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Unlike in randomized clinical trials (RCTs), confounding control is critical
for estimating the causal effects from observational studies due to the lack of
treatment randomization. Under the unconfoundedness assumption, matching
methods are popular because they can be used to emulate an RCT that is hid-
den in the observational study. To ensure the key assumption hold, the effort is
often made to collect a large number of possible confounders, rendering dimen-
sion reduction imperative in matching. Three matching schemes based on the
propensity score (PSM), prognostic score (PGM), and double score (DSM, ie, the
collection of the first two scores) have been proposed in the literature. How-
ever, a comprehensive comparison is lacking among the threematching schemes
and has not made inroads into the best practices including variable selection,
choice of caliper, and replacement. In this article, we explore the statistical and
numerical properties of PSM, PGM, and DSM via extensive simulations. Our
study supports that DSM performs favorably with, if not better than, the two sin-
gle score matching in terms of bias and variance. In particular, DSM is doubly
robust in the sense that thematching estimator is consistent requiring either the
propensity scoremodel or the prognostic scoremodel is correctly specified. Vari-
able selection on the propensity score model and matching with replacement is
suggested for DSM, andwe illustrate the recommendations with comprehensive
simulation studies. An R package is available at https://github.com/Yunshu7/
dsmatch.
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1 INTRODUCTION

Randomized clinical trials (RCTs) are the touchstone for treatment effect evaluation. By trial design, treatment ran-
domization guarantees that treatment groups are comparable and thus bias can be minimized to the extent possible.
However, in practice, it may be infeasible to conduct an RCT due to financial, logistic, or ethical reasons. In these set-
tings, comparative analyses using observational data may be of particular value. Unlike RCTs, confounding control is
critical for estimating the causal effects from observational studies due to the lack of treatment randomization. Under
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the unconfoundedness assumption, that is, all pre-treatment variables that are predictors of treatment and outcome are
observed, matching methods1,2 can be used to emulate an RCT that is hidden in the observational study. Researchers
from various disciplines have expanded this field in both theory and practice for decades; see Reference 2 for a com-
prehensive review. To ensure the key assumptions hold, the effort is often made to collect a large number of possible
confounders, rendering dimension reduction imperative in matching.

In their seminal paper, Rosenbaum and Rubin3 demonstrated the vital role of the propensity score, which is defined
as the conditional probability of receiving treatment given the confounders, as a balancing score. The key implication is
that matching on the scalar propensity score can dramatically reduce the confounding bias. Since then, propensity score
matching (PSM) has been the most common method in the industry. However, recently, PSM has been criticized to be
ineffective in that it attempts to emulate a completely randomized trial,4 which is rarely if at all implemented in practice.

The prognostic score is an important alternative score summarizing covariate correlationswith the outcomes. It is also
known as the disease risk score in the epidemiology literature with a rich history.5 Its fundamental theory as a balancing
score was established by Hansen6 in 2008, and he suggested various ways to utilize prognostic score in matching, called
prognostic score matching (PGM). PGM balances the disease risk between the treatment groups and thus attempts to
emulate a special blocked randomized trial, where the blocks are formed by the risk levels. The reason we call it a special
trial is that not all the covariates are balanced within blocks as in standard blocked randomized design. Only prognostic
factors that are highly related to the outcomes are adjusted for. More importantly, the potential outcomes are balanced
within blocks, which is our ultimate goal in a trial. By not adjusting for unimportant variables that are not related to
the outcomes, the special design may obtain higher efficiency. Wyss et al7 used simulations and an empirical example to
illustrate the superior efficiency of PGMcompared to PSMwhen the propensity score distributions are separated. Another
notable advantage of PGM is that it is less sensitive than PSM to the practical violation of the overlap assumption. This
is because treatment selection often shifts the propensity score distribution more dramatically than the prognostic score
distribution between the treatment groups (see, eg, Figure 3). As a result, the matching rate in PGM can be larger than
that in PSM. However, this may not be true when the prognostic score is highly correlated with the propensity score. In
this case, the prognostic score cannot provide any additional information compared to the propensity score. Thus, it is
often reasonable to check the correlation between the two scores.8 Moreover, Stuart et al9 showed empirically the positive
correlation between the prognostic score and the bias of the treatment effect estimator and thus the prognostic score is
useful for balance check after matching. Nguyen and Debray extended the use of the prognostic score10 to the case of
general treatment regimes.

Combining the propensity score and prognostic score is indeed a sensible alternative to form a balancing score. Leacy
and Stuart11 were the first in the statistical and epidemiological literature to assess the performance of jointly match-
ing or stratifying on both the propensity score and prognostic score via simulation, although this idea was first raised
by Hansen12 in a technical report. In addition to the full matching on a Mahalanobis distance combining the estimated
propensity and prognostic scores and the full matching on the estimated prognostic propensity score (ie, the propensity
score predicted by the estimated prognostic score) within propensity score calipers, their paper also included subclassi-
fication on the two scores. As a result, although PGM achieves the best performance when the prognostic score model
is correctly specified, full matching using the Mahalanobis distance combining the estimated propensity and prognostic
scores is more robust to model misspecifications, while its performance is similar to PGM. Antonelli et al13 later estab-
lished the double robustness and convergence rate of the double score estimator of the average treatment effect (ATE).
Yang and Zhang14 coined the term “double score matching” (DSM) and derived the asymptotic distribution of the dou-
ble score estimator for the average and quantile treatment effects. Both studies underscore the advantage of DSM being
doubly robust against model misspecification of either the propensity score model or the prognostic score model. Besides
matching, the propensity score and the outcome information are used in the augmented inverse probability weighting
estimator that achieves semiparametric efficiency bound and double robustness. Hu et al15 utilized the double score in
the context of nonparametric estimation.

In short, propensity score, prognostic score, and double score are useful for dimension reduction and reducing con-
founding bias, resulting in three matching schemes. However, a comprehensive comparison among the three matching
schemes is lacking and research towards the best practices including variable selection and choices of whether using
caliper and replacement is still needed. First, an important topic is variable selection in the propensity score and prognos-
tic score. In fact, model fitting has been an important and challenging issue in PSM. Brookhart et al16 used simulations
to suggest using covariates related to outcome and not using instrumental variables (IVs) to construct the propensity
score model for propensity score weighting. Yang et al17 recommended selecting all variables that are predictive of either
treatment or outcome for robustness consideration. De Luna et al18 proposed an algorithm to select the minimal sets of
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TABLE 1 Comparison among the three matching estimators

Optimal configuration∗

Matching
scheme

The emulating
trial design

Model
specification
requirement

Overlap
requirement

Variable
selection Replacement Caliper

Performance
under optimal
configuration∗

PSM Completely
randomized
experiment

The propensity
score model

Sufficient overlap
of the
propensity
score
distribution

Yes Yes Yes Lower matching
rate and large
variance

PGM Special blocked
randomized
experiment

The prognostic
score model

Sufficient overlap
of the
prognostic
score
distribution

No Yes Insensitive High matching
rate and small
variance

DSM Hybrid
randomized
experiment

Either the
propensity
score or
prognostic
score model
(double
robustness)

Sufficient overlap
of either the
propensity
score or
prognostic
score
distribution

Yes for the
propensity
score model

Yes Insensitive High matching
rate and small
variance

Note: Results with ∗ are based on the correct model specifications.

covariates. Myers et al19 reported similar findings in PSM but prioritized minimizing unmeasured confounding when
selecting variables, even at the risk of conditioning on IVs. At the same time, Pearl20 showed that the rate of bias amplifica-
tion from IVsmay be faster than the rate of bias reduction. Some researchers suggested that IVs may be less detrimental if
the prognostic score is included in matching.5 Most existing recommendations are confined to PSM, and very few studies
have investigated these issues for PGM and DSM.

Second, matching constraints are also important issues in matching methods, including whether to include caliper
andwhether tomatchwith or without replacement. In PSM, a caliper of 0.25 standard deviation of linear propensity score
was generally suggested by Rosenbaum and Rubin.21 Other researchers used Monte Carlo methods to find the optimal
caliper width equal to 0.2 of the standard deviation in some special circumstances.22,23 Matching without replacement is
claimed to reduce variance since each control sample is used only once.24 But when the control group is not large enough,
bias can often be decreased bymatching with replacement.25 However, these recommendations are restricted to PSM and
may not extend to PGM and DSM given that the prognostic score distribution is less affected by treatment assignment
than the propensity score distribution.

In this article, we explore the statistical and numerical properties of the three score-basedmatchingmethods via exten-
sive simulations. Our study supports the conclusion that DSM performs comparably with, if not better than, the other
two single score matching. Table 1 summarizes the key features for comparison. Importantly, by linking the matching
scheme and trial design, we show that DSM emulates a hybrid design of complete randomization and blocked randomiza-
tion that incorporates the blocking benefit of PGMwhile retaining the balancing guarantee of PSM.We also provide bolts
and nuts for DSM and illustrate the recommendations with comprehensive simulation studies. In essence, we propose
the following steps for DSM to achieve its best performance in terms of bias and variance.

Step 1. At the variable selection stage, fit a prognostic score model with penalization (eg, LASSO) to select all
prognostic variables.

Step 2. Fit the propensity scoremodel restricted to the selected prognostic variables and fit the prognostic scoremodel
with all the covariates.

Step 3. Calculate the double score and assess the overlap of the propensity score and the prognostic score, or alterna-
tively, assess the matching rate after implementing matching based on the double score in the following step. We require
sufficient overlap for at least one score or a large matching rate to apply DSM.

Step 4. Carry out matching with replacement based on the estimated double score and calculate the ATE estimator.
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Thanks to the variable selection strategy, DSMcan achieve the best efficiency across different settings in the simulation
studies, in contrast to Leacy and Stuart’s result that PGM performed best when models were correctly specified. Also,
because all the variables are kept in the prognostic score model, the estimator will not suffer from confounding bias. This
is a special advantage of DSM over PSM and PGM in consideration of variable selection. The double robustness property
of DSM is also verified by extensive simulations across various scenarios. However, it is worth noting that all the above
conclusions are based on limited simulation studies where covariates and outcomes are normally distributed continuous
variables. Readers should be cautious not to apply these results to other scenarios before a general theoretical proof is
derived.

