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Parametric fractional imputation for mixed
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Inference in the presence of non-ignorable missing data is
a widely encountered and difficult problem in statistics. Im-
putation is often used to facilitate parameter estimation,
which allows one to use the complete sample estimators
on the imputed data set. We develop a parametric frac-
tional imputation (PFI) method proposed by Kim (2011),
which simplifies the computation associated with the EM
algorithm for maximum likelihood estimation with miss-
ing data. We first consider the problem of parameter es-
timation for linear mixed models with non-ignorable miss-
ing values, which assumes that missingness depends on the
missing values only through the random effects, leading to
shared parameter models (Follmann and Wu, 1995). In the
M-step, the restricted or adjusted profiled maximum likeli-
hood method is used to reduce the bias of maximum likeli-
hood estimation of the variance components. Results from
a limited simulation study are presented to compare the
proposed method with the existing methods, which demon-
strates that imputation can significantly reduce the non-
response bias and the idea of adjusted profiled maximum
likelihood works nicely in PFI for the bias correction in esti-
mating the variance components. Variance estimation is also
discussed. We next extend PFI to generalized linear mixed
model and the flexibility of this method is illustrated by an-
alyzing the infamous salamander mating data (McCullagh
and Nelder, 1989).

Keywords and phrases: EM algorithm, Generalized lin-
ear mixed model, Longitudinal data, Nonignorable missing-
ness, Random effect, Restricted maximum likelihood, Sala-
mander data.

1. INTRODUCTION

Mixed models are the statistical models containing both
fixed effects and random effects. These models are partic-
ularly useful in settings where repeated measurements are
made on the same statistical units, or where measurements
are made on the clustered elements.

However, missing data frequently occurs in mixed models
and destroys the representativeness of the remaining sam-
ple. There are several assumptions about the missing mech-
anism. If the missing probability is unrelated to the missing
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value after adjusting for the observed auxiliary information,
the missing mechanism is called missing at random (MAR)
or ignorable; whereas if the missing probability is related
to the missing value even after adjusting for the auxiliary
information, the missing mechanism is called missing not
at random (MNAR) or nonignorable. To model the non-
ignorable missing mechanism we considered the selection
model (Diggle and Kenward, 1994) approach. Specially, we
consider a special case of the selection model, where miss-
ingness depends only on the random effects, which yields
the so-called shared parameter models, considered by Wu
and Carroll (1988), Follmann and Wu (1995) and Ten Have
et al. (1998). Wu and Carroll (1988) considered a linear
mixed effects model and a discrete-time survival model for
the drop-out process that share a random effect structure.
Follmann and Wu (1995) considered a conditional model to
approximate the shared parameter binary response model
conditional on missing data patterns. Ten Have et al. (1998)
proposed mixed effects logistic regression models for longi-
tudinal binary response data with informative drop-out.

To carry out the likelihood-based inference under the
nonignorable missing, we may need to obtain the marginal
density of the observed data, which involves integrating out
the missing part of the data. Except for a few special cases
this is analytically infeasible and thus requires numerical
integration. Usually, the marginal likelihood involves a high
dimensional integral and numerical integration may not be
feasible or reliable. One solution to this problem is imputa-
tion. By imputation, one can construct a complete data set
by assigning reasonable values for the missing data. It has
several advantages. First, it facilitates the parameter esti-
mation by simply applying the complete-sample estimators
to the imputed data set. Second, it ensures different analy-
ses are consistent with one another. Also, proper choice of
imputation method often reduces the non-response bias.

Integration approximated by imputation under nonignor-
able missing was considered by many authors. Greenlees
et al. (1982) considered the normal-theory linear regression
model using a version of EM algorithm. Ibrahim et al. (1999)
considered continuous variable using a Monte Carlo EM
method of Wei and Tanner (1990) to compute the E-step
of the EM algorithm in a generalized linear mixed model.
Booth and Hobert (1999) used an automated Monte Carlo
EM algorithm to compute the E-step of the EM algorithm
to speed up the convergence rate. Chan and Kuk (1997)
applied Gibbs sampling in the E-step to obtain maximum
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likelihood estimates for the probit normal model for binary
data. McCulloch (1997) proposed a Monte Carlo Newton-
Raphson algorithm in the maximum likelihood algorithm for
generalized linear mixed models. For Monte Carlo EM algo-
rithm, in each E-step, the imputed values are regenerated
and thus the computation can be quite heavy. Also the con-
vergence of Monte Carlo sequence of the estimators is not
guaranteed for fixed Monte Carlo sample size (Booth and
Hobert, 1999).

