O. (2010). Comparison of several imputation methods for missing baseline
data in propensity scores analysis of binary outcome. Pharm. Statist. 9, 269–79.

D’Agostino Jr, R. B. & Rubin, D. B. (2000). Estimating and using propensity scores with partially missing data.
J. Am. Statist. Assoc. 95, 749–59.

Darolles, S., Fan, Y., Florens, J.-P. & Renault, E. (2011). Nonparametric instrumental regression. Econometrica
79, 1541–65.

Davern, M., Rodin, H., Beebe, T. J. & Call, K. T. (2005). The effect of income question design in health surveys on
family income, poverty and eligibility estimates. Health Serv. Res. 40, 1534–52.

D’Haultfoeuille, X. (2011). On the completeness condition in nonparametric instrumental problems. Economet.
Theory 27, 460–71.

Ding, P. & Geng, Z. (2014). Identifiability of subgroup causal effects in randomized experiments with nonignorable
missing covariates. Statist. Med. 33, 1121–33.

Ding, P. & Li, F. (2018). Causal inference: A missing data perspective. Statist. Sci. 33, 214–37.
Frangakis, C. E. & Rubin, D. B. (2002). Principal stratification in causal inference. Biometrics 58, 21–9.
Hanna-Attisha, M., LaChance, J., Sadler, R. C. & Champney Schnepp, A. (2016). Elevated blood lead levels

in children associated with the flint drinking water crisis: A spatial analysis of risk and public health response.
Am. J. Public Health 106, 283–90.

Hsu, J. Y. & Small, D. S. (2013). Calibrating sensitivity analyses to observed covariates in observational studies.
Biometrics 69, 803–11.

Hu, Y. & Shiu, J.-L. (2018). Nonparametric identification using instrumental variables: Sufficient conditions for
completeness. Economet. Theory 34, 659–93.

Imbens, G. W. & Rubin, D. B. (2015). Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge:
Cambridge University Press.

Kress, R., Maz’ya, V. & Kozlov, V. (1999). Linear Integral Equations. New York: Springer, 2nd ed.
Lehmann, E. L. & Scheffé, H. (1950). Completeness, similar regions, and unbiased estimation: Part I. Sankhyā 10,
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S1. CAUSAL DIAGRAMS ILLUSTRATING ASSUMPTIONS 1 AND 6
Figure 1 gives a causal diagram to illustrate Assumptions 1 and 6. Figure S1 gives two more

diagrams.

R A Y

X

(a)

R A Y

X

(b)

Fig. S1. White nodes represent observed variables, the light
grey nodes represent the variables with missing values, and
the double arrows represent unmeasured common causes.

S2. PROOFS 15

S2·1. Proof of Proposition 1
We prove the result for p = 2. Proofs for general p are similar and hence omitted. For discrete

covariates with R = (0, 0), (3) reduces to

f{A = a, Y,R = (0, 0)} =

J1∑
i=1

J2∑
j=1

pr{R = (0, 0) | X1i, X2j , A = a}
pr{R = (1, 1) | X1i, X2j , A = a}

×f{A = a,X1i, X2j , Y, R = (1, 1)}, (a = 0, 1). (S1)

C⃝ 2016 Biometrika Trust
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In a matrix form, (S1) becomes f{A = a, y1, R = (0, 0)}
...

f{A = a, yK , R = (0, 0)}


K×1

= Θa

 ξ(0,0)a(x11, x21)
...

ξ(0,0)a(x1J1 , x2J2)


(J1J2)×1

, (S2)

where20

Θa =

 f{A = a, x11, x21, y1, R = (1, 1)} · · · f{A = a, x1J1 , x2J2 , y1, R = (1, 1)}
...

. . .
...

f{A = a, x11, x21, yK , R = (1, 1)} · · · f{A = a, x1J1 , x2J2 , yK , R = (1, 1)}


K×(J1J2)

,

and

ξ(0,0)a(x1i, x2j) =
pr{R = (0, 0) | A = a, x1i, x2j}
pr{R = (1, 1) | A = a, x1i, x2j}

.

In the linear system (S2), the vector on the left hand side and the coefficients in Θa on the right
hand side are identifiable because they depend only on the observed data. The linear system
for the ξ(0,0)a(X1, X2)’s has a unique solution if and only if Θa has a full column rank J1J2.
Similarly, for R = (1, 0),25

 f{A = a,X1, y1, R = (1, 0)}
...

f{A = a,X1, yK , R = (1, 0)}


K×1

= ΘX1a

 ξ(1,0)a(X1, x21)
...

ξ(1,0)a(X1, x2J2)


J2×1

, (a = 0, 1),

(S3)
where

ΘX1a =

 f{A = a,X1, x21, y1, R = (1, 1)} · · · f{A = a,X1, x2J2 , y1, R = (1, 1)}
...

. . .
...

f{A = a,X1, x21, yK , R = (1, 1)} · · · f{A = a,X1, x2J2 , yK , R = (1, 1)}


K×J2

.