The remaining sections of this article proceed as follows. Section 2 introduces the threematchingmethods: PSM, PGM,
andDSM. Section 3 focuses onmodel selection and can be divided into two parts: the first part uses a hypothetical simulat-
ing example to illustrate the performance of different variable selection strategies; the second part turns to amore realistic
simulation setting using the REFLECTIONS dataset.26 Because of the complex correlation in the covariate set, LASSO is
applied to select variables into the outcome models. Simulation setup and detailed results are both presented in this part.
Section 4 presents the simulation results regarding the choice of caliper and replacement. Section 5 compares the three
matching estimators based on their best configurations of variable selection strategy and choice of caliper and replace-
ment. Section 6 concludes the article and discusses possible directions of future work. Derivations of the asymptotic
results for the three matching estimators and the comparison of their theoretical efficiency are included in the Appendix.

2 METHODOLOGY: MATCHING ESTIMATORS

We follow the potential outcome framework to formulate causal effects of treatment.24 Let Xi be the set of covariates, Ai
be the treatment indicator, and Yi be the observed outcome for unit i = 1,… ,n. Let Yi(a) be the potential outcome had
unit i been given treatment a, where a = 1 is the treatment of interest and a = 0 is the control group. It is assumed that
{Xi,Ai,Yi(0),Yi(1)}, i = 1,… ,n are independent and identically distributed.We intend to estimate the ATE on the treated
𝜏ATT = E {Y (1) − Y (0) |A = 1}.

We use matching to impute missing potential outcomes in causal inference. The main intuition is to find the clos-
est subject in the control group for each individual in the treatment group. Note that here we restrict our analysis
within the estimation of the ATE on the treated (ATT) and one-to-one matching. Thus, the key step in matching is
to define a proper distance measure to determine “closeness.” PSM, PGM, and DSM are three variants with differ-
ent measures of distance, and we will introduce them in detail in this section. Besides, calipers can be incorporated
into the definition of distance so that subjects who cannot find a good match will be excluded from the analysis.
Moreover, matching with or without replacement determines whether a control individual can be matched multiple
times or not.

2.1 Propensity score matching

The propensity score is defined as the probability of receiving treatment given certain values of covariates:3

e (X) = E (A |X) = P (A = 1 |X) .
Here we restrict our analysis to binary treatment scenarios. As illustrated in Figure 1A, the path between covariates
and treatment is blocked by the propensity score. Under positivity and no unmeasured confounder assumptions (stated
formally as Assumptions 1 and 2 later in the Appendix), the propensity score is a balancing score conditional on which
the potential outcomes and treatment assignment are independent:

{Y (0) ,Y (1)} ⫫ A | e (X) .
This implies that the estimand ATT can be written as:

𝜏ATT = E {Y (1) − Y (0) |A = 1}
= E [E (Y |A = 1) − E {Y |A = 0, e (X)} |A = 1] .
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(A) DAG of PSM (B) DAG of PGM

F IGURE 1 DAGs to illustrate the different intuitions behind PSM and PGM. PSM blocks the path from covariates to treatment, while
PGM blocks the path from covariates to outcome

This ensures that we can use PSM to estimate the ATT. We define the distance Dij between individuals i and j for
matching based on the linear propensity score:

Dij =
|||logit {e (Xi)} − logit

{
e
(
Xj
)}||| . (1)

The linear version is used because the bias may be effectively reduced.21,27,28 Later on, we will use the “propensity
score” to refer to either the probability version or the linear version. Suppose there are n units and individuals indexed
by 1,… ,n1 are from the treatment group. For each treated unit i, we denote Ji as the index of the closest control unit in
the sense of distance defined by the propensity score:

Ji = arg min
j=n1+1,…,n

Dij. (2)

As a result, the ATT can be estimated by

𝜏ATT = n−11
n1∑
i=1

(
Yi − YJi

)
. (3)

To improve matching quality, we can incorporate a caliper into the definition of matching index Ji:

Ji =
⎧⎪⎨⎪⎩
arg min
j=n1+1,…,n

Dij, if min
j=n1+1,…,n

Dij ≤ c,

0, if min
j=n1+1,…,n

Dij > c,
(4)

where c is the preset caliper. This excludes treated units that are dissimilar from anyone in the control group. Let  be
the set of treated indices that will be included in matching:

 = {i ∶ Ji ≠ 0, i = 1,… ,n1} .

Then the ATT can be estimated by

𝜏ATT = | |−1∑
i∈

(
Yi − YJi

)
. (5)

Note that the above estimators are based on matching with replacement. When matching without a caliper and
without replacement, Ji is chosen from the remaining control indices:

Ji = arg min

j∈{n1+1,…,n}⧵
⎛⎜⎜⎜⎝
i−1⋃
i′=1

{Ji′ }
⎞⎟⎟⎟⎠

Dij. (6)
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When matching with a caliper and without replacement, the definition of Ji can be adapted in a similar way:

Ji =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

arg min

j∈{n1+1,…,n}⧵
⎛⎜⎜⎜⎝
i−1⋃
i′=1

{Ji′ }
⎞⎟⎟⎟⎠

Dij, if min

j∈{n1+1,…,n}⧵
⎛⎜⎜⎜⎝
i−1⋃
i′=1

{Ji′ }
⎞⎟⎟⎟⎠
Dij ≤ c,

0, if min

j∈{n1+1,…,n}⧵
⎛⎜⎜⎜⎝
i−1⋃
i′=1

{Ji′ }
⎞⎟⎟⎟⎠
Dij > c.

(7)

Note that in practice we do not have access to the true propensity score. Thus, the estimated propensity score ê (X)
will replace e (X) in (1). In the simulation part of this article, a logistic model is always used to fit the propensity score,
but the set of variables may vary depending on our model selection strategy.

2.2 Prognostic score matching

The prognostic score Ψ(X) is formally defined by Hansen6 as a balancing score in the sense that Y (0) ⫫ X|Ψ (X). We
illustrate the prognostic score using the following examples.

Example 1. If Y (0) follows a generalized linear model with mean 𝜇0 (X) = XT𝛽0 and constant variance, then Ψ (X) =
E (Y (0) |X) = XT𝛽0.

Example 2. If Y (0) follows a location-shift family f0 {y − 𝜇0 (X)}, then Ψ (X) = 𝜇0 (X).

As illustrated in Figure 1B, the path between covariates and outcome is blocked by the prognostic score.
Hansen showed that if there is no hidden bias, treatment ignorability holds by conditioning on the prognostic
score:

Y (0) ⫫ A | Ψ (X) .

This implies that the ATT can be estimated by matching via the prognostic score:

𝜏ATT = E {Y (1) − Y (0) |A = 1}
= E [E (Y |A = 1) − E {Y |A = 0,Ψ (X)} |A = 1] .

Similarly, we define the distance Dij between individuals i and j for matching based on the prognostic score:

Dij =
‖‖‖Ψ (Xi) − Ψ

(
Xj
)‖‖‖ . (8)

Then we can estimate the ATT via formulas (2) to (7) depending on our choice of caliper and replacement. Similarly,
an estimated prognostic score Ψ̂(X)will replaceΨ(X) in (8), and a generalized linear model is used throughout this article
as in Example 1. Note that only the control group is used in the model fitting step but prognostic scores of units from both
groups are required to be estimated.

2.3 Double score matching

Antonelli et al13 showed that the double score as the combination of the propensity score and prognostic score is also
a balancing score, and that conditioning on the double score deconfounds the potential outcomes from the treatment
assignment:

Y (0) ⫫ A | e (X) ,Ψ(X).
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Note that this result holds even if only one score is correctly specified. This is the basis of the double robustness property
of the DSM estimator. As a result, we can estimate the ATT by matching on the double score:

𝜏ATT = E {Y (1) − Y (0) |A = 1}
= E [E (Y |A = 1) − E {Y |A = 0, e (X) ,Ψ(X)} |A = 1] .

To be specific, the distance metric is defined as the Mahalanobis distance combining propensity score and prognostic
score:

Dij =

(
logit {e (Xi)} − logit

{
e
(
Xj
)}

Ψ (Xi) − Ψ
(
Xj
) )T

Σ−1

(
logit {e (Xi)} − logit

{
e
(
Xj
)}

Ψ (Xi) − Ψ
(
Xj
) )

, (9)

where Σ is the covariance matrix of
(
logit {e (X)} ,Ψ (X)

)T . Mahalanobis distance removes the imbalance between the
scales of two scores.

Formulas (2) to (7) can still be used to estimate the ATT, but Yang and Zhang14 recommended to include a bias
correction term into the estimator:

𝜏ATT = n−11
n1∑
i=1

((
Yi − YJi

)
−
[
�̂�0 {e (Xi) ,Ψ (Xi)} − �̂�0

{
e
(
XJi

)
,Ψ

(
XJi

)}])
, (10)

where 𝜇0 {e (Xi) ,Ψ (Xi)} = E {Y (0) |e (Xi) ,Ψ (Xi)} andwe can obtain its rough estimate by themethod of sieves. Note that
(10) only works when caliper is not included. When matching with a caliper, we can simply calculate the bias correction
term using individuals who remained in the matching set as (5). Although Yang and Zhang showed that this bias is
asymptotically negligible, correcting for bias may increase finite sample performance in practice.

There is another special issue about DSMwhen a caliper is included. Hansen6 suggested using an ordinary propensity
score caliper and matching on the prognostic propensity score. Leacy and Stuart11 found that this is not better than
matching based on theMahalanobis distance of the two scores. Alternatively,wewould like to incorporate a caliper in both
matching by the propensity score and the prognostic score, in a procedure similar to PSM and PGM. However, we do not
need to require both scores to be close enough. The intuition is that individuals within a matching pair are comparable if
at least one of the scores satisfy the caliper constraint. To be specific, thematching index Ji in (4) changes its definition to:

Ji =
⎧⎪⎨⎪⎩
arg min
j=n1+1,…,n

Dij, if min
j=n1+1,…,n

min
{|logit {e (Xi)} − logit {e (Xi)}| , |||Ψ (Xi) − Ψ

(
Xj
)|||} ≤ c,

0, if min
j=n1+1,…,n

min
{|logit {e (Xi)} − logit {e (Xi)}| , |||Ψ (Xi) − Ψ

(
Xj
)|||} > c.

When matching with replacement, the matching index Ji in (7) can be adapted similarly. As a result, the matching
rate should be higher than both PSM and PGM. More importantly, overlapping assumptions are also relaxed. For units
outside the overlapping region of the propensity score, they can still find matching pairs if they are in the overlapping
region of the prognostic score. This is illustrated by the increased matching rate in the simulation results, and we hope
to complete the theoretical proof in the future.