In this paper, we develop a parametric fractional impu-
tation (PFI) method proposed by Kim (2011) which can be
used to simplify the Monte Carlo implementation of the EM
algorithm, for linear mixed models with the shared param-
eter response model and for the generalized linear mixed
model. The main idea in PFI is to produce a complete data
set by imputation and each imputed value is associated with
a fractional weight, by which the observed likelihood can be
approximated by the weighted average of the imputed data
likelihood. The resulting estimator is close to the maximum
likelihood estimator and has very nice asymptotic proper-
ties, such as efficiency and asymptotic normality.

PFI can also be extended to generalized linear mixed
model. The flexibility of this method is illustrated by analyz-
ing the infamous salamander mating data (McCullagh and
Nelder, 1989). The data is challenging since the response
variable is binary and the experimental design is crossed
which causes serious limitations due to the intensive com-
putations to approximate the intractable joint distribution.

In Section 2, we introduce linear mixed model with nonig-
norable missing and develop the PFI method for this model.
In Section 3, we discuss incorporation of adjusted profile
likelihood estimation in PFI to reduce the bias in estimat-
ing variance components. In Section 4, results from a limited
simulation study are presented. Section 5 demonstrates PFI
in a generalized linear mixed model setting by analyzing
the salamander mating data. We conclude with discussion
in Section 6.

2. LINEAR MIXED MODEL WITH
NONIGNORABLE MISSING VALUES

2.1 Basic setup

In this section we introduce the data model and the miss-
ing mechanism model considered in the paper. We consider
the linear mixed model

(1) yij = β0 + β1xij + bi + eij, i = 1, . . . , n, j = 1, . . . ,m,

where i indexes individual, j indexes the repeated measure-
ment within each individual, bi’s are i.i.d. from N(0, τ2)
specifying the unobserved individual effects and eij are i.i.d.
from N(0, σ2), which are the measurement errors within in-
dividuals.

Let yi = (yi1, . . . , yim)′ be the complete measurements on
the ith individual if they are fully observed. The observed

and missing components are denoted as yobs,i, ymis,i re-
spectively, so yi = (yobs,i,ymis,i). Let ri = (ri1, . . . , rim)′

be vector of indicators of response status, so rij = 1 if
yij is observed, otherwise, rij = 0. As a motivating exam-
ple, consider a disease longitudinal study. When patients
experience an increase in pain, they might decide not to
show up at some of the scheduled visits for disease eval-
uation. In the above cases, if we simply ignore the miss-
ingness process and use the standard procedure to ana-
lyze the data, the inference will be seriously biased. To
take care of such an informative nonresponse, joint mod-
eling of disease measurement and missing process is neces-
sary.

To model the missing mechanism, we consider the selec-
tion model

(2) f(yi, ri, bi) = f(yi|bi)f(ri|yi, bi)f(bi).

Furthermore, in the selection model, we assume nonignor-
able dropout in longitudinal data (Molenberghs and Ken-
ward, 2009) where missingness depends on the missing val-
ues only through the random effects f(ri|yi, bi) = f(ri|bi),
which leads to nonignorable missingness. Under this as-
sumption, the joint density becomes

f(yi, ri, bi) = f(yi|bi)f(ri|bi)f(bi),

which is called the shared parameter models. Such assump-
tion on missingness depends on unobserved individual effect,
and may be reasonable if we can assume that ri1, . . . , rim
are identically distributed within subject i. Shared parame-
ter models are convenient and also intuitively appealing in
ways of joint modeling the disease measurement and miss-
ingness process, where we assume a set of random effects to
introduce interdependence.

We further assume that conditional on bi, {rij}mj=1 are
independent. Then we have

f(ri|bi, φ) =
m∏
j=1

f(rij |bi, φ)

=

m∏
j=1

{f(rij =1|bi, φ)}rij{1− f(rij =0|bi, φ)}1−rij ,

for some unknown parameter φ. For the ith individual, the
complete data density of (yi,bi, ri) is given by

f(yi, bi, ri|γ) = f(yi|β, σ2, bi)f(ri|bi, φ)f(bi|τ2)

=

m∏
j=1

{
f(yij |β, σ2, bi)f(rij |bi, φ)

}
f(bi|τ2),

where γ = (β, σ2, τ2, φ). The complete log likelihood func-
tion of γ is thus given by

lcom(γ) = log f(yi, bi, ri|γ)
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=

n∑
i=1

log
[{ m∏

j=1

f(yij |β, σ2, bi)f(rij |φ, bi)
}
f(bi|τ2)

]

=

n∑
i=1

m∑
j=1

log f(yij |β, σ2, bi) +

n∑
i=1

m∑
j=1

log f(rij |φ, bi)

+

n∑
i=1

log f(bi|τ2)

= l1(β, σ
2) + l2(φ) + l3(τ

2).