The linear system (S3) has a unique solution for the ξ(1,0)a(X1, X2)’s if and only if ΘX1a has a
column rank J2, which is guaranteed if Θa has a full column rank J1J2 . For R = (0, 1),

 f{A = a,X2, y1, R = (0, 1)}
...

f{A = a,X2, yK , R = (0, 1)}


K×1

= Θx2a

 ξ(0,1)a(x11, X2)
...

ξ(0,1)a(x1J1 , X2)


J1×1

, (a = 0, 1),

(S4)
where

ΘX2a =

 f{A = a, x11, X2, y1, R = (1, 1)} · · · f{A = a, x1J1 , X2, y1, R = (1, 1)}
...

. . .
...

f{A = a, x11, X2, yK , R = (1, 1)} · · · f{A = a, x1J1 , X2, yK , R = (1, 1)}


K×J1

.

The linear system (S4) has a unique solution for the ξ(0,1)a(X1, X2)’s if and only if ΘX2a has a30

column rank J1, which is guaranteed if Θa has a full column rank J1J2. Therefore, ξra(X1, X2)
is identifiable if and only if Θa has a full column rank J1J2.
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It follows that

pr(R = r | A = a,X1, X2) =
ξra(X1, X2)∑

r′∈R ξr′a(X1, X2)

is identifiable. It then follows that

f(A = a,X, Y ) =
f(A = a,X, Y,R = 1p)

pr(R = 1p | A = a,X1, X2)

is identifiable. Therefore, the joint distribution of (A,X, Y,R), f(A = a,X, Y )pr(R = r | A = 35

a,X), is identifiable. This completes the proof.

S2·2. Proof of Remark 1
We first prove that whenX and Y are discrete with finite supports, Assumption 8 is equivalent

to the rank condition in Proposition 1.

PROPOSITION S1. Suppose that X and Y are discrete, and that Xj ∈ {xj1, . . . xjJj} for j = 40

1, . . . , p and Y ∈ {y1, . . . , yK}. The bounded completeness in Y of f(A = a,X, Y,R = 1p) is
equivalent to the condition that Θa is of full column rank, for a = 0, 1.

Proof of Proposition S1. Suppose that
∫
g(X)f(A = a,X, Y,R = 1p)dν(X) = 0 for all

Y = y1, . . . , yK . For discrete X , the integral equation (3) reduces to

Θa

 g(x11, . . . , xp1)
...

g(x1J1 , . . . , xpJp)


(J1×···×Jp)×1

=

0
...
0


K×1

. (S5)

If Θa is of full column rank, then the solution to the linear system (S5) is zero, that is, g(X) = 0, 45

which indicates that f(A = a,X, Y,R = 1p) is bounded complete in Y .
On the other hand, suppose f(A = a,X, Y,R = 1p) is bounded complete in Y . Therefore,∫
g(X)f(A = a,X, Y,R = 1p)dν(X) = 0 for all Y = y1, . . . , yK implies g(X) = 0. In this

case, the only solution to (S5) is

 g(x11, . . . , xp1)
...

g(x1J1 , . . . , xpJp)


(J1×···×Jp)×1

=

0
...
0


(J1×···×Jp)×1

.

Therefore, Θa is of full column rank. This completes the proof. □ 50

We then prove that Assumption 8 implies Assumption 2.

PROPOSITION S2. Assumption 8 implies Assumption 2.

Proof of Proposition S2. For the discrete X and Y , suppose that there exists x∗ with pr(X =
x∗) > 0, such that e(x∗) = pr(A = 1 | X = x∗) = 0. Then,

f(A = 1, X = x∗, Y,R = 1p) = e(x∗)f(X = x∗, Y )pr(R = 1p | X = x∗, Y, A = 1) = 0,

which indicates that one column in Θ1 is zero. Therefore, Θ1 is not of full column rank, violating 55

the bounded completeness condition.
For the continuous X and Y , suppose that there exists a subset X ∗ with pr(x∗ ∈ X ∗) > 0,

such that e(x∗) = pr(A = 1 | X = x∗) = 0 for any x∗ ∈ X ∗. Following the same derivation as
for the discrete case, we have, for any x∗ ∈ X ∗, that f(A = 1, X = x∗, Y, R = 1p) = 0. Then,
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f(A = 1, X, Y,R = 1p) is not bounded complete in Y . To see this, suppose
∫
g(X)f(A =60

1, X, Y,R = 1p)dν(X) = 0 for any Y , we can let g(X) be zero outside of X ∗ but non-zero
inside of X ∗, violating the bounded completeness condition. □

S3. MORE DETAILS FOR THE NONPARAMETRIC ESTIMATION OF τ

S3·1. Regularization of series estimators
We consider a scalar Y and a p-vector of X with one component subject to missingness.65