2.4 Summary of the three matching methods

We provide some insights by connecting the three matching methods with randomized trials; see also Table 1. King and
Nielsen4 linked PSM with a completely randomized experiment. On the other hand, PGM mimics a more efficient fully
blocked randomized experiment with a special design where only potential outcomes and prognostic factors are adjusted
for. This explains why PGMmay have a smaller variance than PSMwhenmodels are correctly specified.Meanwhile, DSM
approximates a hybrid randomized experiment, which can bemore efficient with the correctly specified prognostic score.
When the outcome model is misspecified but the propensity score model is correct, DSM is still valid because it inherits
the unbiasedness property from the complete randomized experiment.
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So far, we have introduced the three types of estimators from PSM, PGM, and DSM, as well as their variants
depending on different choices of caliper and replacement. It is natural to derive the theoretical results for these estima-
tors. In the Appendix, we provide some asymptotic results for estimating ATT. These are based on some simplifications of
the problem, following Abadie and Imbens.29 First, we only consider matching with replacement and without a caliper.
Second, the asymptotic results are established when the coefficients in the propensity score and the prognostic score
models are known. Under these assumptions, the theory justifies the high efficiency of PGM compared to DSM, which
invokes the importance of involving variable selection algorithms into DSM. However, these two assumptions we made
may oversimplify the problem as the errors from the estimation of coefficients are not addressed, which may have a sig-
nificant impact especially in high dimensional settings. Thus, the theory can only offer suggestions instead of guarantees.
Meanwhile, when considering additional factors such as variable selection, it is difficult to make comparisons theoreti-
cally. In the following three sections, we will use simulations to study the effect of variable selection strategy, matching
constraints, and distance metric on the matching estimator and make some recommendations based on the results.

3 VARIABLE SELECTION IN MATCHING

In this section, wewould like to address the questions: how variable selectionwill change the performance of eachmatch-
ing estimator and what kind of variable selection strategy we should use. To better answer these questions, we will first
introduce an illustrating example that helps us understand the categories of variables and gives us guidance about the
appropriate variable selection strategies. Then we will turn to a more comprehensive simulation study based on a more
realistic dataset.

3.1 Importance and strategy of variable selection: An illustrating example

3.1.1 Simulation setup

We generated covariates for 3000 subjects from a 16-dimensional multivariate normal distribution, where the mean vec-
tor was 0 and the covariance matrix was a 16 × 16 identity matrix. The covariate distribution was highly hypothetical
and unrealistic, but our goal here is to have a clear categorization of variables. Specifically, we generated the propensity
score using X1,… ,X7 and generate the continuous potential outcomes using X1,… ,X4 and X8,… ,X10. Figure 2 illus-
trates this generating process. As a result, four covariates (X1,… ,X4) were confounders, three (X5,… ,X7) were IVs, three
(X8,… ,X10) were predictors of outcome only, and six (X11,… ,X16) were noise variables. The generating mechanism
follows the work of Leacy and Stuart,11 but with noise variables included.

Figure 3 shows the distributions of the propensity score (on the original scale and logit scale) and prognostic score
for both the treatment group and control group. Interestingly, the prognostic score had much better overlap than the
propensity score. This was not caused by the special design of the simulation but by the definition and nature of the
two scores. This difference in overlap will become an important explanation when we later compare the performance
of the three matching estimators in Section 5. It is also worth noting that the difference in overlap relies on the cor-
relation between the propensity score and the prognostic score. In this simple simulation, the correlation is very weak

F IGURE 2 Data generation structure of the illustrating example
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F I GURE 3 Overlapping of propensity score and prognostic score

(around −0.14). When the propensity score is highly correlated with the prognostic score, the difference between PSM
and PGM can be negligible.8 We provide an illustrating example in the supplementary material.

In this simple setting, the individual treatment effect was a constant 3 for all the 3000 subjects in the population. Thus,
the ATT was also 3, and we would use PSM, PGM, and DSM to estimate the ATT. For simplicity, we applied one-to-one
matching without a caliper and with replacement in all the threemethods. In Section 3.2, we will see that the conclusions
could be extended to other configurations of caliper and replacement.

Based on different categories of variables, we used the following five sets of covariates to fit each score.

• All variables: X1,… ,X16
• All except noise variables: X1,… ,X10
• Confounders + IVs: X1,… ,X7
• Confounders + outcome predictors: X1,… ,X4 and X8,… ,X10
• Only confounders: X1,… ,X4

Note that we always included confounders when fitting scores, otherwise there would be significant confounding bias.
We replicated the simulation 100 times and recorded the estimated ATT from all the three matching methods with all
the five variable selection strategies. We seek to find the estimator with the smallest bias and variance. The results will be
presented in the following section.

3.1.2 Results

Figure 4 shows the performance of the PSM estimator under the five variable selection configurations. It can be easily
seen that removing instrumental variables is beneficial for PSM: the variance decreased significantly compared to the
regular PSM estimator while the bias did not increase much. This is consistent with existing results in the literature.16,19
Interestingly, even though the propensity score model was misspecified in these two configurations, the estimator was
still consistent and even more accurate. This may be because a closer match on IVs is not useful in getting a better match
on the potential outcome while overlap of the propensity score becomes poor when including these strong IVs. On the
other hand, removing noise variables or outcome predictors does not help reduce the variance but may even increase the
bias. This suggests that any model selection method not incorporating outcome may not be effective in improving the
PSM estimator. It is also worth mentioning the sample bias observed in the propensity model that includes IVs. Since the
theory of PSM guarantees the unbiasedness of the estimator,3 the observed bias should be a finite sample bias. This was



10 ZHANG et al.

F IGURE 4 Performance of PSM estimator under different variable selection strategies in the illustrating example. Best configurations
are marked by green circles

verified by additional simulations reported in the supplementary material. When IVs are included, the finite sample bias
may become larger as the variance becomes larger. To sum up, we recommend excluding IVs and noise variables before
fitting the propensity score model in PSM.

Figure 5 illustrates the performance of the PGM estimator under the five variable selection strategies. Different from
PSM, removing IVs was not very helpful in reducing the variance of the PGM estimator. However, falsely removing out-
come predictors could be very harmful: the variance increased a lot, which may increase the finite sample bias of the
estimator. This also shows the importance of outcome information. Note that keeping all the variables in the prognostic
score model is one of the best configurations. Thus, when fitting the prognostic score model with all covariates is feasible,
we recommend skipping the variable selection process in PGM.

In DSM, we have both the propensity score and prognostic score to fit, each with five possible sets of vari-
ables. Thus, there are 5 × 5 = 25 configurations in DSM. As illustrated in Figure 6, the best strategy is a combi-
nation of our previous strategies in PSM and PGM: we should remove IVs from the propensity score model and
not remove outcome predictors from the prognostic score model. As a result, we recommend selecting confounders
and outcome predictors to fit the propensity score model and using all the variables to fit the prognostic score
model.

3.2 Variable selection in real world: REFLECTIONS dataset

We have figured out the importance and basic strategy of variable selection in matching methods. However, in real
datasets, we can never know which variables are outcome predictors and which variables are IVs. As a result, we need
some algorithms to select prognostic variables. What’s more, various correlation patterns in real-world covariates can
increase the complexity of variable categorization. To illustrate these problems, we will introduce the REFLECTIONS
dataset and create simulations based on this.
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F I GURE 5 Performance of PGM estimator under different variable selection strategies in the illustrating example. Best configurations
are marked by green ellipses

F IGURE 6 Performance of DSM estimator under different variable selection strategies in the illustrating example. Different colors imply
different propensity score models, and x-axis differentiate various prognostic score models. Best configurations are marked by green ellipses
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3.2.1 Simulated REFLECTIONS dataset

REFLECTIONS stands for the RealWorld Examination of Fibromyalgia: Longitudinal Evaluation of Cost and Treatments
dataset.30 It was a prospective observational study conducted at 58 clinical sites in the United States and Puerto Rico
between 2008 and 2011. The goal was to examine the outcome for patients receiving new treatments for fibromyalgia. The
observational data were collected from multiple sources including physician surveys and telephone patient interviews.
There were three treatment groups based on patients’ treatment at initiation: opioid treatments, non-narcotic opioid like
treatment, and all other treatments.31 In our simulations, we only compare the first two groups so that the treatment is
binary. Sixteen continuous variables and eleven categorical variables were recorded for each patient, and we only keep
the continuous covariates in our simulations for simplicity. Detailed information for each covariate is exhibited in the
supplementary material.

Faries et al26 implemented the Iman-Conover method to generate simulated REFLECTIONS datasets. Thus, our sim-
ulated data did not include any actual data from the REFLECTIONS study. However, the distributions of variables were
almost identical in the simulated and real datasets. More importantly, the realistic correlations within the covariates set
were retained.

3.2.2 Methods for variable selection: LASSO

From Section 3.1, we know that it is important to remove IVs and noise variables when fitting the propensity score model,
which is equivalent to omitting variables that are irrelevant to the potential outcome. Thus, it is reasonable to apply
variable selection algorithms on covariates with respect to the outcome data. For simplicity, here we used LASSO32 on
the control group data, where we consider all the covariates as predictors and the observed outcomes as response. 10-Fold
cross-validation was used to select the best tuning parameter 𝜆. We kept two choices of 𝜆: 𝜆min and 𝜆1se, where the first one
gave the minimummean cross-validation error and the latter one was the largest value of 𝜆 such that the cross-validation
deviance is within 1 standard error of the minimum.33 After LASSO regression, we would use covariates with nonzero
coefficients to fit scores in the matching methods. To sum up, we had three sets of variables to fit the propensity score or
the prognostic score:

• All variables
• Variables selected by 𝜆min
• Variables selected by 𝜆1se

According to its definition, 𝜆1se is more aggressive in removing variables than 𝜆min. As a result, the number of variables
used in the selected model decreases when we change from the first strategy to the last strategy. Although more effi-
cient variable selection algorithms could be employed, here we only used LASSO to illustrate the importance of variable
selection in the matching methods.

