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SUMMARY 10

Calibration weighting has been widely used to correct selection biases in non-probability sam-
pling, missing data, and causal inference. The main idea is to calibrate the biased sample to the
benchmark by adjusting the subject weights. However, hard calibration can produce enormous
weights when an exact calibration is enforced on a large set of extraneous covariates. This arti-
cle proposes a soft calibration scheme, in which the outcome and the selection indicator follow 15

mixed-effects models. The scheme imposes an exact calibration on the fixed effects and an ap-
proximate calibration on the random effects. On the one hand, our soft calibration has an intrin-
sic connection with best linear unbiased prediction, which results in a more efficient estimation
compared to hard calibration. On the other hand, soft calibration weighting estimation can be
envisioned as penalized propensity score weight estimation, with the penalty term motivated by 20

the mixed-effects structure. The asymptotic distribution and a valid variance estimator are de-
rived for soft calibration. We demonstrate the superiority of the proposed estimator over other
competitors in simulation studies and a real-data application.

Some key words: Inverse propensity score weighting; Latent ignorability; Penalized optimization; Restricted maxi-
mum likelihood estimation. 25

1. INTRODUCTION

Calibration weighting, or benchmark weighting, is popular in survey sampling, where proba-
bility sampling weights are adjusted to match the known population totals of the auxiliary vari-
ables for a possible efficiency gain (Deville & Särndal, 1992). The idea of calibration is related
to the generalized regression estimator, a model-assisted estimator in survey sampling (Cassel 30

et al., 1976; Särndal et al., 1992), which has later been extended to the functional model-assisted
estimator (Cardot & Josserand, 2011), optimal model calibration (Wu & Sitter, 2001), calibration
weighting using instrumental variables (Estevao & Särndal, 2000), empirical likelihood calibra-
tion (Wu & Rao, 2006), and multi-source data calibration (Yang & Ding, 2019).

In addition to gaining precision, calibration weighting has been widely used to correct selec- 35

tion bias in various contexts, including finite-population inferences using non-probability sam-
ples, missing data, and causal inference. Skinner (1999), Lundström & Särndal (1999), Dev-
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2 C. GAO ET AL.

ille (2000), Kott (2006) and Lee & Valliant (2009) employed calibration weighting to adjust
for selection bias in non-probability samples by enforcing covariate similarity between the non-
probability sample and a probability sample; see Yang & Kim (2020) for a comprehensive review.40

For missing-at-random data, inverse propensity score weighting creates a weighted sample that
resembles the complete version of the original sample. Instead of directly inverting the propensity
score, calibration weighting imposes conditions to emulate complete data and gains robustness
against model misspecification (Han & Wang, 2013; Chen & Haziza, 2017; Lee et al., 2021,
2022). Similarly, for causal inference under the ignorability of treatment assignment, the pur-45

pose of calibration weighting is to achieve the covariate balance between treatment groups, thus
mitigating confounding biases (Hainmueller, 2012; Anastasiade & Tillé, 2017). For example,
the covariate balance propensity score introduced by Imai & Ratkovic (2014) uses a balancing
measure as an objective function to estimate the propensity score.

Most existing works aim to calibrate all available auxiliary variables to known finite-50

population totals, a process known as hard calibration. However, hard calibration may not be
necessary when there are many covariates, especially if some covariates are not predictive of
the outcome. Over-calibration, or improper application of calibration weighting on too many
variables, can lead to variance inflations (Kang & Schafer, 2007). To address this problem, sub-
sequent research has sought to use penalization (Guggemos & Tillé, 2010; Athey et al., 2018;55

Ning et al., 2020) or regularization (Zubizarreta, 2015; Wong & Chan, 2018; Wang et al., 2022)
to ease the calibration constraints on a subset of covariates, which we refer to as regularized
calibration. Chattopadhyay et al. (2020) proposed minimal dispersion approximately balancing
weights by optimizing some user-specified function. Other attempts have been made to reduce
the range of calibration weights directly by trimming, smoothing, or stabilizing (Lazzeroni &60

Little, 1998; Yang & Ding, 2018). Many of these methods adopt mixed-effects modeling, which
is particularly useful in small area estimation (Torabi & Rao, 2008), longitudinal data infer-
ence (Verbeke, 2000; Weiss, 2005), handling clustered data with cluster-specific nonignorable
missingness (Kim et al., 2016), and causal inference with unmeasured cluster-level confounders
(Yang, 2018).65

In this article, we focus on the settings with the shared parameter/random-effects models of the
outcome and the selection indicator (Follmann & Wu, 1995). The sample inclusion indicator in
survey sampling, the response indicator in the missing data context, and the treatment assignment
in causal inference are all examples of the selection indicator. As a result, our framework applies
to a wide range of problems. The selection indicator in the shared parameter models is latently70

ignorable in the sense that the selection indicator and outcome are conditionally independent
given the observed covariates and the unobserved random effects, entailing nonignorable selec-
tion. Under the linear mixed-effects model, we propose a soft calibration algorithm that enforces
an exact calibration on fixed effects, see (6a), and an approximate calibration on random effects,
see (6b). Our soft calibration exploits the correlation structure of random effects to construct75

the regularized constraints, which is different from typical regularized calibration methods that
leverage sparsity or smoothness conditions (Tan, 2020; Ning et al., 2020). The soft calibration
constraints are seemingly intricate but arise naturally from two paths towards constructing the
best linear unbiased predictor θ̂blup, a minimization problem in (4) and a prediction approach in
(5). Thus, the produced estimator has an intrinsic connection to θ̂blup and can be more efficient80

than the hard-calibration estimator, especially when random effects weakly affect the outcome.
Furthermore, the dual problem (7) of soft calibration also establishes a link between soft cal-
ibration and penalized propensity score weight estimation, leading to a ridge-type regression
(Guggemos & Tillé, 2010).
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Biometrika style 3