Under the complete response and assuming that bi’s are
fully observed, the maximum likelihood estimator of γ can
be obtained by maximizing l1(β, σ

2), l2(φ), and l3(τ
2), re-

spectively.

When we only observe (yobs, r), the observed density can
be obtained by integrating out the unobserved random ef-
fects and missing values of the joint complete density

fobs(yobs; γ) =

n∏
i=1

∫ ∫ [{ m∏
j=1

p(yij |β, σ2, bi)p(rij |φ, bi)
}

p(bi|τ2)dymis,ij

]
dbi.

Then the observed log likelihood function of γ is specified
by

lobs(γ) = log fobs(yobs, γ)

=

n∑
i=1

log
{∫ ∫ ( m∏

j=1

f(yij |β, σ2, bi)f(rij |φ, bi)
)

f(bi|τ2)dymis,ijdbi

}

=

n∑
i=1

log fobs,i(yi,obs; γ),

where

fobs,i(yi,obs; γ) =

∫ ∫ ( m∏
j=1

f(yij |β, σ2, bi)f(rij |φ, bi)
)

f(bi|τ2)dymis,ijdbi.

As we can see, since yij depends on bi and rij depends on
bi as well, and so (β, σ2), φ, and τ2 cannot be separated in
lobs(γ) as we do in lcom(γ). Thus parameters γ need to be
estimated simultaneously.

Maximum likelihood estimator γ̂ can be obtained by max-
imizing lobs(γ). Instead of maximizing lobs(γ), one can also
obtain the MLE by maximizing

(3) Q(γ) = E{lcom(γ; yobs, Ymis)| yobs, r}.

Computing the MLE using (3) will be discussed in the
next section.

2.2 Parametric fractional imputation
maximum likelihood estimation

We develop an EM algorithm by the PFI method of Kim
(2011) to linear mixed models with nonignorable missing.
To apply the EM algorithm, write function (3) as

Q(γ|γ) = [Q1(β, σ
2|γ), Q2(φ|γ)′, Q3(τ

2|γ)],

where

Q1(β, σ
2|γ) = E{l1(β, σ2) | yobs, r; γ},

Q2(φ|γ) = E{l2(φ) | yobs, r; γ},
Q3(τ

2|γ) = E{l3(τ2) | yobs, r, γ}.

The MLE can be obtained by the EM-type algorithm

(4) γ̂(t+1) ← argmax Q(γ|γ̂(t)).

The Monte Carlo EM method (MCEM) computes Q(γ|γ̂(t))
by regenerating the imputed values of size M for each EM
iteration and assigning equal weight 1/M to each imputed
value. The computation is cumbersome because it often re-
quires an iterative algorithm such as Metropolis-Hastings
algorithm for each EM iteration. There is also no guarantee
for the MCEM sequence convergence of fixed M. Alterna-
tively, the PFI modifies the idea of importance sampling
to implement the Monte Carlo EM algorithm. In the PFI
method, we generate the imputed values only in the begin-
ning of the EM iteration and update the importance weights
only by using the updated parameter estimates. Because the
imputed values are not regenerated, it is much more compu-
tationally efficient and the convergence of the EM sequence
is guaranteed.

We extend the PFI method to nonignorable missing
in linear mixed model setup. The M imputed values

b
∗(1)
i , . . . , b

∗(M)
i ∼ h1(·), y∗(k)ij ∼ h2(·|xij , b

∗(k)
i ) are gener-

ated from initial densities h1(bi) and h2(yij |xij , bi) with the
same support as f(yij). The choice of h1(bi) is somewhat
arbitrary, but a t-distribution with small degrees of freedom
seems to work well in practice. Given the current parame-

ter estimates γ̂(t) and the M imputed values b
∗(1)
i , . . . , b

∗(M)
i

and y
∗(1)
ij , . . . , y

∗(M)
ij generated above, the joint density of

(yi,obs,y
∗(k)
i,mis, b

∗(k)
i ) for each individual, where y

∗(k)
i,mis is a

vector of imputed values for yi,mis is

f
∗(k)
i (γ)

(5)

=

m∏
j=1

{
f(y

∗(k)
ij |β, σ2, b

∗(k)
i )f(rij |φ, b∗(k)i )

}
f(b

∗(k)
i |τ2).

For each individual i, assign the kth imputed data vector

y
∗(k)
i = (yi,obs,y

∗(k)
i,mis) a fractional weight as
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w
∗(k)
i (γ(t))

(6)

=
f
∗(k)
i (γ(t))/

{
(
∏

j∈M h2(y
∗(k)
ij |b∗(k)i ))h1(b

∗(k)
i )

}
∑M

l=1 f
∗(l)
i (γ(t))/

{
(
∏

j∈M h2(y
∗(l)
ij |b∗(l)i ))h1(b

∗(l)
i )

} .