3.2.3 Simulation setup informed by the REFLECTIONS dataset

We generated 100 different REFLECTIONS datasets based on nonparametric sampling from the original dataset, and
there were 3000 individuals in each dataset. Although these datasets were not identical, the correlations among covari-
ates were well retained. Each covariate was standardized before fitting the propensity score and prognostic score. A
similar generating structure was used to produce the treatment assignment and potential outcomes, as illustrated in
Figure 7. However, because of the complex correlations between covariates, BMI_B, DxDur, PHQ8_B may not be IVs
since they may be correlated with other prognostic variables. In fact, every covariate in this REFLECTIONS dataset is
a confounder, but some of them can be categorized as IVs or noise variables if they are weakly associated with out-
come. Moreover, we opted for two different generating processes for both propensity score and prognostic score: a linear
model and a nonlinear model, where the latter case is more difficult with possible overfitting issues in the modeling pro-
cess. We also considered both constant and heterogeneous treatment effect models in our simulation, where the true
effect in the first case was 3. Detailed specifications for the heterogeneous effect as well as models for the propensity
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F I GURE 7 Data generation structure of the REFLECTIONS dataset. The dotted ellipse implies complex correlation within the
covariates set

and prognostic score can be checked in the supplementary materials. To sum up, there were 2 × 2 = 4 scenarios to be
considered:

• Linear model + constant effect
• Nonlinear model + constant effect
• Linear model + heterogeneous effect
• Nonlinear model + heterogeneous effect

In each scenario, we used PSM, PGM, and DSM to estimate the ATT. All the possible caliper and replacement choices
were considered, and as a result, there were 2 × 2 = 4 estimators for each matching method:

• Match with a caliper and with replacement
• Match with a caliper and without replacement
• Match without a caliper and with replacement
• Match without a caliper and without replacement

The caliper was always set as 0.25 times the standard deviation of each score. In DSM, at least one score that satisfies
the caliper constraint is sufficient for a matching pair, as explained in Section 2.3. Same as in the illustrating example, we
recorded the estimated ATT from each estimator in each scenario, and we sought to find the best configuration with the
smallest bias and variance across different situations. Because we were considering the heterogeneous treatment effect,
we calculated the bias of all estimates and made the corresponding box-plots, as shown in the following section.

3.2.4 Results: Variable selection in propensity score matching

Figure 8 presents the results of all the PSM estimators in different scenarios. Clearly, blue boxes were narrower than red
and green boxes in most of the scenarios, indicating that variable selection based on the LASSO algorithm with tuning
parameter 𝜆1se may significantly increase the accuracy of the estimator. On the other hand, bias may be induced when we
remove the weak confounders too aggressively (depending on scenarios). In linear model cases, the bias did not change
or even decrease when we used variable selection. This might be because the matching quality was improved when we
matched without caliper or the matching rate was increasing when we matched with caliper, see Figure 9. However,
when the generating process became a complicated nonlinear model and more higher-order or interaction terms were
included, we might falsely remove too many weak confounders and the bias was induced, as illustrated in the nonlinear
model with constant treatment effect scenario when we match with replacement. Thus, there was a bias and variance
trade-off. We think that variable selection based on 𝜆1se is acceptable because 0 was contained in the blue box and thus
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F IGURE 10 Performance of PGM estimator under different variable selection strategies in REFLECTIONS dataset

the bias was not significantly large. It is also worth noting that these were the only two cases when bias increased. In all
the other cases the bias decreased or did not change. Thus, we recommend always using LASSO with tuning parameter
𝜆1se to select variables before running PSM.

3.2.5 Results: Variable selection in prognostic score matching

As illustrated in Figure 10, the performance of PGMwas not sensitive to the variable selection strategies. This is consistent
with our conclusion in Section 3.1 that there is no significant change in the variance unless we falsely remove outcome
predictors. To avoid this risk, we recommend keeping all the variables when we fit the prognostic score in PGM since
there is a potential drawback instead of significant improvement from the variable selection.

3.2.6 Results: Variable selection in double score matching

Similar to Section 3.1, each score could be fit by the three possible sets of variables. In total, there were 3 × 3 = 9
variable selection strategies in double score matching. For simplicity, we only showed the results for matching with
a caliper and with replacement in the scenario of a linear generating model and heterogeneous treatment effect, see
Figure 11. Detailed results are posted in the supplementary materials, and the conclusions are consistent across different
scenarios.

Same as the result from Section 3.1.2, variable selection in the propensity score model help reduce the variance, while
variable selection in the prognostic score model was not important. From the perspective of bias, it is worth noting that
the bias increased as we removed variables from the prognostic score model when we had already selected variables in
the propensity score model. The explanation may be that keeping all the variables in the prognostic score model helps
avoid the confounding bias induced by removing weak confounders in the propensity score model, which is a special and
important property of DSM.Variable selection in PSM is not recommended by some researchers due to the risk of omitting
confounders, but DSM can enjoy the benefits from variable selection without taking the risk of confounding bias. As a
result, we strongly recommend applying LASSO with tuning parameter 𝜆1se to select variables for the propensity score
model but using all the covariates to fit prognostic score in DSM.
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4 CHOICE OF CALIPER AND REPLACEMENT IN MATCHING

In Section 4, we explored the best variable selection strategy in the matching methods. In this section, we will find the
best choice of caliper and replacement based when combined with best model selection strategy from Section 4. That is,
we will only compare PSM estimators where the variables are selected by LASSO based on 𝜆1se. The criterion is still that
the bias and variance should be small across various situations.

4.1 Matching constraints in propensity score matching

Figure 12 illustrated the performance of PSM estimators under different caliper and replacement configurations. Match-
ing without replacement reduced the variance of the PSM estimator by removing duplicate samples in the after-match
dataset, which was consistent with the findings from the literature.16,17,19 However, if wematched without a caliper, there
was a large bias due to the poor matching quality. If we matched with a caliper, there was still a significant bias when the
treatment effect was heterogeneous. This perhaps was because the matched sample from the low matching rate cannot
fully represent the target population, and the bias was induced from the difference of estimands. Thus, matching with
a caliper and without replacement is only recommended when the constant treatment effect assumption is guaranteed.
On the other hand, matching with replacement had a more stable performance because the distance within matching
pairs was smaller and the matching rate was higher. Relatively speaking, matching with a caliper could avoid bad match-
ing pairs thus the bias and variance were both smaller. To sum up, we recommend matching with a caliper and with
replacement in PSM unless the treatment effect is constant.

4.2 Matching constraints in prognostic score matching

As shown in Figure 13, matching without replacement was still accompanied by possible bias in PGM. Even in scenarios
with constant treatment effect, the bias was still higher compared tomatching with replacement. However, in PGM, there
is no significant difference between matching with and without a caliper if we match with replacement. Thus, we only
need matching with replacement to be guaranteed in PGM.
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F I GURE 12 Performance and matching rate of PSM estimator under different choices of caliper and replacement in REFLECTIONS
dataset, using variables selected by 𝜆1se from LASSO
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F IGURE 14 Performance and matching rate of DSM estimator under different choices of caliper and replacement in REFLECTIONS
dataset, using variables selected by 𝜆1se from LASSO to fit propensity score and all the variables to fit prognostic core

4.3 Matching constraints in double score matching

Compared to PSM and PGM, DSM was not sensitive to the choice of caliper and replacement, as illustrated in Figure 14.
Interestingly, matching without caliper and replacement in DSM had very stable performance across all the scenarios,
while PSM and PGM performed extremely badly in this setting. When the generating model was nonlinear and the
treatment effect was heterogeneous, adding caliper even increased the bias if we matched without replacement. This is
also different from our results in Sections 4.1 and 4.2. Matching without replacement may slightly reduce the variance,
while matching with replacement may slightly reduce the bias. However, matching without caliper and replacement may
weaken the double robustness of DSM, as shown in the supplementary materials. As a result, we recommend matching
with replacement in DSM. Similar to PGM, caliper did not make a significant difference in DSM.

5 COMPARISON AMONG MATCHING ESTIMATORS

At this point, we have found the best choice of caliper, replacement, and variable selection strategy for PSM, PGM, and
DSM. Now we are interested in comparing these three matching methods based on each estimator’s best configuration.
We will use the same four simulation scenarios as we showed in Section 3.2. However, here we also consider model
specification problems. We start with comparing the performance of different matching estimators under correct model
specification, and then results for different model misspecification scenarios will be presented in the following section.

5.1 Comparison under correct model specification

Results under correct model specification are illustrated in Figure 15. In all the four scenarios, PGM and DSM achieved
much smaller variance than PSM with negligible bias, suggesting that in practice PSM should be replaced by PGM or
DSM if the outcome information is available. Meanwhile, PGM and DSM had very similar performance across different
situations. This is different from Leacy and Stuart’s result11 that PGMhad amuch smaller variance than DSM. The reason
for superior performance of DSM in our simulations is that we used the variable selection strategy to improve the accuracy
of DSM. The following section will show the advantage of DSM over PGM when models are misspecified.
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5.2 Comparison under different model specifications

In this section, we consider four different model specifications:

• Both models are correctly specified
• Both models are misspecified
• Only prognostic score model is misspecified
• Only propensity score model is misspecified

In our simulation, model misspecification meant that a linear model was used in the fitting process while the true
model was nonlinear. The set of variables included in the fitting model remained the same. Figure 16 presents the perfor-
mance of the three matching estimators under different model specifications when treatment effect was heterogeneous.
PSM and PGM suffered from huge bias if the related score was misspecified, while DSM still exhibited strong perfor-
mance if only one score was misspecified. This is consistent with the double robustness property of DSM established in
the literature. However, the estimators considered here take variable selection into consideration, indicating that variable
selection strategy does not compromise the double robustness property of DSM.

6 CONCLUSIONS AND DISCUSSION

In this article, we explore the statistical and numerical properties of PSM, PGM, andDSMvia extensive simulation studies.
Based on the simulation results, we summarize the findings for eachmatching estimatorwith respect to choices of variable
selection strategy, caliper, and replacement:

• PSM can be combined with the variable selection strategy of removing IVs from the propensity score model for
efficiency consideration; matching can be done with a caliper and with replacement.

• PGM does not necessarily require variable selection in the sense that variable selection has little impact on efficiency,
and matching can be done with replacement, while whether or not using caliper is immaterial.

• DSM can be combined with the variable selection strategy of removing IVs from the propensity score model; matching
can be done with replacement, while whether or not using caliper is inconsequential.
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Among the three matching schemes, DSM enjoys a double robustness property in that its consistency requires either
the propensity score model or the prognostic score model to be correctly specified, in stark contrast to PSM and PGM,
indicating that DSM is less vulnerable to model misspecification. Meanwhile, Section 5.1 showed that DSMwas the most
efficient estimator when models were correctly specified. As a result, DSM is the most robust and efficient matching
estimator across different situations. Again, these findings may be restrictive to the simulation settings in the article,
where outcomes and covariates are generated from multivariate normal distributions, therefore our recommendations
may not apply to other scenarios.