The calibration weights are well-known to be obtained by optimizing the user-specified loss 85

function, which is related to the modeling of the propensity scores. Because the constrained opti-
mization formulation (6) separates the loss function from the calibration conditions, we can im-
pose relaxed calibration conditions while forcefully bounding the range of weights by changing
the loss function. Next, we can show that the soft-calibration estimator is consistent if either the
outcome follows a linear mixed-effects model or the propensity score model is correctly speci- 90

fied. The asymptotic distribution and a valid variance estimator for the soft-calibration estimators
are then established. Furthermore, augmentations with flexible outcome modeling can be used
in conjunction with soft calibration to correct the remaining bias, if any. Finally, a data-adaptive
approach aided by cross fitting is proposed to select the optimal tuning parameter that minimizes
the finite-sample mean squared error. Proofs of all results are provided in the Supplementary 95

Material.

2. BASIC SETUP

2.1. Notations, ignorability, and hard calibration
To fix ideas, we consider estimating the population mean of a study variable based on a

non-probability sample and extend it to clustered missing data analysis in §3.3. Suppose that 100

we have a finite population FN = {(xi, yi) : i ∈ U} with population size N and index set
U = {1, . . . , N}, independently and identically following a super-population model ζ. We as-
sume that xi is available in the finite population, but the study variable yi is observed only in the
sample. Let S ⊂ U be the index set of the sample of size n. Define the selection indicator δi as
δi = 1 if i ∈ S and 0 otherwise. The propensity score for unit i being selected in the sample is 105

πi = pr(δi = 1 | xi), which is unknown for the non-probability sample. For ease of presentation,
we summarize all notations in Table 1 for reference.

Table 1. Summary of the notations
Notation Definition
yi, xi, x1i, x2i Individuals of study variable and covariate for unit i, xi = (xT

1i, x
T
2i)

T

YU, YS Vectors of study variable, YU = (y1, · · · , yN )T, YS = {yi : i ∈ S}
XU, X1,U, X2,U Matrices of covariate for finite population U, XU = (X1,U, X2,U) ∈ RN×(p+q)

XS, X1,S, X2,S Matrices of covariate for selected sample S, XS = (X1,S, X2,S) ∈ Rn×(p+q)

Eδ(·), Eζ(·), E(·) Expectations with respect to the selection δ, the model ζ, and both
varδ(·), varζ(·), var(·) Variances with respect to the selection δ, the model ζ, and both
o(·) an = o(bn) implies an/bn → 0 when n→∞
O(·) an = O(bn) implies an/bn → C0 when n→∞ for some constant C0

oP(·), OP(·) Small and big order terms with respect to both the selection δ and model ζ

The goal is to estimate θN = N−1
∑

i∈U yi, and we consider a weighted estimator given by

θ̂w =
1

N

∑
i∈S

wiyi. (1)

If yi follows the linear regression model yi = xT
i β + ei withEζ(ei | xi) = 0 and varζ(ei | xi) =

σ2
e , we may impose the following condition on the weights: 110∑

i∈S
wixi =

∑
i∈U

xi, (2)

which is a sufficient condition for model calibration (Wu & Sitter, 2001) in the sense that∑
i∈Swiŷi =

∑
i∈U ŷi, where ŷi is a prediction based on the linear model. If the sampling mech-
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4 C. GAO ET AL.

anism is ignorable with δi⊥⊥yi | xi, condition (2) is sufficient for the unbiasedness of θ̂w. To find
the optimal calibration estimator that minimizes the mean squared error of θ̂w while satisfying
(2) under the linear regression model, it suffices to minimize

Eζ{(θ̂w − θN )2 | XU,S} =
1

N2
varζ

{∑
i∈U

(δiwi − 1)ei | XU, S

}
=

σ2
e

N2

∑
i∈S

(wi − 1)2 + const.,

where const. represents a constant that does not depend on w = {wi : i ∈ S}. Thus, we can
formulate the hard calibration weighting problem as finding the minimizer of the square loss
function

∑
i∈S(wi − 1)2 subject to condition (2).

2.2. Mixed-effects models and latent ignorability
We now partition xi into two vectors x1i (including an intercept) and x2i with dim(x1i) = p115

and dim(x2i) = q, related to fixed effects and random effects, respectively. This setup is particu-
larly relevant in small area estimation, where x1i is a low-dimensional vector of feature variables
and x2i is a possibly high-dimensional vector of small area indicators.