The Monte Carlo approximate of Q(γ|γ̂(t)) in (4) is

Q∗(γ|γ(t)) =

n∑
i=1

M∑
k=1

w
∗(k)
i (γ(t)) log f

∗(k)
i (γ)

(7)

=

n∑
i=1

M∑
k=1

w
∗(k)
i (γ(t))

{
log f(y

∗(k)
i |β, σ2)

+ log f(ri|φ) + log f(b
∗(k)
i |τ2)

}
≡ Q∗

1(β, σ
2|γ(t)) +Q∗

2(φ|γ(t)) +Q∗
3(τ

2|γ(t)),

where

Q∗
1(β, σ

2|γ(t)) =

n∑
i=1

M∑
k=1

w
∗(k)
i (γ(t))

(
− m

2
log(2πσ2)

− 1

2σ2

m∑
j=1

(y
∗(k)
ij − β0 − β1xij − b

∗(k)
i )2

)
,

Q∗
2(φ|γ(t)) =

n∑
i=1

M∑
k=1

w
∗(k)
i (γ(t))[

m∑
j=1

{rij(φ0 + φ1b
∗(k)
i )

− log(1 + exp(φ0 + φ1b
∗(k)
i ))}],

and

Q∗
3(τ

2|γ(t))

=

n∑
i=1

M∑
k=1

w
∗(k)
i (γ(t)){−1

2
log(2πτ2)− 1

2τ2
(b

∗(k)
i )2}.

Thus, the PFI method computes the E-step of the EM al-
gorithm using fractional weights in (6). In the M-step, the
updated parameters are computed by maximizing the im-
puted mean likelihood function. That is, we obtain γ̂(t+1)

by maximizing Q∗
1(β, σ

2|γ(t)), Q∗
2(φ|γ(t)), and Q∗

3(τ
2|γ(t))

for γ = (β, σ2, φ, τ2).
Maximizing Q∗

1, Q
∗
2, Q

∗
3 can be easily implemented by in-

corporating the fractional weights in the existing software,
such as SAS or R. The EM sequence {γ̂(t); t = 1, 2, . . .} con-
verges to a stationary point γ̂∗ since the imputed values are
unchanged and only the weights are changed. Under some
regularity conditions, specified in Kim (2011), γ̂∗ is asymp-
totically equivalent to the maximum likelihood estimator for
sufficiently large M.

Now consider estimating general parameters, say η, which
can be written as a solution to

(8) E{U(Y,b; η)} = 0.

For example, if we are interested in the population mean,
then U(Y,b; η) = Y − η.

Under complete response, a consistent estimator of η can
be obtained by solving Û(η) ≡ n−1

∑n
i=1 U(yi, bi; η) = 0, for

η. Under non-response, we can obtain a fractionally imputed
estimating equation

(9) Ū∗(η) ≡ n−1
n∑

i=1

M∑
k=1

{
w

∗(k)
i U(y

∗(k)
i , bi; η)

}
= 0,

where w
∗(k)
i = limt→∞ w

∗(k)
i(t) and w

∗(k)
i(t) is defined in (6).

Thus, the final fractional weights w
∗(k)
i are computed by

the MLE (or REML) of γ, denoted by γ̂, instead of the tth

EM estimate of γ in (6). By the law of large numbers

p lim
M→∞

M∑
k=1

w
∗(k)
i U(y

∗(k)
i , bi; η) = E{U(Yi, bi; η)|ri, γ̂}

and Ū∗(η) converges to Ū(η|γ̂) = E{U(Y,b; η)|yobs, r; γ̂}
for sufficiently large M almost surely. The resulting estima-
tor η̂∗ obtained from (9) is asymptotically consistent and
efficient.

3. ADJUSTED PROFILE LIKELIHOOD FOR
BIAS CORRECTION

We now consider approaches of reducing the bias in es-
timating variance components by using the adjusted pro-
file likelihood. The simplest approach is to maximize out
the fixed effects for the variance components and to con-
struct the profile likelihood. The profile likelihood is then
treated as an ordinary likelihood function for estimation and
inference about the variance components. Unfortunately,
with large numbers of nuisance parameters, this procedure
can produce inefficient or even inconsistent estimates. A
number of authors proposed the modified profile likelihood
(Barndorff-Nielsen, 1986) and the closely related conditional
profile likelihood (Cox and Reid, 1987), in which they cor-
rect for the inconsistency of the profile likelihood which au-
tomatically make “degrees of freedom” adjustments in nor-
mal theory cases. The adjustment can be interpreted as the
information concerning the variance components carried by
the fixed effects in the ordinary profile likelihood.