Intrinsically, DSM and PGM require outcome information to fit the prognostic score model, which violates Rubin’s
principle of designing studies without outcome.34 The same issue arises when the variable selection strategy is incorpo-
rated to remove IVs in PSM. The separation of the design and analysis stages helps establish the credibility of the studies
by avoiding the potential for selecting the balancing score based on the outcome results the researcher desires. However,
our study showed that when outcome information is available or in retrospective studies, using the outcome information
in matching can boost efficiency. Moreover, only the control arm outcome is used when estimating the ATT, and thus
outcome for the treatment of interest can remain unobserved. This also safeguards the separation principle and prevents
potential data dredging. In prospective studies, prior information from previous research can be used to construct the
prognostic score when outcome information is not available.28

The variable selection result for PSM is consistent with the finding from Brookhart et al16 andMyers et al19 suggesting
that including IVs into the propensity score model may amplify bias and variance of the causal effect estimator. However,
different from the suggestion fromMyers et al19 that variable selection should not be used in consideration of confounding
bias, we still recommend using the variable selection procedure to increase accuracy but using DSM instead of PSM.
The prognostic score works as a protection against confounding bias in DSM since all the variables are included in the
prognostic scoremodel, implying another important advantage of DSM. In other words, DSM changes a trade-off problem
into awin-win situation.However, thismay to some extent compromise the double robustness of theDSMestimatorwhen
prognostic variables are difficult to identify, such as in studies involving rare outcomes and high-dimensional covariates.
It is likely that the variable selection algorithmmay remove some important variables improperly, leading DSM to lose its
double robustness. From this perspective, there is still a trade-off between efficiency and robustness. We plan to address
this issue in our future work. Moreover, although we used LASSO with tuning parameter 𝜆1se to select variables in PSM,
we believe that there should be better ways to remove IVs, such as the machine learning algorithms like random forest
and neural network. Besides, soft variable selection strategies may also be used in matching methods. For example, Tang
et al35 used causal ball screening to assignhigherweights to variables that aremore related to outcome.Although thiswork
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was based on the weighting framework, the idea may be applied to matching estimators as well. Since all the variables
are kept in the model, it is likely that the double robustness is always guaranteed even in difficult situations such as
high-dimensional covariates and rare outcomes. The ball-covariance approach proposed by Pan et al36 was recently used
by Zhao and Yang37 to select outcome predictors in the matching context. This may also be utilized in our setting. We
hope to see more developed variable selection algorithms designated for the matching methods.

We suggest using all the variables in the prognostic score model in PGM and DSM. This conclusion is based on a
simulation study with 10 to 100 predictors and 3000 observations. In some extreme scenarios where rare outcomes and
high-dimensional covariates are involved, it is necessary to apply some variable selection algorithms since it is impossible
to include all the variables in the prognostic score model. The performance may be improved by using more advanced
variable selection methods than LASSO, which will be investigated in our future work.

The discussion of caliper was very limited in this article: we only compared caliper of 0.25 standard deviation versus
no caliper. Note that the latter case could be seen as a caliper with infinite width. As a result, we were simply considering
two special values of caliper width. A more comprehensive study on the choice of caliper can be done in the future.
Austin and Wang et al’s studies22,23 are good examples, but a proper variable selection strategy should be applied before
matching. Its effect on PGM and DSM should also be studied thoroughly. As far as we observed in our simulations, PGM
and DSMwere not sensitive to the choice of caliper, and we are interested that whether this will hold for a larger range of
caliper widths. For the choice of replacement, the bias observed in matching without replacement under heterogeneous
treatment effects may come from the estimation of ATT. When we change the target population from the treatment
group to the matched population defined by the matching weights or overlap weights based on the propensity score,
matching without replacement may not be biased anymore.38-40 We also acknowledge that the dichotomy in the article
oversimplified the comparison of the existing matching methods. Besides matching with and without replacement that
are commonly used, algorithms such as full matching and full matching with structural restrictions are available in some
specialized software.41 In light of this, researchers may choose from a wider range of matching methods. More work can
be done in the future to provide practical recommendations for a wider spectrum of matching methods.

Although our final recommendation is DSM, PSM can be still useful when the outcome information is unavailable. In
contrast to the usual recommendation that matching should be done with a caliper and without replacement to increase
accuracy, we suggest matching with replacement to reduce potential bias from heterogeneous treatment effects. This is
a bias-and-variance trade-off, but our simulation showed that the negative impact of bias can be more significant than
the problem of variance. Using variable selection strategies may compensate for the loss of accuracy. Despite the fact that
the propensity score model is misspecified after removing IVs, the estimator remains consistent. This can be explained
by the covariate scores proposed by Waernbaum.42 What matters is the conditional independence between the poten-
tial outcomes and the treatment assignments, which can still hold despite the lack of balance in some covariates across
treatment arms.

Our study is limited to the estimation of ATT. When estimating the ATE, multiple prognostic scores are necessary for
PGM and DSM. Similar to Corollary 2, Yang and Zhang14 compared the three estimators for the ATE in their supplemen-
tary materials, but they only proved that DSM can be more efficient than PSM when estimating marginal means instead
of the ATE. Future work will investigate the performance when variable selection is considered in estimating treatment
effects via DSM. However, the definition of IVs may be tricky here. For example, a variable may be irrelevant to the out-
come of the control group but important to the outcome of the treated group. As a result, different sets of covariates should
be used when estimating each prognostic score. It is not clear how much of a problem this would cause if one just used
the prognostic score for the control arm. To deal with this problem, we recommend using the adapted DSM by Yang and
Zhang.14 Instead of directly estimating the ATE, the marginal mean for each treatment level is estimated, where only the
propensity score and the prognostic score for that particular level of the treatment need to be adjusted. Thus, we can dupli-
cate the procedure of ATT estimation considered in this article, and different sets of IVs are excluded when estimating
the averages of the potential outcomes for the treatment group and control group. We expect to see both theoretical and
numerical results on this problem, including the effect of variable selection and the comparison among the threematching
estimators. Another limitation is that we were not changing the overlap in propensity score or prognostic score in order
to see how it is affecting the DSM performance. But it is worth noting that the prognostic score has good overlap insensi-
tive to model specifications. Moreover, our simulation study is limited to continuous outcomes. Binary outcomes, as well
as survival data, can be investigated similarly in the future. Furthermore, the presence of nominal covariates, especially
with rare levels, may also change the conclusions in this article since our simulations are based on continuous baseline
covariates. These kinds of problems are worth investigating in future research. Researchers should be aware of these lim-
itations and should be cautious when applying our recommendations to their settings. Nevertheless, we believe that our
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simulation study based on REFLECTIONS dataset, where variables come from non-normal distributions and exhibited
complex correlation structures, is an improvement compared to the existing simulation studies that rely on independent
normally distributed variables.
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APPENDIX . THEORY: ASYMPTOTIC RESULTS FOR MATCHING ESTIMATORS ON THE ATT

In this section, we will derive some asymptotic results for the three matching estimators introduced in Section 2. For
simplicity, we only consider matching with replacement and without a caliper. Simulations in the following sections
will show that this is the optimal setting for matching estimators. Although variable selection strategies such as LASSO
are included in the simulations, we do not consider them at this point because they introduce substantial difficulties in
theoretical analysis. Nevertheless, the asymptotic results in this section can still provide some insights for choosing the
optimal matching estimators.

We first introduce additional notation that is useful in our theoretical analysis. We posit a working model e (X; 𝛼)
for the propensity score e (X) and a working model Ψ (X; 𝛽) for the prognostic score Ψ (X). The double score S (X; 𝜃) =
(e (X; 𝛼) ,Ψ (X; 𝛽)) is the combination of these two scores. We denote 𝜃∗ = (𝛼∗, 𝛽∗) as the true parameter, that is, S =
S (X; 𝜃∗) = (e (X; 𝛼∗) ,Ψ (X; 𝛽∗)) = (e (X) ,Ψ (X)). For simplicity of exposition, for a generic variable V , denote

𝜇a (V) = E {Y (a) |V} , 𝜎2a (V) = V {Y (a) |V} , e (V) = E (A |V) ,
where 𝜇a (V) is the mean function for potential outcome Y (a), 𝜎2a (V) is the variance function, and e (V) is the propensity
score given the variable V .
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In this article, we only establish the asymptotic results for matching estimators when 𝜃∗ is known, following Abadie
and Imbens.29 Although these can be extended for the estimated parameters,14 the resulting expressions are too cumber-
some to make comparison with variances under the estimated �̂�. To formalize our analysis, we first posit some necessary
assumptions required by the asymptotic properties of matching estimators.

Assumption 1. There exist constants c1 and c2 such that 0 < c1 ≤ e(X) ≤ c2 < 1 almost surely.

Assumption 2. {Y (0),Y (1)} ⫫ A |X .
Assumption 3. For a = 0, 1, (1) thematching variable V has a compact and convex support , with a continuous density
bounded and bounded away from zero: there exist constantsC1L andC1U such thatC1L ≤ f1 (V) ∕f0 (V) ≤ C1U , for anyV ∈
 ; (2) 𝜇a (V) and 𝜎2a (V) satisfy Lipschitz continuity conditions: there exists a constant C2 such that

|||𝜇a (Vi) − 𝜇a
(
Vj
)||| <

C2 ‖‖Vi − Vj‖‖ for any Vi and Vj. and similarly for 𝜎2a (V); and (3) there exists 𝛿 > 0 such that E
{|||Y (a)2+𝛿||| |V} is uniformly

bounded for any V ∈  ; (4) n−1∕2
∑n

i=1
{
Ai − (1 − Ai)M−1KV ,i

}
{�̂�0 (Vi) − 𝜇0 (Vi)} = oP (1).

Assumption 4. The matching variable V deconfounds the control arm outcome from the treatment assignment: Y (0) ⫫
A |V

Assumption 1 is the standard positivity assumption, and Assumption 2 implies that there is no unmeasured con-
founder. Assumption 3 as a regularity and smoothness condition is considered by Abadie and Imbens29 for the PSM
estimator and Yang and Zhang14 for the DSM estimator. The last statement implies that the nonparametric estimate for
the bias correction term is consistent. Assumption 4 shows that thematching variable V is a balancing score, which is sat-
isfied by the propensity score e(X), the prognostic score Ψ(X), and the double score S(X). Importantly, only one model is
needed to be correctly specified in the double score to deconfound the potential outcome from the treatment assignment,
contributing to the double robustness of DSM.

In the following theorem, we establish the asymptotic result for the matching estimator 𝜏ATT.