Although we can use other regularization techniques to solve the ill-conditioned inverse problem
such as Tikhonov’s regularization (Darolles et al., 2011) and a penalized sieve minimum distance
criterion (Chen & Pouzo, 2015), we follow Newey & Powell (2003) to restrict ξra(X) and its
estimator ξ̂ra(X) to belong to a compact space. Because the inverse of integration restricted to a
compact space is continuous, this regularization turns the problem to be well-posed.70

We now describe the compact space and its norm. Recall that p is the dimension ofX . For any
function g(X), denote

Dλg(X) =
∂λ1

∂xλ1
1

· · · ∂
λp

∂x
λp
p

g(X),

and |λ| =
∑p

l=1 λl gives the order of the derivative. In particular, the zero order derivative
is the function itself; that is, D0g(X) = g(X). For H(X) = {h1(X), . . . , hJ(X)}, we de-
fine DλH(X) = {Dλh1(X), . . . , DλhJ(X)}T. Let λ = (λ1, . . . , λp)

T be a p-vector with non-75

negative integers as components. For m > 0, m0, δ0 > p/2, and p/2 < δ < δ0, consider the fol-
lowing functional space

Gm,m0,δ0,B =

g(X) :
∑

|λ|≤m+m0

∫
{Dλg(X̃)}2(1 + X̃TX̃)δ0dx ≤ B

 , (S6)

where X̃ = Σ−1/2(X − µ) is a linear transformation of X . Consider the norm

||g||G = max
|λ|≤m

sup
X

|Dλg(X̃)|(1 + X̃TX̃)δ.

Gallant & Nychka (1987) showed that the closure of Gm,m0,δ0,B with respect to the norm ||g||G
is compact.80

Assumption S1 (Regularization of the parameter space). Assume that ξra(X) and its estima-
tor ξ̂ra(X) belong to Gm,m0,δ0,B in (S6), for any r and a.

Remark S1. The regularization is not restrictive for the following reasons. First, by the defini-
tion of Gm,m0,δ0,B , the bound B requires the functions of Gm,m0,δ0,B to be smooth to a certain
degree and the tail areas of these functions to be small. In most applications, we would expect that85

the functions ξra(X) to be smooth and mainly concern with the functional forms of ξra(X) over
some compact region that is large enough to cover the region where observations are measured.

Given the Hermite approximation of ξra(X), the regularization in Assumption S1 becomes

βT
ra

 ∑
|λ|≤m+m0

∫
{DλH(X̃)}{DλH(X̃)}T(1 + X̃TX̃)δ0dν(X)

βra ≤ B, (S7)
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where βra = (β1ra, . . . , β
J
ra)

T. Therefore, we choose the positive definite matrix Λ in the con-
straint for regularization in §4·1 to be 90

Λ=
∑

|λ|≤m+m0

∫
{DλH(X̃)}{DλH(X̃)}T(1 + X̃TX̃)δ0dν(X).

The proposed estimator of ξra is ξ̂ra(X) =
∑J

j=1 β̂
j
rahj(X̃), where β̂ra minimizes (10) with

the constraint βT
raΛβra ≤ B.

S3·2. The computational algorithm in §4·1 and an example
We summarize the computation algorithm for τ as follows.

Step S1. Obtain nonparametric estimators of τ(X), f(X | A = a,R = 1p), f(Xr, Y | A = 95

a,R = r), for all r and a. Specifically, we use

τ̂(X) = Ê(Y | A = 1, X,R = 1p)− Ê(Y | A = 0, X,R = 1p), (S8)

where Ê(Y | A = a,X,R = 1p) is a smoothing spline estimator of E(Y | A = a,R = 1p), for
a = 0, 1. Also let f̂(X | A = a,R = 1p) and f̂(Xr, Y | A = a,R = r) be the kernel density
estimators of f(X | A = a,R = 1p) and f(Xr, Y | A = a,R = r), respectively.

Step S2. Obtain a series estimator of ξra(X) using the Hermite polynomials, ξ̂ra(X) ≈ 100∑J
j=1 β̂

j
rahj(X̃), where (β̂1ra, . . . , β̂

J
ra)

T minimizes (10) with the constraint βT
raΛβra ≤ B.

Step S3. Estimate the probabilities pr(R = 1p | A = a,X) by

p̂r(R = 1p | A = a,X) =

1 +
∑
r ̸=1p

ξ̂ra(X)


−1

.

Step S4. Estimate τ by (11) using a numerical approximation.

For illustration of the proposed computational algorithm, we provide an example with a scalar
X , which is subject to the outcome-independent missingness. In this case, R ∈ R = {0, 1}.

Example S1. In Step S1, obtain a nonparametric estimator of τ(X) as 105

τ̂(X) = Ê(Y | A = 1, X,R = 1)− Ê(Y | A = 0, X,R = 1),

where Ê(Y | A = a,X,R = 1) is a smoothing spline estimator ofE(Y | A = a,X,R = 1), for
a = 0, 1. Also let

f̂(X | A = a,R = 1), f̂(Y | A = a,R = 0), f̂(Y,R = 0 | A = a), f̂(Y,R = 1 | A = a)

be the kernel density estimators of

f(X | A = a,R = 1), f(Y | A = a,R = 0), f(Y,R = 0 | A = a), f(Y,R = 1 | A = a).