In these settings, selection ignorability can be restrictive because it excludes area-specific
effects that affect both yi and δi. To overcome this issue, we consider a linear mixed-effects120

super-population model:

yi = xT
1iβ + xT

2iu+ ei, u ∼ N
(
0, Dqσ

2
u

)
, ei ∼ N(0, q−1

i σ2
e), u⊥⊥ei | xi, (3)

where u is a q-dimensional vector of random effects with a positive-definite covariance matrix
Dq, ei is the heteroscedastic random error with known q−1

i , and σ2
e and σ2

u characterize the
variances of individual errors and random effects, respectively. Typically, we consider qi = 1
for i ∈ S but unequal qi’s are also desired in some situations; see Remark 5 in Devaud & Tillé125

(2019). Next, we make the following assumptions for the sampling mechanism.

Assumption 1 (Latent ignorability). The sampling mechanism is ignorable given (xi, u):
δi⊥⊥yi | (xi, u) for all i ∈ U.

Assumption 2 (Positivity). 0 < d < Nn−1pr(δi = 1 | xi, u) < d < 1 for all xi and u.

Assumption 1 leads to shared parameter/random-effects models of δi and yi. In the missing data130

context with clustered data, it is called cluster-specific nonignorable missingness (Yuan & Lit-
tle, 2007). In the context of causal inference, it is called cluster-specific nonignorable treatment
assignment (Yang, 2018). Assumption 1 relaxes the ignorability assumption by allowing unob-
served random effects to affect both yi and δi. Assumption 2 implies that the sample support
{xi : i ∈ S} coincides with the support of xi in the population.135

2.3. Soft calibration for the best linear unbiased predictor
Under model (3) and Assumptions 1-2, we wish to develop the optimal calibration estimator

θ̂w by minimizing the mean squared error. Following Hirshberg et al. (2019)’s minimax imbal-
ance strategy, we minimize

sup
β∈M

Eζ{(θ̂w − θN )2 | XU,S} = sup
β∈M

1

N2
(wTX1,S − 1T

NX1,U)ββT(wTX1,S − 1T
NX1,U)T

140

+
σ2
e

N2

{∑
i∈S

q−1
i (wi − 1)2 + γ−1 (wTX2,S − 1T

NX2,U)Dq (wTX2,S − 1NX2,U)T

}
(4)
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Biometrika style 5

with respect to w, where M is a convex subset of Rp that contains the true β. Since M may
be unbounded without prior knowledge, the minimax problem results in an exact calibration
condition wTX1,S = 1T

NX1,U to diminish the first term of the above equation. The remaining
objective function (4) leads to a generalized ridge regression problem (Bardsley & Chambers, 145

1984) augmented with a data-dependent penalty, where γ−1 = σ2
u/σ

2
e determines the level of

calibration forX2,S: if γ is close to zero, the calibration forX2,S is nearly exact; and if γ is large,
the calibration for X2,S is greatly relaxed.

In addition, the minimum of (4) should coincide with θ̂blup = N−1
∑

i∈U(xT
1iβ̂ + xT

2iû),
where (β̂, û) is the solution to the following score equations for the linear mixed-effects model: 150(∑

i∈S qix1ix
T
1i

∑
i∈S qix1ix

T
2i∑

i∈S qix2ix
T
1i

∑
i∈S qix2ix

T
2i + γD−1

q

)(
β
u

)
=

(∑
i∈S qix1iyi∑
i∈S qix2iyi

)
. (5)

By rewriting θ̂blup as a weighted estimator wTYS, the weights satisfy

wTXS = 1T
NXU

{∑
i∈S

qixix
T
i + γdiag(0, D−1

q )

}−1∑
i∈S

qixix
T
i

= 1T
NXU

Ip+q − γ{∑
i∈S

qixix
T
i + γdiag(0, D−1

q )

}−1

diag(0, D−1
q )

 ,
where the second equality is derived by repeatedly applying the Woodbury matrix identity. There-
fore, minimizing (4) can be reformulated as a constrained optimization with exact calibration on 155

x1i and approximate calibration on x2i:

min
w

∑
i∈U

δiQ(wi) =
∑
i∈S

q−1
i (wi − 1)2,

s.t.
∑
i∈S

wix1i =
∑
i∈U

x1i, (6a)∑
i∈S

wix2i =
∑
i∈U

x2i +
∑
i∈U

MT
S x1i +

∑
i∈U

RT
Sx2i, (6b)

where MS = −γD12D
−1
q , RS = −γD22D

−1
q , and {

∑
i∈S qixix

T
i + γdiag(0, D−1

q )}−1 = 160

[D11, D12 | D21, D22]. The solution is denoted by ŵ(SQ) = {ŵ(SQ)

i : i ∈ S}, giving rise to θ̂(SQ)
w =

N−1
∑

i∈S ŵ
(SQ)

i yi, where the superscript SQ reflects the use of the square loss.
Proposition 1 reveals the intrinsic connection between soft calibration based on square loss

and θ̂blup under the mixed-effects model (3).

PROPOSITION 1. Under Assumptions 1 and 2 and the model (3), we have θ̂(SQ)
w = θ̂blup for 165

fixed γ = σ2
e/σ

2
u.

Through the lens of θ̂blup derived from (4) or (5), the soft-calibration estimator is optimal
under model (3) and consistent under any sampling design that satisfies the latent ignorability by
Proposition 1.