Theorem 1. Under Assumptions 1 to 4, the matching estimator on the ATT based on matching variable V is asymptotically
normal:

√
n (𝜏ATT − 𝜏ATT) → 

(
0,V𝜏ATT

)
, in distribution, as n → ∞, where

V𝜏ATT =
1
p2
E
[
e (V) {𝜇1 (V) − 𝜇0 (V) − 𝜏ATT}2

]
+ 1
p2
E
{
e (V) 𝜎21 (V)

}
+ 1
p2
E
[
𝜎20 (V)

{
e2 (V)

1 − e (V)
+ 1
M
e (V) + 1

2M
e2 (V)

1 − e (V)

}]
and p = E {e (X)} = E {e (V)} is the proportion of treatment population. Specifically, V can be the propensity score e(X), the
prognostic score Ψ(X), and the double score S(X). Importantly, the double score S(X) only requires one of the two scores to be
correctly specified, which implies the double robustness of DSM.

Here M is the number of controlled subjects matched to each treated subject. In our following simulations, M is
always chosen as 1. The proof of this theorem is provided in the supplementary material. By replacing V by e(X),
Ψ(X), or S(X), we can derive the asymptotic variances for the PSM, PGM, or DSM estimator, respectively. There-
fore, it is natural to compare these three variance terms. Unfortunately, there is no deterministic ordering among
the variances of the three matching estimators for the ATT. Instead, we consider the estimation of the average
control arm outcome on the treated 𝜇0,trt = E {Y (0) |A = 1}. It is worth discussing since 𝜏ATT = n−11

∑n
u=1AiYi − �̂�0,trt,

and the first term is the same for all the matching estimators. The following corollary establishes its asymptotic
distribution.

Corollary 1. Under Assumptions 1 to 4, the matching estimator on the average control arm outcome on the treated based
on matching variable V is asymptotically normal:

√
n
(
�̂�0,trt − 𝜇0,trt

)
→ N

(
0,V𝜇0,trt

)
, where

V𝜇0,trt =
1
p2
E
[
e (V)

{
𝜇0 (V) − 𝜇0,trt

}2] + 1
p2
E
[
𝜎20 (V) ⋅

{
e2 (V)

1 − e (V)
+ 1
M
e (V) + 1

2M
e2 (V)

1 − e (V)

}]
.

In the following theorem, we compare DSM with the other two matching estimators under correct model
specifications.
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Corollary 2. When models are correctly specified, PGM is always more efficient than DSM for estimation of 𝜇0,trt =
E {Y (0) |A = 1}. DSM is more efficient than PSM if and only if

E
(
[𝜇0 {S (X)} − 𝜇0 {e (X)}]2

{
e2 (X)

1 − e (X)
+ 1
M
e (X) + 1

2M
e2 (X)

1 − e (X)
− 1

})
≥ 0.

The first part of Corollary 2 coincides with Leacy and Staurt11 that PGM has smaller variance than DSM when both
models are correctly specified. This underscores the importance of incorporating variable selection into DSM to increase
its efficiency, as shown in the simulations.
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Supplementary Material for “Best practices of double score matching for
estimating causal effects” by Zhang et al.

The supplementary material contains additional proofs and results for the main paper. Section S1, S2, S3 provide the proof of
Theorem 1, Corollary 1, and Corollary 2, respectively. Section S4 explains key variables in the REFLECTIONS dataset. Section
S5 specifies the detailed configurations for the data generation process in the simulations. Section S8 shows the complete results
for variable selection in DSM, as a complement for Section 3.2.6. Section S9 presents additional results to illustrate the weakness
of DSM when matching without a caliper and without replacement.

S1 PROOF OF THEOREM 1

Firstly, it is straightforward that
√

n
{

�̂ATT (�∗) − �ATT
}

= n
n1

⋅
n1
√

n

{

�̂ATT (�∗) − �ATT
}

.

Also, because
n
n1

→
1
p

in probability, we only need to derive the limiting distribution for the second term, which can be expanded into three terms:

n1
√

n

{

�̂ATT (�∗) − �ATT
}

= 1
√

n

n
∑

i=1
Ai

{

�̂1
(

Vi
)

− �̂0
(

Vi
)

− �ATT
}

+ 1
√

n

n
∑

i=1
Ai

{

Yi − �̂1
(

Vi
)}

− 1
√

n

n
∑

i=1

(

1 − Ai
)

M−1KV ,i
{

Yi − �̂0
(

Vi
)}

.

The nonparametric estimators are assumed to be consistent estimates of the true means, thus

n1
√

n

{

�̂ATT (�∗) − �ATT
}

= 1
√

n

n
∑

i=1
Ai

{

�1
(

Vi
)

− �0
(

Vi
)

− �ATT
}

+ 1
√

n

n
∑

i=1
Ai

{

Yi − �1
(

Vi
)}

− 1
√

n

n
∑

i=1

(

1 − Ai
)

M−1KV ,i
{

Yi − �0
(

Vi
)}

+ oP (1) .

Denote
T1n =

1
√

n

n
∑

i=1
Ai

{

�1
(

Vi
)

− �0
(

Vi
)

− �ATT
}

, (S1)

T2n =
1
√

n

n
∑

i=1
Ai

{

Yi − �1
(

Vi
)}

, (S2)

T3n =
1
√

n

n
∑

i=1

(

1 − Ai
)

M−1KV ,i
{

Yi − �0
(

Vi
)}

. (S3)
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We first show these three terms all have zero expectations:
E
(

T1n
)

= 1
√

n

n
∑

i=1
E
(

E
[

Ai
{

�1
(

Vi
)

− �0
(

Vi
)

− �ATT
}

|Ai
])

=
√

npE
{

�1
(

Vi
)

− �0
(

Vi
)

− �ATT |Ai = 1
}

=
√

npE
[

E
{

�1
(

Vi
)

− �0
(

Vi
)

− �ATT |Ai = 1, Vi
}]

= 0.

The last line is because
�ATT = E {Y (1) − Y (0) |A = 1} = E

[

E
{

�1 (V ) − �0 (V ) |A = 1, V
}]

.

For the second term,
E
(

T2n
)

= 1
√

n

n
∑

i=1
E
(

E
[

Ai
{

Yi − �1
(

Vi
)}

|Ai
])

=
√

npE
{

Yi − �1
(

Vi
)

|Ai = 1
}

= 0.

The last line is simply from the definition of �1
(

Vi
):

E
{

�1
(

Vi
)

|Ai = 1
}

= E
[

E
{

Yi|Ai = 1, Vi
}]

= E
{

Yi|Ai = 1
}

.

For the third term,
E
(

T3n
)

= 1
√

n

n
∑

i=1

(

1 − Ai
)

M−1KV ,i
{

Yi − �0
(

Vi
)}

=
√

n (1 − p)E
[

M−1KV ,i
{

Yi − �0
(

Vi
)}

|Ai = 0
]

=
√

n (1 − p)E
(

E
[

M−1KV ,i
{

Yi − �0
(

Vi
)}

|Ai = 0, Vi
])

=
√

n (1 − p)E
(

M−1KV ,iE
[{

Yi − �0
(

Vi
)}

|Ai = 0, Vi
])

= 0.

As a result, we prove that the asymptotic bias of n1∕2 {�̂ATT (�∗) − �ATT
} is zero.

We show that the covariances of T1n, T2n, T3n are zero:

cov
(

T1n, T2n
)

=1
n

n
∑

i=1

n
∑

j=1
cov

[

Ai
{

�1
(

Vi
)

− �0
(

Vi
)

− �ATT
}

, Aj
{

Yj − �1
(

Vj
)}]

=1
n

n
∑

i=1
cov

[

Ai
{

�1
(

Vi
)

− �0
(

Vi
)

− �ATT
}

, Ai
{

Yi − �1
(

Vi
)}]

=1
n

n
∑

i=1
E
(

cov
[

Ai
{

�1
(

Vi
)

− �0
(

Vi
)

− �ATT
}

, Ai
{

Yi − �1
(

Vi
)}

|Ai
])

+ 1
n

n
∑

i=1
cov

(

E
[

Ai
{

�1
(

Vi
)

− �0
(

Vi
)

− �ATT
}

|Ai
]

, E
[

Ai
{

Yi − �1
(

Vi
)}

|Ai
])

=pE
[

cov
{

�1
(

Vi
)

− �0
(

Vi
)

− �ATT , Yi − �1
(

Vi
)

|Ai = 1
}]

+ 0
=pE

[

cov
{

�1
(

Vi
)

− �0
(

Vi
)

− �ATT , Yi − �1
(

Vi
)

|Ai = 1, Vi
}]

+ pcov
[

E
{

�1
(

Vi
)

− �0
(

Vi
)

− �ATT |Ai = 1, Vi
}

, E
{

Yi − �1
(

Vi
)

|Ai = 1, Vi
}]

=0.

The other two covariances are automatically zero by construction. Thus, the asymptotic variance is the summation of the three
variance terms:
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V
(

T1n
)

= E
(

[

Ai
{

�1
(

Vi
)

− �0
(

Vi
)

− �ATT
}]2

)

= E
[

Ai
{

�1
(

Vi
)

− �0
(

Vi
)

− �ATT
}2
|Vi

]

= E
[

E
(

Ai|Vi
) {

�1
(

Vi
)

− �0
(

Vi
)

− �ATT
}2
]

= E
[

e (V )
{

�1 (V ) − �0 (V ) − �ATT
}2
]

,

V
(

T2n
)

= E
(

[

Ai
{

Yi − �1
(

Vi
)}]2

)

= E
[

Ai
{

Yi − �1
(

Vi
)}2

|Vi
]

= E
[

E
(

Ai|Vi
) {

Yi − �1
(

Vi
)}2

]

= E
[

e
(

Vi
) {

Yi − �1
(

Vi
)}2

]

= E
{

e (V ) �21 (V )
}

.

Following Abdie and Imbens29, the third term has the limiting variance
V
(

T3n
)

→ E
[

�20 (V ) ⋅
{

e2 (V )
1 − e (V )

+ 1
M
e (V ) + 1

2M
e2 (V )
1 − e (V )

}]

.

Combining the three terms and apply the Slutsky’s Theorem, this finishes the proof of Theorem 1.

S2 PROOF OF COROLLARY 1

The matching estimator for the average control arm outcome for the treated can be written as

�̂0,trt = n−11
n
∑

i=1
Ai

{

M−1
∑

j∈JV ,i

Yj + �̂0
(

Vi
)

−M−1
∑

j∈JV ,i

�̂0
(

Vj
)

}

= n−11
n
∑

i=1
Ai�̂0

(

Vi
)

+
(

1 − Ai
)

M−1KV ,i
{

Yi − �̂0
(

Vi
)}

.