In Step S2, (8) becomes

f̂(Y,R = 0 | A = a) =

∫
ξ0a(X)f̂(X | A = a, Y,R = 1)dν(X)× f̂(Y,R = 1 | A = a).

Let Ê{hj(X̃) | y,A = a,R = 1} be a nonparametric estimator of E{hj(X̃) | y,A = a,R = 110

1}. For unit i, evaluate this nonparametric estimator at Yi, we have Ĥj
0a,i = Ê{hj(X̃) | Ai =
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a, Yi, Ri = 1}. We obtain a series estimator of ξ0a(X) using the Hermite polynomials, ξ̂0a(X) ≈∑J
j=1 β̂

j
0ah

j(X̃), where the β̂j0a’s minimize the objective function

n∑
i=1

I(Ri = 0)

f̂(Yi, Ri = 0 | Ai = a)−
J∑

j=1

βj0aĤ
j
0a,if̂(Yi, Ri = 1 | Ai = a)


2

, (S9)

subject to the constraint βT
0aΛβ0a ≤ B.

In Step S3, estimate the probability pr(R = 1 | A = a,X) by p̂r(R = 1 | A = a,X) = {1 +115

ξ̂0a(X)}−1.
In Step S4, obtain the estimator of τ by using a numerical approximation of

1∑
a=0

p̂r(A = a,R = 1)

∫
τ̂(X)

f̂(X | A = a,R = 1)

p̂r(R = 1 | A = a,X)
dν(X). (S10)

S3·3. Choice of tuning parameters
The proposed estimator depends on several tuning parameters: the number of the Hermite

polynomial functions J , the bound B for regularization, and tuning parameters in the kernel-120

based estimators. On the one hand, J and B should be large enough to ensure that the series
estimator approximates the true underlying function well. On the other hand, J and B should
not be too large to control the variance of our estimator. Chen & Pouzo (2012) and Chen &
Christensen (2015) investigated the general requirements for these tuning parameters in terms
of the growing rate with the sample size in the penalized sieve minimum distance estimation.125

In practice, we suggest using data-driven methods, such as cross-validation, to choose these
parameters, and conducting sensitivity analysis varying the tuning parameters.

S4. ASYMPTOTIC RESULTS FOR THE NONPARAMETRIC ESTIMATION

We study the consistency of the proposed estimator τ̂ of τ . The literature has established
comprehensive consistency results for nonparametric estimators and series estimators. For com-130

pleteness of our theory, in §S4·1 and §S4·2, we establish the consistency of the nonparametric
estimators in Step S1 and the series estimator of ξra(X) in Step S2, which serve building blocks
for deriving the consistency result for τ̂ in §S4·3.

S4·1. The consistency of the nonparametric estimators in Step S1
We assume that the kernel functions and the bandwidth hn satisfy the following regularity135

conditions:

Assumption S2. (i)
∫
Rp K(s)ds = 1; (ii) ||K||∞ = supx∈Rp |K(x)| = κ <∞; (iii) K(·) is

right continuous; (iv)
∫
Rp ΨK(x)dx <∞, where ΨK(x) = sup||y||≥||x|| |K(y)|, for x ∈ Rp;

and (v) the kernel function is regular and satisfies the following uniform entropy condition. Let
K be the class of functions indexed by x,140

K =

{
K

(
x− ·
h1/p

)
: h > 0, x ∈ Rp

}
.

Suppose B is a Borel set in Rp, and Q is some probability measure on (Rp,B). Define dQ to
be the L2(Q)-metric, and N(ϵ,K, dQ) the minimal number of balls {g : dQ(g, g

′) < ϵ} of dQ-
radius ϵ needed to cover K. Let N(ϵ,K) = supQN(κϵ,K, dQ), where the supremum is taken
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over all probability measures Q. For some C > 0 and ν > 0, N(ϵ,K) ≤ Cϵ−ν for any 0 < ϵ <
1. 145

van der Vaart & Wellner (1996) provides sufficient conditions for Assumption S2 (v).

Assumption S3. hn decreases to zero, hn/h2n is bounded, log(1/hn)/ log log n→ ∞ and
nhn/ log n→ ∞, as n→ ∞.

LEMMA S1 (CONSISTENCY OF KERNEL DENSITY ESTIMATORS). Let f̂(X | A = a,R =
1p) be the kernel density estimator of f(X | A = a,R = 1p), where the kernel function satisfies 150

Assumption S2, and the bandwidth hn satisfies Assumption S3. Suppose that the true density
function f(X | A = a,R = 1p) is bounded and uniformly continuous in X , then

lim
n→∞

∥∥∥f̂(X | A = a,R = 1p)− f(X | A = a,R = 1p)
∥∥∥
∞

= 0 (S11)

almost surely.