2.4. Soft calibration for penalized propensity score weight estimation 170

In the proof of Proposition 1, we show that the square loss function is equivalent to assuming
a linear regression model for the calibration weight. However, it is possible to obtain negative
values that may not be acceptable to practitioners. One advantage of casting the soft-calibration
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6 C. GAO ET AL.

estimator as a solution to the constrained optimization problem (6) is that it directly leads to
a mixed-effects model for the calibration weight through the link function w(·), which allows175

flexible estimation by adopting other loss functions Q(·). In particular, we consider the dual
problem of (6) for optimization purposes, which is to minimize a penalized convex function:

G(c) = −
∑
i∈U

δiQ{w(cTxi)}+

{∑
i∈S

w(cTxi)x
T
i − (1T

NX1,U, 1
T
NX2,U +NTr)

}
c (7a)

=
∑
i∈U

δig(cTxi)− (1T
NX1,U)c1 − (1T

NX2,U +NTr)c2, (7b)

where g(·) is the convex conjugate function ofQ(·), Tr = N−1
∑

i∈U(xT
1iMS + xT

2iRS) is the ad-180

justment for soft calibration, and c = (cT
1 , c

T
2 )T is a vector of Lagrange multipliers with c2 = Dδu

for a suitable invertible matrix Dδ, featuring a shared random-effects model with the outcome
(Gao, 2004). Table 2 provides some examples of loss functionsQ(·) and their associated g(·) and
w(·). These loss functions belong to a general class of empirical minimum discrepancy measures
(Read & Cressie, 2012), which can be considered as measuring the aggregate distance between185

the weights w and a n-vector of uniform weights 1n.

Table 2. Correspondence of loss functions Q(wi), the convex conjugate functions
g(zi) and the weight models w(zi) when weights are adjusted to satisfy the calibra-

tion constraints for the first moments of xi
Q(wi) g(zi) w(zi)

Squared loss q−1
i (wi − 1)2/2 zi + qiz

2
i /2 1 + qizi

Entropy divergence q−1
i {wi log(wi)− wi + 1} q−1

i {exp(qizi)− 1} exp(qizi)
Empirical Likelihood q−1

i {− log(wi)− 1 + wi} −q−1
i log(1− qizi) (1− qizi)−1

Maximum entropy q−1
i (wi − 1){log(wi − 1)− 1} zi + q−1

i exp(qizi) 1 + exp(qizi)

PROPOSITION 2. If ĉ is the minimizer of (7b), the calibration weights w(ĉTxi) attain the soft
calibration conditions (6a) and (6b).

Proposition 2 is justified since (7b) gives a dual optimization for solving the constrained opti-
mization in (6). Furthermore, the penalized estimation in (7a) is closely related to the L2 penal-190

ized propensity score weight estimator, which is, however, not optimal as its penalty term does
not account for the correlation structure of the mixed effects; see §B.3 of the Supplementary
Material for numerical details. In view of the Lagrangian function (7a), the soft-calibration es-
timator enforces an exact calibration on x1i while penalizing a large discrepancy of imbalances
between

∑
i∈Swix2i and

∑
i∈U x2i, thus avoiding posing overly stringent constraints.195

Remark 1. Let A = {w : wTXS = 1T
NXU + (0T

p , NTr)} be a set of solutions to the soft cali-
bration conditions. Assume that Q(w) is strictly convex and smooth, defined in W that includes
1. Assume that W is either a compact set or an open set with limw→∂W |Q(w)| =∞, where
∂W denotes the boundary of the set W, (7) has a unique optimum with probability 1 when
A ∩W 6= ∅.200

In finite samples, a unique optimum of (7) may not exist due to conflicting conditions imposed
for calibration. For example, calibration weights are restricted to an overly bounded support W
to reduce the impact of outliers; see §B.2, which might render A ∩W empty. One remedy for this
issue is to adopt a Moore-Penrose generalized inverse (Devaud & Tillé, 2019) for the Newton-
type method to achieve a solution even when A ∩W = ∅.205

Acc
ep

ted
 M

an
us

cri
pt

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asad016/7067736 by N

orth C
arolina State U

niversity Libraries user on 02 M
arch 2023
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3. MAIN THEORY

3.1. Bias correction and asymptotic properties
In this section, we establish the asymptotic properties of θ̂w under the general loss function

Q(w) and adopt the joint randomization framework for inference, which considers both the
super-population mixed-effects model ζ and the sampling mechanism δ (Isaki & Fuller, 1982). 210

Before delving into the technical details, we assume the following regularity conditions.

Assumption 3 (Regularity conditions). (a) The matrices n−1XT
SXS = Σn for any sample S,

andN−1XT
UXU = ΣN are positive-definite; (b) There exists some constant C such that ‖xi‖2 <

qC for all i ∈ U; (c) The finite population is a random sample of a super-population model (3)
satisfying N−1

∑
i∈U y

2+α
i <∞ for some α > 0 with N →∞. 215

Assumptions 3(a) and (b) are standard regularity conditions related to the auxiliary variables
(Portnoy, 1984; Dai et al., 2018; Chauvet & Goga, 2022). Assumption 3(c) requires the moment
conditions to employ the central limit theorem. In contrast to hard calibration, the inexact cal-
ibration scheme for x2i involves a correction term on the right-hand side of (6b), incurring an
additional term in θ̂w − θN : 220

θ̂w − θN = N−1γn(1T
NX1,UD12 + 1T

NX2,UD22)D−1
q u+N−1

∑
i∈U

(δiwi − 1)ei, (8)

where γn is considered as a finite-sample tuning parameter for γ. In §3.2, we propose a data-
adaptive approach to select γn that minimizes the estimated mean squared error of the soft-
calibration estimator.