In the normal case, the adjusted profile likelihood
matches exactly the restricted maximum likelihood (REML)
(Patterson and Thompson, 1971) using the marginal dis-

tribution of the error term y − Xβ̂θ, where θ = (σ2, τ2).
To see this, the data can be divided into two indepen-
dent parts, the error term y − Xβ̂θ = Sy and Qy, S =
I − X(XtΣ−1

θ X)−XtΣ−1
θ and Q = XtΣ−1

θ . The likelihood
l1 can be separated into two parts,

l1(β, θ) = Pβ(l1; θ) + l′′1 (β, θ),
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where

Pβ(l1; θ) = lp(θ)− 1
2 log |XtΣ−1

θ X/(2π)|

with lp(θ) = −1
2 log |2πΣθ| − 1

2 (y − Xβ̂θ)
tΣ−1

θ (y − Xβ̂θ)

the profile likelihood function and 1
2 log |XtΣ−1

θ X/(2π)| the
adjustment, and

l′′1 (β, θ)

(10)

= −1

2
log |XtΣ−1

θ X| − 1

2
(y −Xβ)tΣ−1

θ X(XtΣ−1
θ X)−1

×XΣ−1
θ (y −Xβ).

The REML estimate of θ is obtained by maximizing
Pβ(l1; θ). The estimate of β is obtained by maximizing l′′1 ,
which is given by

β̂ = (XtΣ̂−1X)−1XtΣ̂−1y,

where Σ̂ = Σθ̂ with fixed θ̂.
In order to obtain REML estimate under missingness, we

can re-write function (3) as

Q(γ) = E{l1(β, θ) + l2(φ)| yobs, r}(11)

= E{Pβ(l1; θ) + l′′1 (β, θ) + l2(φ)| yobs, r}

and further write function (11) as

Q(γ|γ) = Q′
1(β, θ|γ) +Q′′

1(β, θ|γ) +Q2(φ|γ),

where

Q′
1(β, θ|γ) = E{Pβ(l1; θ) | yobs, r; γ},

Q′′
1(β, θ|γ) = E{l′′1 (β, θ) | yobs, r, γ},
Q2(φ|γ) = E{l2(φ) | yobs, r; γ}.

The imputed Q functions are given by

Q′∗
1 (θ|γ) = −1

2
log |2πΣθ| −

1

2
log |XtΣ−1

θ X/(2π)|(12)

− 1

2

n∑
i=1

M∑
k=1

w
∗(k)
i (γ)

(
(y

∗(k)
i −Xiβ̂θ)

t

× V −1
i (y

∗(k)
i −Xiβ̂θ)

)

and

Q′′∗
1 (β, θ|γ) = −1

2
log |XtΣ−1

θ X|

(13)

− 1

2

n∑
i=1

M∑
k=1

w
∗(k)
i (γ)(y

∗(k)
i −Xiβ)

tV −1
i

×Xi(X
t
iV

−1
i Xi)

−1XiV
−1
i (y

∗(k)
i −Xiβ),

where the weights w
∗(k)
i (γ) are given by (6). The REML can

be obtained by the EM-type algorithm:

θ̂(t+1) ← argmaxQ′∗
1 (θ|γ(t))

β̂(t+1) ← argmaxQ′′∗
1 (β, θ̂(t+1)|γ(t)).

That is,

β̂(t+1) =
1

n

n∑
i=1

M∑
k=1

w
∗(k)
i (γ(t))

(
Xt

i (V̂
(t+1)
i )−1Xi

)−1
Xt

i (V̂
(t+1)
i )−1y

∗(k)
i

and

φ̂(t+1) ← argmaxQ∗
2(φ|γ̂(t)).

Thus, the EM algorithm using PFI method is directly ap-
plicable to REML by replacing the original likelihood with
the adjusted profile likelihood.

4. SIMULATION STUDY OF LINEAR
MIXED MODEL WITH NONIGNORABLE

MISSING DATA

To test our theory, we performed a limited simulation
study. In the simulation study, B = 2,000 Monte Carlo sam-
ples of sizes n × m = 10 × 15 = 150 were generated inde-
pendently from bi ∼ N(0, τ2), eij ∼ N(0, σ2), xij = j/m,
and yij = β0 + β1xij + bi + eij , with β0 = 2, β1 = 1, σ2 =
0.2, τ2 = 0.2. The response indicator variable rij for missing
is distributed as Bernoulli(πij) where logit(πij) = φ0 + φ1bi
with φ0 = 0.5, φ1 = 1. Note that this response mechanism
follows the shared parameter model. Under this model setup,
the average response rate is about 60%. The following pa-
rameters are computed.