The Nadaraya–Watson estimators of E(Y | A = a,X,R = 1p) is

Ê(Y | A = a,X,R = 1p) =
∑
a

YiK

(
X −Xi

h
1/p
n

)/∑
a

K

(
X −Xi

h
1/p
n

)
, (S12)

where
∑

a represents the summation over units {i : Ai = a,Ri = 1p}. We focus on the 155

Nadaraya–Watson estimator, but we can also consider other nonparametric estimators, such as
local polynomial estimator.

Let I be a compact subset of Rp. For any function ψ : Rp → R, define

||ψ||I = sup
X∈I

|ψ(X)|. (S13)

Also, denote Iϵ = {X ∈ Rp : max1≤i≤p |Xi| ≤ ϵ}.

LEMMA S2 (CONSISTENCY OF KERNEL-BASED ESTIMATORS FOR CONDITIONAL MEANS). 160

Suppose that the kernel function K(·) in (S12) satisfies Assumption S2 with support contained
in [−1/2, 1/2]p, and the bandwidth hn satisfies Assumption S3. Suppose that there exists an
ϵ > 0 such that f(X | A = a,R = 1p) =

∫∞
−∞ f(X,Y | A = a,R = 1p)dY is continuous and

strictly positive on Iϵ, and that f(X,Y | A = a,R = 1p) is continuous in X for almost every
Y ∈ R. Suppose further that there exists an M > 0 such that for X ∈ Iϵ, |Y | ≤M almost 165

surely. Then, for a = 0, 1,

lim
n→∞

∥∥∥Ê(Y | A = a,X,R = 1p)− E(Y | A = a,X,R = 1p)
∥∥∥
I
= 0 (S14)

almost surely.

A large literature has developed consistency of kernel-based estimators. The proofs of Lemmas
S1 and S2 are similar to those given by Deheuvels (2000) and Giné & Guillou (2002), and
therefore are omitted. The smoothing spline estimator is asymptotically equivalent to a kernel- 170

based estimator that employs the so-called spline kernel (Silverman, 1984). Both spline kernels
and Gaussian kernels satisfy Assumption S2 (van der Vaart & Wellner, 1996). Therefore, by
Lemmas S1 and S2, the nonparametric estimators in Step S1 are consistent.

S4·2. The consistency of the series estimator of ξra(X) in Step S2
For any r and a, ξra(X) satisfies the conditional moment restriction 175

E {f(Xr, Y,R = r | A = a)− ξra(X)f(X,Y,R = 1p | A = a) | A = a,Xr, Y,R = r} = 0.
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We define a generalized residuals with the function of interest h(X) as

ρra(X,Y ;h) = f(Xr, Y, R = r | A = a)− h(X)f(X,Y,R = 1p | A = a),

the conditional mean function of ρra(X,Y ;h) given (A = a,Xr, Y, R = r) as

mra(Xr, Y ;h) = E{ρra(X,Y ;h) | A = a,Xr, Y, R = r},

and the series least square estimator of the conditional mean function as

m̂ra(Xr, Y ;h) = f̂(Xr, Y, R = r | A = a)

−Ê{h(X) | A = a,Xr, Y,R = r}f̂(X,Y,R = 1p | A = a).

Following these definitions,mra(Xr, Y ; ξra) = 0 for any r and a. Let the project of ξra onto HJ

be
∏

HJ
ξra(·) =

∑J
j=1 β

j
rahj(·) such that ||

∏
HJ

ξra − ξra||∞ = o(1).180

To avoid technicality, we assume the following regularity conditions.

Assumption S4. (i) E{||mra(Xr, Y ;
∏

HJ
ξra)||2G} = o(1); (ii)

n−1
∑n

i=1 ||mra(Xr,i, Yi;
∏

HJ
ξra)||2G ≤ c0E||mra(Xr, Y ;

∏
HJ

ξra)||2G + op(1) and a fi-
nite constant c0 > 0; (iii) n−1

∑n
i=1 ||m̂ra(Xr,i, Yi;h)||2G ≥ c1E||mra(Xr, Y ;h)||2G − op(1)

uniformly for h over HJ and a finite constant c1 > 0.185

Assumption S4 (i) holds if E{||mra(Xr, Y ;h)||2G} is continuous at h = ξra under || · ||∞.
Assumption S4 (ii) and (iii) are sample criteria to regularize the asymptotic behavior of the
series estimator of mra(Xr,i, Yi;h). Chen & Pouzo (2012) provided sufficient conditions for
Assumption S4.

LEMMA S3 (CONSISTENCY OF ξ̂ra). Under Assumptions 1, 7, 6 and Assumption S4, the se-190

ries estimator ξ̂ra(X) =
∑J

j=1 β̂
j
rahj(X̃) is consistent for ξra(X) in the sense that ||ξ̂ra −

ξra||∞ = op(1) as J → ∞ and n→ ∞.