The following theorem characterizes the asymptotic properties of θ̂w.

THEOREM 1. Suppose Assumptions 1-3, the conditions for Q(w) in Remark 1 hold and γn = 225

o(n1/2q−1/2), the soft-calibration estimator θ̂w satisfies θ̂w − θN = N−1
∑

i∈U ψi(c
∗)− θN +

oP(n
−1/2), where c∗ is the solution to E{∂G(c)/∂c | XU, u} = 0,

ψi(c
∗) = B(c∗)xi,SC + δiw(c∗Txi)ηi(c

∗), ηi(c
∗) = yi −B(c∗)xi, (9)

B(c∗) =
{∑

i∈U δiw
′(c∗Txi)xiyi

}{∑
i∈U δiw

′(c∗Txi)xix
T
i

}−1, and xi,SC = {xT
1i, x

T
1iMS +

xT
2i(Iq +RS)}T. As a result, if either the outcome yi follows a linear mixed-effects model or
Q(w) entails a correct propensity score model, we have n1/2(θ̂w − θN )→ N(0, V1 + V2) as
n→∞, where

V1 = lim
n→∞

n

N2
Eζ

[
varδ

{∑
i∈U

δiw(c∗Txi)ηi(c
∗) | XU, u, YS

}
| XU

]
,

and

V2 = lim
n→∞

n

N2
varζ

[
Eδ

{∑
i∈U

ψi(c
∗) | XU, u, YS

}
| XU

]
.

Theorem 1 states that θ̂w is doubly robust as its consistency requires the outcome following a
linear mixed-effects model or the propensity score being correctly specified. We now estimate 230

V1 and V2 by V̂1 and V̂2, respectively, in Theorem 2.
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8 C. GAO ET AL.

THEOREM 2. Under the assumptions in Theorem 1, we have V̂1 =

nN−2
∑

i∈Sw(ĉTxi)
2ηi(ĉ)

2 → V1 and V̂2 = nN−2
∑

i∈Sw(ĉTxi)(yi − xT
1iβ̂)2 → V2 in

probability, where β̂ = D11
∑

i∈S qix1iyi +D12
∑

i∈S qix2iyi

Theorem 2 estimates V1 and V2 by applying the standard variance estimator formula with c∗235

replaced by ĉ. As Shao & Steel (1999) show that the order of V2/V1 is O(n/N); thus if the
sampling fraction n/N is negligible, we only need to estimate V1.

Remark 2. In Theorem 1, we need γn = o(n1/2q−1/2) to make the bias term (8) negligible.
If the bias term does not dwindle away, one can use a bias-corrected estimator θ̂bc to correct
the remaining bias after soft calibration weighting. Denote θ̂bc = θ̂w −N−1

∑
i∈U{δiw(ĉTxi)−240

1}µ̂i, which combines soft calibration with the fitted outcomes µ̂i by flexible modeling, similar
to Ben-Michael et al. (2021) and Avagyan & Vansteelandt (2021).

As an example, if we combine the soft-calibration estimator with best linear unbiased predic-
tion µ̂i = xT

1iβ̂ + xT
2iû, γn is allowed to grow faster with n than requested in Theorem 1 under

the linear mixed-effects model, implying that θ̂bc is more robust than θ̂w against the rate require-245

ment for γn. Other choices for outcome models can also effectively reduce the left-over bias as
long as they can approximate the true outcome Eζ(yi | xi) well enough. A detailed discussion
of its asymptotic properties is deferred to §A.8 of the Supplementary Material.

3.2. Data-adaptive tuning parameter selection
To properly choose the tuning parameter γn, we propose a data-adaptive cross-fitting strategy250

that targets minimizing the mean squared error of the soft-calibration estimator θ̂w. Specifically,
we divide the data into B disjoint groups Ib, b = 1, · · · ,B. Let ĉ−k and β̂−k denote the estimator
of c∗ and β computed using the observations from all the folds except the k-th fold based on the
soft conditions with the tuning parameter γn. The estimated mean squared error will be

MSE(θ̂w; γn) =
1

B

B∑
k=1

 BN ∑
i∈Ik

δiw(ĉT
−kxi)yi

− θN
2

255

+
1

B

B∑
k=1

B2

N2

∑
i∈Ik

δiw(ĉT
−kxi)

2{yi −B(ĉ−k)xi}2 +
∑
i∈Ik

δiw(ĉT
−kxi)(yi − xT

1iβ̂−k)
2

 ,
where the unknown parameter θN is approximated by the hard-calibration estimator θ̂hc as
a proxy. Given this cross-fitting scheme, MSE(θ̂w; γn) is able to approximate the true mean
squared error with negligible bias. A similar strategy has been used by Xiao et al. (2013) for
tuning parameter selection in other contexts. We select γn by minimizing the estimated mean260

squared error of θ̂w over a discrete grid {γ∗n × 10j : j = −5, . . . , 5}, where γ∗n is a user-provided
value. Our tuning strategy involves specifying γ∗n and one candidate can be σ̂2

e/σ̂
2
u, where σ̂2

e and
σ̂2
u are the restricted maximum likelihood estimators of σ2

e and σ2
u, respectively (Golub et al.,

1979).