1. β1, τ
2, σ2: slope and variance components in the linear

mixed effect model
2. μy: the marginal mean of y.
3. Proportion: Pr(Y < 2).

For each parameter, we compute the following estimators:

1. Complete sample estimator,
2. Incomplete sample estimator,
3. Parametric fractional imputation (PFI) for ML estima-

tion with imputed sample size of M=50,
4. PFI with adjusted profile likelihood estimation with im-

puted sample size of M=50.

Table 1 presents Monte Carlo mean, variance and standard-
ized variances (which is the ratio of variance and variance of
complete sample estimator and times 100) of the point es-
timators. The incomplete sample estimators are biased for
the mean type of the parameters, as expected. From the
response model, individuals with large bi values are likely
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Table 1. Mean, variance and standardized variance of the
point estimators, based on 2,000 Monte Carlo samples

Parameter Method Mean Var Std Var

β1 = 1 Complete 1.00 0.01601 100
Incomplete 1.00 0.02791 174
PFI(MLE) 1.00 0.02735 171
PFI(APL) 1.00 0.02613 163

μy = 2.53 Complete 2.53 0.02157 100
Incomplete 2.60 0.02281 106
PFI(MLE) 2.53 0.02085 97
PFI(APL) 2.53 0.02018 94

Pr(y < 2) = 0.22 Complete 0.22 0.004994 100
Incomplete 0.19 0.004657 93
PFI(MLE) 0.22 0.004837 97
PFI(APL) 0.22 0.004662 93

τ2 = 0.2 Complete 0.19 0.009033 100
Incomplete 0.19 0.010063 111
PFI(MLE) 0.18 0.007450 82
PFI(APL) 0.19 0.008795 97

σ2 = 0.2 Complete 0.20 0.0005717 100
Incomplete 0.20 0.0009732 170
PFI(MLE) 0.20 0.0009501 166
PFI(APL) 0.20 0.0009019 158

to respond; whereas individuals with small bi values are
likely to not respond. Thus the observed mean will tend
to be larger than the true mean (in the simulation study, we
know the true mean is 2.53) and the observed proportion
of y < 2 will tend to be smaller than the true probability
(the true probability is 0.22). On the other hand, the pro-
posed PFI estimators are essentially unbiased in estimating
the mean type of parameters. Imputation can largely re-
duce non-response bias. For estimating variance component
τ2, the imputed ML estimator is biased downward; however
the imputed APL estimator can correct the bias and thus
is essentially unbiased for estimating the variance compo-
nent. The imputation method works well for estimating the
variance parameters after incorporating the adjusted pro-
file likelihood idea. PFI (either MLE or APL) is efficient,
which can be seen from the Std Var column in Table 1,
for μy, Pr(y < 2), and τ2, the variance for PFI is even
smaller.

Table 2 presents the Monte Carlo relative bias and the
t-statistics of the variance estimators for APL estimator
(Appendix A.1). Variance estimators of the PFI estimators
are computed using the Louis formula and the linearization
method discussed in Appendix. Relative biases of the vari-
ance estimators were computed by dividing the Monte Carlo
bias of the variance estimator by the Monte Carlo variance
of the point estimator. The t-statistics are constructed to
test the significance of the bias of the variance estimators.
A justification of the t-statistics is given in Appendix D of
Kim (2004). The variance estimators for PFI are nearly un-
biased for the parameters considered.

Table 2. Monte Carlo relative biases and t-statistics of the
variance estimator for the imputation, based on 2,000 Monte

Carlo samples

Parameter Method R.B. (%) t-statistics

β1 PFI(reml) 3.12 1.03
μy PFI(reml) 2.40 0.87

Pr(y < 2) PFI(reml) 1.31 0.43

5. GENERALIZED LINEAR MIXED MODEL

Parametric fractional imputation can be extended to gen-
eralized linear mixed models. Here we consider the data set
on salamander mating, which could be modeled as general-
ized linear mixed model.

5.1 Data description

The salamander data came from the experiment con-
ducted by S. Arnold and P.Verrell (1989), aimed to study
the extent to which mountain dusky salamanders from dif-
ferent populations would interbreed. The data given here re-
fer to two populations called Rough Butt (R) and Whiteside
(W). Forty animals were used in each of three experiments,
one conducted in the summer of 1986 and two in the Fall
of the same year. The forty salamanders available in each
of the three experiments were comprised of 10 Rough Butt
males, 10 Rough Butt females, 10 Whiteside males and 10
Whiteside females. Although there were 400 possible crosses
between the females and males in each experiment, only 120
of these were permitted by the design. So totally they ob-
served 360 potential matings. The design of the experiment
permits a comparison of the mating probabilities for the four
possible crosses: RR, RW, WR and WW.