Thus,
√

n
{

�̂0,trt (�∗) − �0,trt
}

= n
n1

⋅
n1
√

n

{

�̂0,trt (�∗) − �0,trt
}

,

and we only need to derive the asymptotic distribution of the second term:

n1
√

n

{

�̂0,trt (�∗) − �0,trt
}

= 1
√

n

n
∑

i=1
Ai

{

�0
(

Vi
)

− �0,trt
}

+ 1
√

n

n
∑

i=1

(

1 − Ai
)

M−1KV ,i
{

Yi − �0
(

Vi
)}

+ oP (1) .

Denote
T ′1n =

1
√

n

n
∑

i=1
Ai

{

�0
(

Vi
)

− �0,trt
}

,

T ′3n =
1
√

n

n
∑

i=1

(

1 − Ai
)

M−1KV ,i
{

Yi − �0
(

Vi
)}

= T3n.
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Similarly, the covariance of T ′1n and T ′3n can be shown as zero. The variance of T ′1n is
V
(

T ′1n
)

= E
(

[

Ai
{

�0
(

Vi
)

− �0,trt
}]2

)

= E
[

Ai
{

�0
(

Vi
)

− �0,trt
}2
|Vi

]

= E
[

E
(

Ai|Vi
) {

�0
(

Vi
)

− �0,trt
}2
]

= E
[

e (V )
{

�0 (V ) − �0,trt
}2
]

.

The variance of T ′3n is same as the variance of T3n:
V
(

T ′3n
)

= E
[

�20 (V ) ⋅
{

e2 (V )
1 − e (V )

+ 1
M
e (V ) + 1

2M
e2 (V )
1 − e (V )

}]

.

Combining the two terms and apply the Slutsky’s Theorem, we finish the proof of Corollary 1.

S3 PROOF OF COROLLARY 2

By Corollary 1, we obtain the asymptotic variance for the the three matching estimators:
V�0,trt,PSM = 1

p2
E
(

e (X)
[

�0 {e (X)} − �0,trt
]2
)

+ 1
p2
E
[

�20 {e (X)} ⋅
{

e2 (X)
1 − e (X)

+ 1
M
e (X) + 1

2M
e2 (X)
1 − e (X)

}]

,

V�0,trt,PGM = 1
p2
E
[

e (Ψ)
{

�0 (Ψ) − �0,trt
}2
]

+ 1
p2
E
[

�20 (Ψ) ⋅
{

e2 (Ψ)
1 − e (S)

+ 1
M
e (Ψ) + 1

2M
e2 (Ψ)
1 − e (Ψ)

}]

,

V�0,trt,DSM = 1
p2
E
[

e (S)
{

�0 (S) − �0,trt
}2
]

+ 1
p2
E
[

�20 (S) ⋅
{

e2 (S)
1 − e (S)

+ 1
M
e (S) + 1

2M
e2 (S)
1 − e (S)

}]

,

where for simplicity we denote Ψ = Ψ (X) as the prognostic score and S = S (X) = (e (X) ,Ψ (X)) as the double score.
By the definition of the prognostic score,

�0 (S) = E {Y (0) |S} = E {Y (0) |e (X) ,Ψ (X)} = E {Y (0) |X} = �0 (X)
�0 (Ψ) = E {Y (0) |Ψ (X)} = E {Y (0) |X} = �0 (X) .

Thus,
�0 (S) = �0 (Ψ) = �0 (X) . (S4)

Similarly,
�0 (S) = �0 (Ψ) = �0 (X) . (S5)

We first compare the variances of PGM and DSM. By (S4) and (S5), we can show that their first terms are equivalent:
E
[

e (S)
{

�0 (S) − �0,trt
}2
]

= E
[

e (S)
{

�0 (Ψ) − �0,trt
}2
]

= E
(

E
[

e (S)
{

�0 (Ψ) − �0,trt
}2
|Ψ

])

= E
[

{

�0 (Ψ) − �0,trt
}2E {e (S) |Ψ}

]

= E
[

e (Ψ)
{

�0 (Ψ) − �0,trt
}2
]

.

The second term in the asymptotic variance of DSM can be written as
E
[

�20 (S)
{

1
M
e (S) +

(

1 + 1
2M

) e2 (S)
1 − e (S)

}]

= E
(

E
[

�20 (Ψ)
{

1
M
e (S) +

(

1 + 1
2M

) e2 (S)
1 − e (S)

}]

|Ψ
)

= E
(

�20 (Ψ)E
[{

1
M
e (S) +

(

1 + 1
2M

) e2 (S)
1 − e (S)

}]

|Ψ
)

= E
(

�20 (Ψ)
[

1
M
e (Ψ) +

(

1 + 1
2M

)

E
{

e2 (S)
1 − e (S)

|Ψ
}])

.



Zhang ET AL S5

By Jensen’s inequality, we have
E
{

e2 (S)
1 − e (S)

|Ψ
}

≥ e2 (S|Ψ)
1 − e (S|Ψ)

=
e2 (Ψ)
1 − e (Ψ)

,

where the last equality is simply implied by the construction of the double score:
e (S|Ψ) = E {e (S) |Ψ} = E [E {A|S} |Ψ] = E (A|Ψ) = e (Ψ) .

As a result, it follows that V�0,trt,DSM ≥ V�0,trt,PGM .
To compare the variances of PSM and DSM, we decompose

Y (0) = �0 {e (X)} + "0,S|e(X) + "0, (S6)
where "0,S|e(X) and "0 have mean zero and satisfy that �0 {e (X)} , "0,S|e(X), "0 are mutually independent. Moreover, �0 (S) =
�0 {e (X)} + "0,S|e(X). With this decomposition, �20 (S) = E

(

"20
) and �20 {e (X)} = E

{

"20,S|e(X)|e (X)
}

+ E
(

"20
).

We first expand the first term in V�0,trt,DSM :
E
[

e (S)
{

�0
(

Si
)

− �0,trt
}2
]

=E
[

e (S)
{

�0 {e (X)} + "0,S|e(X) − �0,trt
}2
]

(S7)
=E

(

e (S)
[

�0 {e (X)} − �0,trt
]2
)

(S8)
+ 2E

(

e (S) "0,S|e(X)
[

�0 {e (X)} − �0,trt
]) (S9)

+ E
{

"20,S|e(X)
}

. (S10)
(S8) can be shown to be equivalent as the first term in V�0,trt,PSM :

E
(

e (S)
[

�0 {e (X)} − �0,trt
]2
)

= E
{

E
(

e (S)
[

�0 {e (X)} − �0,trt
]2
|e (X)

)}

= E
(

E {e (S) |e (X)}
[

�0 {e (X)} − �0,trt
]2
)

= E
(

e (X)
[

�0 {e (X)} − �0,trt
]2
)

.

(S9) is in fact a zero term:
E
(

e (S) "0,S|e(X)
[

�0 {e (X)} − �0,trt
])

=E
(

e (S)
[

�0 (S) − �0 {e (X)}
] [

�0 {e (X)} − �0,trt
])

=E
(

e (S)�0 (S)
[

�0 {e (X)} − �0,trt
])

− E
(

e (S)�0 {e (X)}
[

�0 {e (X)} − �0,trt
])

=E
{

E
(

e (S)�0 (S)
[

�0 {e (X)} − �0,trt
]

|e (X)
)}

− E
{

E
(

e (S)�0 {e (X)}
[

�0 {e (X)} − �0,trt
]

|e (X)
)}

=E
(

E [E {AY (0) |S} |e (X)]
[

�0 {e (X)} − �0,trt
])

− E
(

E {e (S) |e (X)}�0 {e (X)}
[

�0 {e (X)} − �0,trt
])

=E
(

E {AY (0) |e (X)}
[

�0 {e (X)} − �0,trt
])

− E
(

e (X)�0 {e (X)}
[

�0 {e (X)} − �0,trt
])

=0.

Thus, the difference between the first terms of V�0,trt,DSM and V�0,trt,PSM is simply E
{

"20,S|e(X)
}

. Then, by the decomposition
from (S6), the second term in V�0,trt,PSM can be written as:

E
[

�20 {e (X)} ⋅
{

e2 (X)
1 − e (X)

+ 1
M
e (X) + 1

2M
e2 (X)
1 − e (X)

}]

=E
(

[

E
{

"20,S|e(X)|e (X)
}

+ E
(

"20
)

]

⋅
{

e2 (X)
1 − e (X)

+ 1
M
e (X) + 1

2M
e2 (X)
1 − e (X)

})

=E
[

�20 (S) ⋅
{

e2 (X)
1 − e (X)

+ 1
M
e (X) + 1

2M
e2 (X)
1 − e (X)

}]

+ E
[

E
{

"20,S|e(X)|e (X)
}

{

e2 (X)
1 − e (X)

+ 1
M
e (X) + 1

2M
e2 (X)
1 − e (X)

}]

.
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As a result, the difference between V�0,trt,DSM and V�0,trt,PSM is

V�0,trt,psm − V�0,trt,dsm =
1
p2
E
[

E
{

"20,S|e(X)|e (X)
}

{

e2 (X)
1 − e (X)

+ 1
M
e (X) + 1

2M
e2 (X)
1 − e (X)

− 1
}]

= 1
p2
E
[

"20,S|e(X)

{

e2 (X)
1 − e (X)

+ 1
M
e (X) + 1

2M
e2 (X)
1 − e (X)

− 1
}]

= 1
p2
E
(

[

�0 (S) − �0 {e (X)}
]2
{

e2 (X)
1 − e (X)

+ 1
M
e (X) + 1

2M
e2 (X)
1 − e (X)

− 1
})

.

Unfortunately, this difference can be either positive or negative. Thus, we don’t have a deterministic conclusion on the
comparison between PSM and DSM. However, simulations show that DSM can be more efficient than PSM in most situations.

S4 KEY VARIABLES IN THE REFLECTIONS DATASET

Table S1 as an excerpt from Faries et al.’s book26 summarizes all the continuous variables from the REFLECTIONS dataset
that were used in the simulations. Detailed explanation for each variable can be found in the Peng et al. analysis31.

TABLE S1 List of the continuous variables in the REFLECTIONS dataset.