3.3. Cluster-specific Nonignorable Missingness265

We now consider one important extension of latent ignorability to cluster-specific nonig-
norable missingness, and another extension to causal inference in the presence of unmeasured
cluster-level confounders is presented in §B.5. Following the conventional notations for clustered
data, consider the finite population FN = {(xij , yij , δij) : i = 1, . . . ,K, j = 1, . . . , Ni}, where
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i indexes the cluster and j indexes the unit within each cluster, yij is the outcome of interest 270

for the j-th unit in cluster i, which is subject to missingness, xij ∈ Rp is the vector of observed
covariates, δij is the response indicator with value one if yij is observed and zero otherwise, and
N =

∑K
i=1Ni is the population size. The parameter of interest is θN = N−1

∑K
i=1

∑Ni
j=1 yij .

We consider the two-stage cluster sampling: in the first stage, k clusters are selected from K
clusters with cluster sampling weights di, and in the second stage, a random sample of ni units 275

is selected from each sampled cluster i with unit sampling weights Ni/ni. The sample size is
n =

∑k
i=1 ni. Assume the outcome follows the linear mixed-effects model

yij = xT
ijβ + ai + eij = xT

ijβ + zT
ija+ eij , i = 1, . . . , k, j = 1, . . . , ni,

where a = (a1, . . . , ak)
T are the latent cluster-specific random effects, and zij = si with si be-

ing the canonical coordinate basis for Rk as the cluster indicator. Here, xij , zij and a are the
counterparts of x1i, x2i and u in §2. 280

In the presence of missing data, the sample average of the observed yij even adjusted for
sampling design weights may be biased for θN due to the selection bias associated with the
respondents. To correct such selection bias, the calibrated propensity score method proposed by
Kim et al. (2016) imposes the following hard calibration constraints for both fixed effects and
cluster effects: 285

k∑
i=1

ni∑
j=1

dijδijwijxij =
k∑
i=1

ni∑
j=1

dijxij , (10)

and
∑ni

j=1 dijδijwij =
∑ni

j=1 dij for i = 1, . . . , k with dij = diNin
−1
i . The calibration con-

straints for the cluster effects may be stringent when the clusters weakly affect the outcome
and may be relaxed to the following under soft calibration

k∑
i=1

ni∑
j=1

dijδijwij =
k∑
i=1

ni∑
j=1

dij , (11)

k∑
i=1

ni∑
j=1

dijδijwijzij =
k∑
i=1

ni∑
j=1

dijzij +
k∑
i=1

ni∑
j=1

dijM
T
S xij +

ni∑
j=1

dijR
T
Szij , (12) 290

where (11) is still an exact constraint forcing the weighted estimator of the population size
to be the same as the design-weighted estimator, and (12) is an approximate calibration for
cluster effects. The adjustment in (12) relaxes the requirement of an exact calibration of clus-
ter effects, which can be beneficial when the outcome has relatively homogeneous cluster-
specific effects, that is, the ratio σ2

e/σ
2
u is large. Thus, our soft-calibration estimator of θN is 295

θ̂w = N−1
∑k

i=1

∑ni
j=1 dijδijw(ĉTxij)yij , where w(ĉTxij) is obtained by minimizing a given

loss function subject to the soft calibration constraints (10), (11) and (12).

COROLLARY 1. Under Assumptions 1(a), 3, other regularity conditions in Assump-
tion S3 of the Supplementary Material, and γn = o(n1/2q−1/2), if either the outcome
yij follows a linear mixed-effects model or Q(w) entails a correct propensity score 300

model, we have n1/2(θ̂w − θN )→ N(0, V1) as n→∞ and n/N → f ∈ [0, 1), where V1 =

limn→∞ nN
−2varp

{∑k
i=1 diψi(c

∗) | FN
}

,

ψi(c
∗) =

Ni

ni

ni∑
j=1

{B(c∗)xij,SC + δijw(c∗T0 xij + c∗T1 zij)ηij(c
∗)} , c∗ = (c∗T0 , c∗T1 )T,
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10 C. GAO ET AL.

and ηij(c∗) = yij −B(c∗)(xT
ij , z

T
ij)

T with varp(·) being the variance under the clustered sam-
pling design and {B(c∗), xij,SC} defined in §A.5 of the Supplementary Material.

The results in Corollary 1 are similar to that of Theorem 1 except that V2 under two-stage clus-305

ter sampling is negligible compared to V1 even though n/N or some cluster sampling fractions
ni/Ni are not negligible (Shao & Steel, 1999) and thus is omitted. For variance estimation, the
variance of θ̂w can be consistently estimated as V̂1 = nN−2

∑k
i=1

∑k
j=1 Ωi,jψi(ĉ)ψj(ĉ), where

Ωi,j depends on the cluster sampling scheme at the first stage, ψi(ĉ) is referred as the pseudo-
values with c∗ replaced by ĉ, and the consistency of V̂1 can be verified by standard arguments in310

Kim & Rao (2009).

4. SIMULATION STUDY

In this section, we conduct a simulation study to evaluate the finite-sample performance of
our proposed soft-calibration estimator and assess the robustness of its bias-corrected version
in the case of cluster-specific nonignorable missingness. First, we generate samples from finite315

populations using the two-stage cluster sampling mechanism, in which k = 30 clusters with
cluster sizes ni = 200 are selected from K = 2000 clusters.