5.2 Generalized linear mixed model

For the total 360 observations in the data set, we con-
sider models for the observed data conditionally on the ac-
tual animals used in the experiment. Denote yij to be a
random variable representing the binary response indicator
of a successful mating between the ith female and the jth
male for i, j = 1, 2, . . . , 60 where only 360 of the (i, j) pairs

are relevant (each i corresponds to six j’s). Let uf
i denote

the random effect that the ith female salamander has cross
matings in which she is involved, and define um

j similarly
for the jth male. Let xij denote a 4 dimensional vector of
covariates indicating the type of cross for the mating pair
between female i and male j. We assume that the y′ijs are
all conditionally independent, and assume a Binomial re-
gression model for the salamander data set, i.e.,

(14) yij |uf
i , um

j ∼ Bernoulli(πij),

and

(15) ηij = g(πij) = logit(πij) = xT
ijβ + uf

i + um
j ,
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where g(·) is the link function, and we use the canonical
link which is the logit link, β = (βRR, βRW , βWR, βWW )T

is an unknown 4 dimensional regression parameter vec-
tor. The parameter vector β as fixed effects and uf

i ’s

and um
j ’s as random effects. Assume uf

i ∼ N(0, σ2
f ) and

um
j ∼ N(0, σ2

m), so the resulting model has 6 unknown

parameters βRR, βRW , βWR, βWW , σ2
f and σ2

m.

Let y denote the full data vector, and let uf , um be
two 60-variate random variables with parametric densities
g1(u

f |σ2
f ) and g2(u

m|σ2
m) respectively. The joint distribu-

tion of (y,uf ,um) is

(16)
( 60∏

i=1

i6∏
j=i1

π
yij

ij (1− πij)
1−yij

)
g1(u

f |σ2
f )g2(u

m|σ2
m),

where πij = g−1(xT
ijβ + uf

i + um
j ) =

exp(xT
ijβ+uf

i +um
j )

1+exp(xT
ijβ+uf

i +um
j )

.

The likelihood function for γ = (β, σ2
f , σ2

m) is

(17) L(γ|y) =
∫ ∫ ( 60∏

i=1

i6∏
j=i1

π
yij

ij (1− πij)
yij

)

g1(u
f |σ2

f )g2(u
m|σ2

m)dufdum.

The likelihood function L(γ|y) involves intractable inte-
grals whose dimension depends on the structure of the ran-
dom effects (uf ,um) which is a 120-dimensional vector, so
likelihood inference requires numerical evaluation of a high-
dimensional integral.

5.3 Fractional imputation

The complete log-likelihood function of γ = (β, σ2
f , σ

2
m)

is given by

lcom(γ) =

60∑
i=1

i6∑
j=i1

{yij log πij + (1− yij) log(1− πij)}

+ log g1(u
f |σ2

f ) + log g2(u
m|σ2

m).

We treat the random effects (uf ,um) as missing data.
The maximum likelihood estimator γ̂ can be obtained by
maximizing

Q(γ) = E{lcom(γ;y,uf ,um)|y}.

In the above expectation, the reference distribution is the
conditional distribution uf ,um|y,

uf ,um|y ∝
( 60∏

i=1

i6∏
j=i1

π
yij

ij (1− πij)
yij

)
g1(u

f |σ2
f )g2(u

m|σ2
m).

We consider a 120-dimensional multivariate Student t im-
portance density (suggested by Booth and Hobert, 1998)
with 3 degrees of freedom, whose mean and variance match

Table 3. Salamander Data set (observations= 360)

Method βRR βRW βWR βWW σ2
f σ2

m

Pseudo lik 0.78 0.24 −1.48 0.77 0.65 0.58
Imputation 0.97 0.33 −1.81 0.95 1.13 0.89

MLE 1.01 0.31 −1.90 0.99 1.17 1.04
MCEM 1.02 0.32 −1.94 0.99 1.39 1.23
Gibbs 1.03 0.34 −1.98 1.07 1.49 1.37

the mode and curvature of the target distribution f(u|y; γ),
u = (uf ,um). Write f(u|y; γ) = a exp{l(u)},where a is the
normalizing constant. Let l(i)(u) be the ith derivative of
l(u), and ũ denote the maximizer of l(u) satisfying the equa-
tion l(1)(u) = 0. The Laplace approximations of the mean
and variance are ũ and −l(2)(ũ). See Booth and Hobert
(1998) for the formula. Denote u∗(1), . . . ,u∗(M) as a ran-
dom sample from h(u|ν, μ,Σ), which is a multivariate Stu-
dent t distribution with ν = 3, μ = ũ and Σ = −l(2)(ũ), the
fractional weights are given by

w∗(k)(γ) =
f(y,u∗(k)|γ)/h(u∗(k)|ν, μ,Σ)∑M
l=1 f(y,u

∗(l)|γ)/h(u∗(l)|ν, μ,Σ)
.