Chen & Pouzo (2012) provided a proof for Lemma S3 in the context of estimation of nonpara-
metric conditional moment models. Our proof for Lemma S3 is similar, and therefore omitted.

S4·3. The consistency of the proposal estimator of τ in Step S4195

Let ||X|| be the Euclidean norm for X . Denote IK = {X : ||X|| > K} for a constant K, and
IcK to be the complement set of IK .

THEOREM S1 (CONSISTENCY OF τ̂). Suppose that the assumptions in Theorem 3 and Lem-
mas S1–S3 hold. Suppose further that for some B > 0, τ̂(X) and τ(X) are uniformly bounded
for X ∈ IB , and that200 ∫

IcK

f(X | A = a,R = 1p)

pr(R = 1p | A = a,X)
dν(X) → 0, (S15)

as K → ∞. Then, the nonparametric estimator τ̂ resulting from (11) is consistent for τ .

The proposed estimator τ̂ is a linear functional of τ̂(·), f̂(· | A = a,R = 1p), and ξ̂ra(·). A
large literature has established the root-n asymptotic normality and the consistent variance esti-
mation for plug-in series estimators of functionals; see, for example, Newey (1997), Shen (1997),
Chen & Shen (1998), Li & Racine (2007), Chen (2007), Chen & Pouzo (2009), Chen & Pouzo205

(2012), and Chen & Liao (2014). Alternatively, Chen & Pouzo (2015) provided Wald and quasi-
likelihood ratio inference results for the general models in Chen & Pouzo (2012), including series
two stage least squares as an example. A relatively simple approach is to treat the nonparametric
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estimators as if they were parametric given the fixed tuning parameters, so that there is only a fi-
nite number of parameters. From this point of view, we can use standard approaches for variance 210

estimation under parametric models. This approach is asymptotically valid for nonparametric
series regression; see, for example, Newey (1997). In the light of treating the nonparametric esti-
mators as if they were parametric, one might expect the nonparametric bootstrap to work for our
estimator. For all bootstrap samples, we use the same tuning parameters, such as the smoothing
parameter in the smoothing splines and the bandwidth in the kernel density estimator. In our 215

simulation study, inference based on the above bootstrap is promising. However, it is a difficult
task (if it is possible) to prove that the bootstrap is consistent which is beyond the scope of this
article. Recent work has shown that it does work for some nonparametric instrumental variable
series estimators (Horowitz, 2007).

Proof of Theorem S1. By Lemmas S1 and S2, 220

lim
n→∞

∣∣∣∣∣
∣∣∣∣∣ f̂(X | A = a,R = 1p)

p̂r(R = 1p | A = a,X)
− f(X | A = a,R = 1p)

pr(R = 1p | A = a,X)

∣∣∣∣∣
∣∣∣∣∣
∞

= 0 (S16)

almost surely. Since τ̂(X) and τ(X) are uniformly bounded in IK for K > B, together with
(S15) and (S16), for any ϵ, there exists K2 > 0, such that for any K > K2,

lim
n→∞

pr

[∣∣∣∣∣
∫
Ic
K

τ̂(X)

{
f̂(X | A = a,R = 1p)

p̂r(R = 1p | A = a,X)
− f(X | A = a,R = 1p)

pr(R = 1p | A = a,X)

}
dν(X)

∣∣∣∣∣ > ϵ

4

]
<

ϵ

4
, (S17)

and

lim
n→∞

∣∣∣∣∣
∫
IcK

{τ̂(X)− τ(X)} f(X | A = a,R = 1p)

pr(R = 1p | A = a,X)
dν(X)

∣∣∣∣∣ < ϵ

4
. (S18)

By Theorem S3, for any K, 225

lim
n→∞

∣∣∣∣∣
∣∣∣∣∣τ̂(X,R = 1p)

f̂(X | A = a,R = 1p)

p̂r(R = 1p | A = a,X)
− τ(X,R = 1p)

f(X | A = a,R = 1p)

pr(R = 1p | A = a,X)

∣∣∣∣∣
∣∣∣∣∣
IK

= 0 (S19)

almost surely, where || · ||I is defined in (S13). Therefore, for any ϵ, by (S19), we choose K1

such that for any K > K1,

lim
n→∞

pr

{∣∣∣∣∣
∫
IK1

τ̂(X,R = 1p)
f̂(X | A = a,R = 1p)

p̂r(R = 1p | A = a,X)
dν(X)

−
∫
IK1

τ(X,R = 1p)
f(X | A = a,R = 1p)

pr(R = 1p | A = a,X)
dν(X)

∣∣∣∣∣ > ϵ

2

}
<
ϵ

2
. (S20) 230



10 S. YANG, L. WANG AND P. DING

Combing (S17), (S18) and (S20), for any ϵ > 0, we choose K > max(K1,K2),

lim
n→∞

pr(|τ̂ − τ | > ϵ)