We consider two generating models for yij . One is the linear mixed-effects model: yij =
xT
ijβ + λ1ai + eij with xij = (1, x1ij , x2ij)

T where β = (0, 1, 1)T, x1ij ∼ U [−0.75, 0.75],
x2ij ∼ N(0, 1), ai ∼ N(0, 1) and eij ∼ N(0, 1). The other one is a non-linear mixed-effects320

model yij = xT
ijβ + x2

1ij + x2
2ij + 0.1x†3ij + 0.1x†4ij + λ1ai + eij , where x†3ij and x†4ij are the

standardized versions of x3ij = exp(x1ij) and x4ij = exp(x2ij). We consider a logistic propen-
sity score to generate δij : δij ∼ Bernoulli (pij), where logit(pij) = xT

ijα+ λ2zi and α =
(−0.25, 1, 1)T with logit(·) being the logit-link. For illustration, we present a set of (λ1, λ2)
in Table 3 gauging the between-cluster variation of yij and δij , and additional simulation studies325

are deferred to §B of the Supplementary Material.
From §2.4, the loss function dictates the propensity score model. For assessing the double

robustness of the soft-calibration estimator, we consider two loss functions: the maximum en-
tropy balancing function, i.e., a logistic mixed-effects model for the propensity score, and the
square loss function, i.e., a linear mixed-effects model for the inverse of the propensity score.330

Next, we compute nine estimators for θN : (i) θ̂sim the simple average of the observed yij ; (ii, iii)
θ̂fix and θ̂rand, where pij is estimated with fixed or random effects for clusters; (iv-vi) θ̂hc, θ̂(SQ)

w

and θ̂(ME)
w , where wij achieves the hard calibration conditions under the maximum entropy loss

function, the soft calibration conditions under the square loss function or under the maximum
entropy loss function; (vii) θ̂bc, bias-corrected θ̂(ME)

w with µ̂ij = xT
1ij β̂ + xT

2ij û; (viii) θ̂cbps, the335

high-dimensional covariate propensity score balancing method of Ning et al. (2020); and (ix)
θ̂rcal, the high-dimensional regularized calibration method of Tan (2020).

Table 3 reports the simulation results based on 500 Monte Carlo samples. The performance
of estimators is evaluated on the basis of biases, variances, mean squared errors, and coverage
probabilities. Among all estimators, the simple average estimator θ̂sim shows large biases across340

all different scenarios. When the cluster factor is included as fixed or random effects, the bi-
ases of θ̂fix and θ̂rand are substantially reduced, while their variances remain large. The large
variances could be attributed to their overly abundant parameters associated with the cluster in-
dicators. When the random effects weakly affect outcomes (i.e., λ1 = 0.01), all soft-calibration
estimators outperform θ̂hc, indicating their ability to address the issue of over-calibration. In par-345

ticular, θ̂(SQ)
w performs better than θ̂(ME)

w under the linear mixed-effects model, which agrees with

Acc
ep

ted
 M

an
us

cri
pt

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asad016/7067736 by N

orth C
arolina State U

niversity Libraries user on 02 M
arch 2023



Biometrika style 11

Table 3. Bias (×10−2), variance (×10−3), mean squared error
(×10−3) and coverage probability (%) of the estimators under cluster-

specific nonignorable missingness based on 500 simulated datasets
θ̂sim θ̂fix θ̂rand θ̂hc θ̂(SQ)

w θ̂(ME)
w θ̂bc θ̂cbps θ̂rcal

Linear mixed-effects model with (λ1, λ2) = (0.01, 1)
Bias 21.2 0.02 0.29 0.10 0.16 0.13 0.09 0.17 0.35
VAR 0.23 1.53 1.40 0.78 0.61 0.73 0.74 0.78 0.75
MSE 45.1 1.53 1.41 0.78 0.61 0.73 0.74 0.78 0.76
CP 0.0 94.6 94.2 92.6 93.8 93.0 93.2 – –

Linear mixed-effects model with (λ1, λ2) = (0.01, 10)
Bias 5.02 0.28 0.01 0.73 0.29 0.27 0.18 0.43 7.44
VAR 0.35 26.4 22.3 4.57 1.49 1.69 2.16 5.88 0.69
MSE 2.88 26.4 22.3 4.62 1.49 1.70 2.16 5.89 6.23
CP 23.8 88.6 87.8 94.2 94.4 92.4 92.2 – –

Linear mixed-effects model with (λ1, λ2) = (0.5, 1)
Bias 30.3 0.49 1.61 0.64 1.26 1.28 0.63 0.82 2.03
VAR 2.74 10.7 10.2 9.23 9.64 9.84 9.21 10.2 9.79
MSE 94.4 10.7 10.4 9.27 9.80 10.0 9.25 10.3 10.2
CP 0.0 95.0 93.4 94.2 94.0 93.6 94.0 – –

Non-linear mixed-effects model with (λ1, λ2) = (0.01, 1)
Bias 31.6 0.10 0.38 0.92 8.75 0.03 0.11 0.09 0.59
VAR 1.50 2.42 2.24 1.96 1.72 1.69 1.71 1.71 1.86
MSE 102 2.42 2.25 2.05 9.37 1.69 1.71 1.71 1.89
CP 0.0 94.0 94.0 92.6 0.0 94.4 96.6 – –