Variable Name Variable Label
Age Age in years
SymDur BMI at Baseline
BPIPain_B BPI Pain score at Baseline
BPIInterf_B BPI Interference score at Baseline
BMI_B BMI at Baseline
DxDur Time (in years) since initial Dx
PHQ8_B PHQ8 total score
MFIpf_B MFI Physical Fatigue at Baseline
TrtDur Time (in years) since initial Trtmnt
PhysicalSymp_B PHQ 15 total score at Baseline
GAD7_B GAD7 total score at Baseline
CPFQ_B CPFQ Total Score at Baseline
FIQ_B FIQ Total Score at Baseline
SDS_B SDS total score at Baseline
ISIX_B ISIX total score at Baseline
CPFQ_B CPFQ Total score at Baseline

S5 DETAILED CONFIGURATIONS FOR THE DATA GENERATION

S5.1 Model specification for the illustrating example
The covariates X1 −X16 are independent standard normal variables.
The true propensity score model is

logit{P (A = 1 ∣ X)} = −1 + 1.5X1 − 0.5X2 + 1.75X3 + 0.5X4 + 1.5X5 − 1.25X6 + 1.75X7.
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The true outcome models are
Y (0) = 1 − 2.5X1 − 1.5X2 −X3 + 3X4 + 1.5X8 − 3.5X9 + 2.5X10 + �
Y (1) = Y (0) + 3,

where � ∼ (0, 1). This error term is also contained in the following section.

S5.2 Model specification for the REFLECTIONS simulations
The covariates are selected from the simulated RELFECTIONS datasets, which is generated from the real REFLECTIONS
datasets using the Iman-Conover method26. The true propensity score and outcome models vary across different scenarios.

S5.2.1 Linear model and constant effect
The true propensity score is

logit{P (A = 1 ∣ X)} = ( − 2 + Age − 0.5SymDur + 1.5BPIPain_B + 0.5BPIInterf_B
+ 3BMI_B − 2.5DxDur + 3.5PHQ8_B)∕2.

The true outcome models are
Y (0) =1 − 2Age − SymDur − 0.5BPIPain_B + 3BPIInterf_B

+ 1.5MFIpf_B − 3.5T rtDur + 2.5PℎysicalSymp_B + �
Y (1) =Y (0) + 3,

S5.2.2 Nonlinear model and constant effect
The true propensity score is

logit{P (A = 1 ∣ X)} = ( − 6 + 3Age − 0.5SymDur + 1.5BPIPain_B + 0.5BPIInterf_B + 3BMI_B
− 2.5DxDur + 3.5PHQ8_B + Age ⋅ BPIPain_B + 1.5SymDur ⋅ BPIInterf_B
+ 0.5BPIPain_B ⋅ BMI_B + 1.5BPIInterf_B ⋅DxDur + 2.5BMI_B ⋅ PHQ8_B
+ 1.5Age ⋅DxDur + 2SymDur ⋅ BPIPain_B + 0.5BPIPain_B ⋅ BPIInterf_B
+ BPIInterf_B ⋅ BMI_B + 1.5BMI_B ⋅DxDur − 2SymDur ⋅ SymDur
+ 1.5BPIInterf_B ⋅ BPIInterf_B + 1.5DxDur ⋅DxDur)∕8.

The true outcome models are
Y (0) =1 − 2Age − SymDur − 0.5BPIPain_B + 3BPIInterf_B + 1.5MFIpf_B − 3.5T rtDur + 2.5PℎysicalSymp_B

+ SymDur ⋅ BPIInterf_B + 2.5BPIPain_B ⋅ PHQ8_B + BPIInterf_B ⋅ T rtDur
+ 1.5MFIpf_B ⋅ PℎysicalSymp_B + 2Age ⋅ T rtDur + 0.5SymDur ⋅ BPIPain_B
+ BPIPain_B ⋅ BPIInterf_B + 1.5BPIInterf_B ⋅MFIpf_B + 0.5MFIpfB ⋅ T rtDur
− SymDur ⋅ SymDur + 2.5BPIInterf_B ⋅ BPIInterf_B + 1.5PℎysicalSymp_B ⋅ PℎysicalSymp_B + �

Y (1) =Y (0) + 3,

S5.2.3 Linear model and heterogeneous effect
The true propensity score is

logit{P (A = 1 ∣ X)} = ( − 3 + 6Age − 0.5SymDur + 1.5BPIPain_B + 0.5BPIInterf_B
+ 5BMI_B − 2.5DxDur + 3.5PHQ8_B)∕2.
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The true outcome models are
Y (0) =1 − 2Age − SymDur − 0.5BPIPain_B + 3BPIInterf_B

+ 1.5MFIpf_B − 3.5T rtDur + 2.5PℎysicalSymp_B + �
Y (1) =Y (0) + 3 + 5Age + 4BMI_B − 3MFIpf_B − 2.5GAD7_B.

S5.2.4 Nonlinear model and heterogeneous effect
The true propensity score is

logit{P (A = 1 ∣ X)} = ( − 6 + 3Age − 0.5SymDur + 1.5BPIPain_B + 0.5BPIInterf_B + 3BMI_B
− 2.5DxDur + 3.5PHQ8_B + Age ⋅ BPIPain_B + 1.5SymDur ⋅ BPIInterf_B
+ 0.5BPIPain_B ⋅ BMI_B + 1.5BPIInterf_B ⋅DxDur + 2.5BMI_B ⋅ PHQ8_B
+ 1.5Age ⋅DxDur + 2SymDur ⋅ BPIPain_B + 0.5BPIPain_B ⋅ BPIInterf_B
+ BPIInterf_B ⋅ BMI_B + 1.5BMI_B ⋅DxDur − 2SymDur ⋅ SymDur
+ 1.5BPIInterf_B ⋅ BPIInterf_B + 1.5DxDur ⋅DxDur)∕8.

The true outcome models are
Y (0) =1 − 2Age − SymDur − 0.5BPIPain_B + 3BPIInterf_B + 1.5MFIpf_B − 3.5T rtDur + 2.5PℎysicalSymp_B

+ SymDur ⋅ BPIInterf_B + 2.5BPIPain_B ⋅ PHQ8_B + BPIInterf_B ⋅ T rtDur
+ 1.5MFIpf_B ⋅ PℎysicalSymp_B + 2Age ⋅ T rtDur + 0.5SymDur ⋅ BPIPain_B
+ BPIPain_B ⋅ BPIInterf_B + 1.5BPIInterf_B ⋅MFIpf_B + 0.5MFIpfB ⋅ T rtDur
− SymDur ⋅ SymDur + 2.5BPIInterf_B ⋅ BPIInterf_B + 1.5PℎysicalSymp_B ⋅ PℎysicalSymp_B + �

Y (1) =Y (0) + 3 + 5Age + 4BMI_B − 2MFIpf_B − 1.5GAD7_B
+ 2Age ⋅ Age + BMI_B ⋅ BMI_B − 0.5MFIpf_B ⋅MFIpf_B
+ Age ⋅ BMI_B −MFIpf_B ⋅ GAD7_B + 1.5Age ⋅ GAD7_B − 2BMI_B ⋅MFIpf_B,

S6 PERFORMANCE OF THE MATCHING ESTIMATORS WHEN THE PROPENSITY SCORE
AND THE PROGNOSTIC SCORE ARE HIGHLY CORRELATED

In Section 3.1.1, we stated that the prognostic score may not have better a overlap than the propensity score when the two scores
are highly correlated. Thus, the difference between PSM and PGM can be negligible. In this section, we construct an extreme
example that the prognostic score is exactly the same as the linear predictor of the propensity score using the model specification
in Section S5.1. In this case, the overlap of the true prognostic score should be the same as the overlap of the true propensity
score in the logit scale. We also check the performance of PSM, PGM, and DSM based on the estimated scores. As illustrated
in Figure S1, PSM performed almost equivalently as PGM. DSM had a smaller bias than the other two estimators, but the
improvement is not significant. Even though the prognostic score cannot increase the efficiency in this setting, the performance
of DSM won’t be worse than the two single score estimators.

S7 ADDITIONAL RESULTS FOR VARIABLE SELECTION IN PSM AND PGM

To verify that the bias in the simulation studies in Section 3 is finite sample bias, we increase the number of replications from
100 to 500. The sample bias decreased significantly as illustrated in Figure S2 and S3.
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FIGURE S1 Comparison of PSM, PGM, and DSM when the propensity score is equivalent as the prognostic score. Matching
is done with caliper and with replacement.

S8 COMPLETE RESULTS FOR VARIABLE SELECTION IN DOUBLE SCORE MATCHING

In Section 4.3, we only showed the results for matching with a caliper and with replacement when the generating model was
linear and the treatment effect was heterogeneous. To complete our statements, Figure S4 - S7 present the results for all the
scenarios, and our conclusion for DSM holds under different situations.

S9 ADDITIONAL RESULTS FOR DOUBLE SCORE MATCHINGWITHOUT A CALIPER AND
WITHOUT REPLACEMENT

In Section 4.3, we recommended matching with replacement for DSM, while the caliper did not make a difference. However, as
illustrated by Figure 14, matching without a caliper and without replacement achieved the best performance as well. The reason
that we excluded this configuration is that the double robustness property of DSM was weakened under this choice of caliper
and replacement, as illustrated in Figure S8. When the propensity score was correctly specified but the prognostic score was
misspecified, significant bias appeared in DSM.However, this phenomenon did not happen whenwematch with replacement. As
a result, we do not recommend using DSMwithout a caliper and without replacement, even though it has satisfying performance
when models are correctly specified.
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FIGURE S2 Performance of PSM estimator under different variable selection strategies in the illustrating example, number of
replications K = 500.
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FIGURE S3 Performance of PGM estimator under different variable selection strategies in the illustrating example, number of
replications K = 500.
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FIGURE S4 Performance of DSM estimator under different variable selection strategies in REFLECTIONS dataset. The
generating model was linear and the treatment effect was constant.



S12 Zhang ET AL

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

With Replacement Without Replacement

W
ith

 C
a
lip

e
r

W
ith

o
u
t C

a
lip

e
r

All Variables Varibles selected 
by lambda.1se

Varibles selected 
by lambda.min

All Variables Varibles selected 
by lambda.1se

Varibles selected 
by lambda.min

−0.50

−0.25

0.00

0.25

0.50

−0.50

−0.25

0.00

0.25

0.50

Model of Prognostic Score

B
ia

s
 o

f 
E

s
ti
m

a
te

Model of Propensity Score All Variables Varibles selected by lambda.min Varibles selected by lambda.1se

Nonlinear generating model + Constant treatment effect

Performance of Double Score Matching Estimator

FIGURE S5 Performance of DSM estimator under different variable selection strategies in REFLECTIONS dataset. The
generating model was nonlinear and the treatment effect was constant.
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FIGURE S6 Performance of DSM estimator under different variable selection strategies in REFLECTIONS dataset. The
generating model was linear and the treatment effect was heterogeneous.
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FIGURE S7 Performance of DSM estimator under different variable selection strategies in REFLECTIONS dataset. The
generating model was nonlinear and the treatment effect was heterogeneous.
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