= lim
n→∞

pr

{∣∣∣∣∣
∫
τ̂(X)

f̂(X | A = a,R = 1p)

p̂r(R = 1p | A = a,X)
dν(X)−

∫
τ(X)

f(X | A = a,R = 1p)

pr(R = 1p | A = a,X)
dν(X)

∣∣∣∣∣ > ϵ

}

≤ lim
n→∞

pr

{∣∣∣∣∣
∫
IK

τ̂(X)
f̂(X | A = a,R = 1p)

p̂r(R = 1p | A = a,X)
dν(X)−

∫
IK

τ(X)
f(X | A = a,R = 1p)

pr(R = 1p | A = a,X)
dν(X)

∣∣∣∣∣ > ϵ

2

}

+ lim
n→∞

pr

[∣∣∣∣∣
∫
IcK

τ̂(X)

{
f̂(X | A = a,R = 1p)

p̂r(R = 1p | A = a,X)
− f(X | A = a,R = 1p)

pr(R = 1p | A = a,X)

}
dν(X)

∣∣∣∣∣ > ϵ

4

]

+ lim
n→∞

pr

[∣∣∣∣∣
∫
IcK

{τ̂(X)− τ(X)} f(X | A = a,R = 1p)

pr(R = 1p | A = a,X)
dν(X)

∣∣∣∣∣ > ϵ

4

]
< ϵ,

that is, τ̂ is consistent for τ . □

S5. MORE DETAILS FOR THE PARAMETRIC ESTIMATION OF τ

S5·1. Bounded completeness and an example
Bounded completeness is weaker than completeness. We say that a function f(X,Y ) is com-235

plete in Y if
∫
g(X)f(X,Y )dν(X) = 0 implies g(X) = 0 almost surely for any squared inte-

grable function g(X). For illustration, we give sufficient conditions for completeness of distri-
bution functions in an exponential family, which implies bounded completeness.

LEMMA S4. The distribution f(X,Y ) = ψ(X)h(Y ) exp{λ(Y )Tη(X)} is complete in Y if
(i) ψ(X) > 0, (ii) the support of λ(Y ) is an open set, and (iii) the mapping X 7→ η(X) is one-240

to-one.

Lemma S4 is the same as Theorem 2.2 in Newey & Powell (2003). We give an example below.

PROPOSITION S3. For scalar X and Y , the Gaussian model

f(X,Y ) = f(Y | X)f(X) =
1

(2πσ2)1/2
exp

{
−(Y − β0 − β1X)2

2σ2

}
f(X), (S21)

is complete in Y .

Proof of Proposition S3. Using the notation in Lemma S4, (S21) can be expressed as245

f(X,Y ) = ψ(X) exp{λ(Y )η(X)} with ψ(X) = (2πσ2)−1/2f(X), λ(Y ) = σ−2β1Y and
η(X) = X . Therefore, (S21) satisfies the conditions for λ(Y ) and η(X), and it is complete
in Y . □

S5·2. Likelihood-based inference: a fractional imputation approach
Let S(θ;Zi) = ∂ log f(Zi; θ)/∂θ be the complete-data score for unit i. The maximum likeli-250

hood estimator θ̂ is a solution of the conditional score equation (Kim & Shao, 2013)

n−1
n∑

i=1

∑
r∈R

I(Ri = r)E{S(θ;Zi) | Zr,i, Ri = r; θ} = 0, (S22)
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where the conditional expectation is with respect to

f(Xr,i | Zr,i, Ri = r; θ) =
f(Ai, Xi, Yi, Ri = r; θ)∫

f(Ai, Xi, Yi, Ri = r; θ)dν(Xr,i)
. (S23)

The EM algorithm is a standard tool for solving (S22). However, it has several drawbacks. First,
the computation of the conditional expectation in (S22) can be difficult due to the possibly high-
dimensional integration. Second, the conditional distribution (S23) may not have an explicit 255

form. We can use the fractional imputation (Yang & Kim, 2016) to overcome the computation
difficulties. The fractional imputation uses importance sampling to avoid analytical calculation
for evaluating the conditional expectation.

In fractional imputation, we approximate the conditional expectation in (S22) by

∑
r∈R

I(Ri = r)E{τ(Zi; θ) | Zr,i, Ri = r; θ} ≈
M∑
j=1

ω∗
ijτ(Z

∗
ij ; θ), (S24)

where {Z∗
ij = (Ai, XRi,i, X

∗(j)
Ri,i

, Yi, Ri) : j = 1, . . . ,M} are the fractional observations and the 260

ω∗
ij’s are the fractional weights that satisfy ω∗

ij ≥ 0 and
∑M

j=1 ω
∗
ij = 1. The approximation in

(S24) is due to the Monte Carlo error, which becomes more accurate as M increases. Approxi-
mately, we can solve θ̂ from

n−1
n∑

i=1

M∑
j=1

ω∗
ijS(θ;Z

∗
ij) = 0. (S25)