The Monte Carlo approximate of the observed likelihood
function is given by

Q∗(γ|γ(t)) =

M∑
k=1

w∗(k)(γ(t)) log f(y,u∗(k)|γ),

which is maximized in each M-step in the EM algorithm to
update the parameter estimates γ(t) to γ(t+1).

Table 3 shows the results from PFI and various es-
timation methods, including Pseudo likelihood method
(Arnold and Verrel), MLE from a modified EM algorithm
with Laplace approximation (Steele, 1996), Gibbs sampling
method (Karim and Zeger, 1992) and the Monte Carlo
EM method (Vaida and Meng, 2005). Ver Hoef et al.
(2010) suggested the Pseudo likelihood approach to create
a linear mixed pseudo-model where the resulting estima-
tor is called pseudo likelihood estimator. Pseudo-likelihood
estimates can be implemented in SAS GLIMMIX proce-
dure. As we can see, the estimates of parameters in the
pseudo-likelihood approach are quite different from other
approaches which is caused by the lack of efficiency of
pseudo-likelihood approximation to the original likelihood
when a large dimension of random effects are involved.
Steele (1996) suggests replacing the conditional expectation
in the E-step with a second order approximation and this
modified EM algorithm produced accurate estimates of the
fixed effects in generalized linear mixed models. Our im-
putation method gives estimates close to MLE. The Gibbs
sampling approach and the Monte Carlo EM method tend
to produce larger estimates than MLE. However, as we
discussed previously, both methods involve heavy compu-
tation which is not desirable in practice. The PFI sam-

Parametric fractional imputation for mixed models with nonignorable missing data 345



ples are created only once in the beginning of EM algo-
rithm and thus largely reduce the burden of computation.
This example shows that statistically efficient estimation
is possible without requiring a computationally extensive
method.

6. DISCUSSION REMARK

Parametric fraction imputation is proposed as a general
tool for estimation with missing clustered data. If the para-
metric fractional imputation is used to construct the score
function, the solution to the imputed score equation is very
close to the maximum likelihood estimator for the parame-
ters in the model. The imputation method is applicable to
the restricted maximum likelihood method or the adjusted
profile likelihood method. The variance estimator can be
obtained from a Taylor linearization. PFI can also be easily
extended to generalized linear mixed model, which allows
statistically efficient estimation without requiring a com-
putationally extensive method and can be more feasible in
practice.
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APPENDIX A. APPENDIX SECTION

A.1 Variance estimation

Since β and θ are information orthogonal, we can use
Louis’s formula to construct the confidence intervals for β
(18)

Iobs(β) = −
n∑

i=1

E
{
Ṡ(β; yi)|yi,obs

}
−

n∑
i=1

V
{
S(β; yi)|yi,obs

}

which can be approximated by

−
n∑

i=1

M∑
k=1

w
∗(k)
i Ṡ(β̂; y

∗(k)
i )(19)

−
n∑

i=1

M∑
k=1

w
∗(k)
i

{
S(β̂; y

∗(k)
i )− S̄i(β̂)

}⊗2

where S(β; y) = ∂ log f(y;β)/∂β, Ṡ(β; y) = ∂S(β; y)/∂β

and S̄i(β) =
∑M

k=1 w
∗(k)
i S(β; y

∗(k)
i ).

For variance estimation of η̂, based on Taylor lineariza-
tion obtained from Ū∗(η) = 0 in (9), we can write Ū(η|γ̂) ≈
Ū(η0|γ0) +K ′S̄(γ0), where K is defined as

K = −[E{∂S̄(γ0)/∂γ}]−1E{Smis(γ0)U(η0)}.

If we write

Ū(η|γ)+K ′S̄(γ) = n−1
n∑

i=1

{ūi(η|γ)+K ′s̄i(γ)} = n−1
n∑

i=1

ũi

the plug-in estimator of Var(
∑n

i=1 ũi) is
∑n

i=1(ûi− ¯̂u)(ûi−
¯̂u)′ , where ûi = ūi(η̂; γ̂) + K̂ ′s̄i(γ̂). The terms ūi(η̂; γ̂) and
s̄i(γ̂) can be computed from fractional imputation with frac-
tional weights.
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