VAR, variance; MSE, mean squared error; CP, coverage probability; We omit calcu-
lating the variance estimators for θ̂cbps and θ̂rcal because they are unavailable for the
clustered data in their R packages.

the connection between θ̂(SQ)
w and θ̂blup established in Proposition 1. However, θ̂(SQ)

w is subject
to significant bias when the outcome model is misspecified, leading to an unsatisfactory cover-
age probability, while θ̂(ME)

w still exhibits a desirable finite-sample coverage probability, which
aligns with our claim of double robustness in Theorem 1 when the propensity score is correctly 350

specified. Although the bias-corrected estimator θ̂bc has a slightly larger mean squared error than
θ̂(ME)
w when λ1 = 0.01, it performs better when the data present a larger between-cluster variation

of yij (i.e., λ1 = 0.5), which provides empirical support for the robustness of θ̂bc with respect to
the rate requirement for γn. As expected, both regularized calibration estimators θ̂cbps and θ̂rcal

have larger mean squared errors under the linear mixed-effects model since our soft calibration 355

conditions are motivated by linear mixed effects.
Overall, our proposed estimators tend to produce smaller mean squared errors while dealing

with cluster-specific missingness, irrespective of possible model misspecification of either out-
come or propensity score.

Acc
ep

ted
 M

an
us

cri
pt

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asad016/7067736 by N

orth C
arolina State U

niversity Libraries user on 02 M
arch 2023



12 C. GAO ET AL.

5. AN APPLICATION: EFFECT OF SCHOOL-BASED BMI SCREENING ON CHILDHOOD360

OBESITY

The epidemic of childhood obesity has been widely publicized (Peyer et al., 2015). Many
school districts have implemented coordinated school-based body mass index screening pro-
grams to help increase parental awareness of children’s body status and promote preventive
strategies to reduce the risk of obesity. We use a data set collected by the Pennsylvania De-365

partment of Health to evaluate the effect of the program on the annual prevalence of overweight
and obesity in elementary schools across Pennsylvania in 2007. The primary goal is to inves-
tigate the causal effect of implementing the program on reducing childhood obesity and over-
weight. Because the implementation of the policy was not randomized, it is essential to control
pre-treatment covariates for causal analysis of the effect of the policy. Furthermore, school dis-370

tricts are clustered by geographic and demographic factors. Thus, soft calibration can be used to
estimate the causal effect by correcting for cluster-specific confounding bias.

The dataset contains information on 493 elementary schools, which are clustered according
to the type of community (rural, suburban, and urban) and the population density (low, mod-
erate, and high). There are six clusters with sample size n1 = 65, n2 = 96, n3 = 89, n4 = 29,375

n5 = 104, and n6 = 4. For each school, the data consist of the treatment status Aij where
Aij = 1 if the school has implemented the policy and 0 otherwise, the outcome variable yij ,
indicating the annual prevalence of overweight and obesity in each school, and two covariates
x1ij and x2ij , the baseline prevalence of overweight children and the percentage of reduced and
free lunch, respectively. For estimation, we consider the linear mixed-effects model and the max-380

imum entropy loss function, including covariates x1ij , x2ij and the cluster intercept to model the
outcome and weights for Aij = 0 and Aij = 1, respectively.

Table 4 reports the estimated average treatment effects on the annual prevalence of overweight
and obesity along with the estimated variances and 95% confidence intervals. Without any adjust-
ment, θ̂sim shows that the policy has a significant effect in reducing the prevalence of overweight385

and obesity in schools, which may be subject to confounder bias. After adjusting for confounders
through propensity weighting or calibration, all other estimators show that the policy may mildly
reduce the prevalence of overweight. Also, θ̂hc, θ̂(ME)

w and θ̂bc provide similar estimates, but
the soft-calibration estimators yield a slightly smaller variance, which can be attributed to the
approximate calibration condition on the cluster indicator. As discussed in §C of the Supplemen-390

tary Material, the cross-fitting strategy selects two small tuning parameters as γn,A=0 = 0.052
and γn,A=1 = 0.068. It implies that the correction term on the right-hand side of (6b) is fairly
small and a nearly exact calibration should be adopted, as demonstrated by the similarities in
the calibration weights in Figure S5. Estimators θ̂cbps and θ̂rcal might not be credible when the
sparsity condition is not met, as we have shown in the simulation studies. Based on our analysis,395

the policy can reduce the average prevalence of overweight and obesity in elementary schools in
Pennsylvania, although the statistical evidence is not significant.

Table 4. The estimated average treatment effects of SBMIS on the annual overweight and obesity
prevalence in elementary schools across Pennsylvania

θ̂sim θ̂fix θ̂rand θ̂hc θ̂(ME)
w θ̂bc θ̂cbps θ̂rcal

ATE 8.71 0.41 0.43 0.55 0.53 0.54 0.28 0.51
VE 2258.8 467.8 474.5 448.5 445.7 446.0
CIs (5.77,11.66) (-0.93,1.75) (-0.92,1.78) (-0.77,1.86) (-0.78,1.84) (-0.77,1.85) – –

SBMIS, school-based body mass index screening; ATE, average treatment effects; VE, variance estimation (×10−3);
CIs, confidence intervals
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