Computationally, we iteratively generate weighted fractional observations satisfying (S24) and
solve the conditional score equation (S25). This often converges to θ̂ as M → ∞. 265

The key is to construct (S24) using importance sampling. For each missingness patternRi = r

and the missing value Xr,i, we first generate X∗(1)
r,i , . . . , X

∗(M)
r,i from a proposal distribution

h(Xr,i | Zr,i) for some h(·) that is easy to simulate. We then compute

ω∗
ij ∝

f(X
∗(j)
r,i | Zr,i; θ̂)

h(X
∗(j)
r,i | Zr,i)

∝
f(Z∗

ij ; θ̂)

h(X
∗(j)
r,i | Zr,i)

,

subject to
∑M

j=1 ω
∗
ij = 1, as the fractional weight for Z∗

ij .
As a by product, we can also use 270

τ̃(θ̂) = n−1
n∑

i=1

M∑
j=1

ω̂ijτ(Ẑij ; θ̂)

as an estimator for τ , where the ω̂ij’s are the weights for the fractional observations Ẑij’s at the
maximum likelihood estimator θ̂. Clearly, τ̃(θ̂) is an approximation to

τ̃(θ) = n−1
n∑

i=1

∑
r∈R

I(Ri = r)E{τ(Xi; θ) | Zr,i, Ri = r; θ},

which satisfies E{τ̃(θ)} = τ.
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S5·3. Bayesian approach: an example with a scalar X
Let R be the missing indicator the scalar X . Suppose275

pr(R = 0 | A = a,X, Y ; η) = pr(R = 0 | A = a,X; η) = {1 + exp(ηa0 + ηa1X)}−1 ,

f(Y | A = a,X;β) = (2πσ2a)
−1/2 exp{−(Y − βa0 − βa1X)2/(2σ2a)},

pr(A = 1 | X;α) = logit(α0 + α1X),

f(X;λ) = (2πσ2x)
−1/2 exp{−(X − µx)

2/(2σ2x)},

where η = (η00, η01, η10, η11), β = (β00, β01, σ
2
0, β10, β11, σ

2
1), α = (α0, α1), and λ = (µx, σ

2
x).

The parametric θ = (α, β, η, λ) has prior π(θ). The complete-data likelihood is L(θ |
Z1, . . . , Zn) =

∏n
i=1 f(Zi; θ), where

f(Zi; θ) =

[
exp(η10 + η11Xi)

Ri

1 + exp(η10 + η11Xi)

1(
2πσ21

)1/2 exp{−(Yi − β10 − β11Xi)
2

2σ21

}]Ai

×

[
exp(η00 + η01Xi)

Ri

1 + exp(η00 + η01Xi)

1(
2πσ20

)1/2 exp{−(Yi − β00 − β01Xi)
2

2σ20

}]1−Ai

× exp(α0 + α1Xi)
Ai

1 + exp(α0 + α1Xi)
× 1

(2πσ2x)
1/2

exp

{
−(Xi − µx)

2

2σ2x

}
. (S26)

By Lemma S4, it is easy to verify that f(A = a,X, Y,R = 1) is bounded complete in Y . By
Theorem 2, θ is identifiable.280

In the Bayesian estimation, we first simulate the posterior distribution of the Zi’s and θ. Given
the parameter value θ∗ = (α∗, β∗, η∗, λ∗), we generate

X∗
i ∼ f(Xi | Ai, Yi, Ri; θ

∗)

∝

[
exp(η∗10 + η∗11Xi)

Ri

1 + exp(η∗10 + η∗11Xi)

1(
2πσ∗21

)1/2 exp{−(Yi − β∗10 − β∗11Xi)
2

2σ∗21

}]Ai

×

[
exp(η∗00 + η∗01Xi)

Ri

1 + exp(η∗00 + η∗01Xi)

1(
2πσ∗20

)1/2 exp{−(Yi − β∗00 − β∗01Xi)
2

2σ∗20

}]1−Ai

× exp(α∗
0 + α∗

1Xi)
Ai

1 + exp(α∗
0 + α∗

1Xi)

1

(2πσ∗2x )1/2
exp

{
−(Xi − µ∗x)

2

2σ∗2x

}
for units with Ri = 0. For units with Ri = 1, let X∗

i = Xi. Given the imputed values
X∗

i , we have the complete data Z∗
i , and then generate θ∗ ∼ f(θ | Z∗

1 , . . . , Z
∗
n) ∝ L(θ |

Z∗
1 , . . . , Z

∗
n)π(θ). Both steps may involve the Markov chain Monte Carlo.285

Given (θ∗, X∗
1 , . . . , X

∗
n), we calculate τ̂(θ∗) = n−1

∑n
i=1 τ(X

∗
i ; θ

∗) as a posterior draw of
τ̂(θ). This gives the posterior distribution of the average causal effect conditioning on the covari-
ate values.
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