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Utilizing stratified generalized propensity score matching to 
approximate blocked randomized designs with multiple treatment 
levels
Nathan Corder and Shu Yang

Statistics, NC State University, Raleigh, North Carolina, United States

ABSTRACT
Conducting causal inference in settings with more than one treatment level 
can be challenging. Classical methods, such as propensity score matching 
(PSM), are restricted to only a binary treatment. To extend propensity score 
methods beyond a binary treatment, generalized propensity score methods 
have been proposed, with generalized propensity score matching (GPSM) 
standing as the multi-level treatment analog to PSM. One drawback of GPSM 
is it is only capable of emulating a completely randomized trial (CRT) design 
and not the more efficient blocked randomized trial design. Motivated by the 
desire to emulate the more efficient design, we expand on GPSM estimating 
literature and develop a new estimator incorporating relevant stratifying 
variables into the GPSM framework. We examine the variance estimation 
methods available for GPSM and demonstrate how to extend the estimator 
to one where stratifying variables are included. While it would be straightfor
ward to include relevant stratifying variables as covariates in the propensity 
score estimation, our method provides for researchers to conduct retrospec
tive analyses more consistently with the prospective experiment they would 
have designed if permitted. Namely, our method permits researchers to 
approximate a stratified randomized trial as opposed to the CRT otherwise 
obtainable by GPSM. We apply our proposed method to an analysis of how 
the number of children in a household affects systolic blood pressure in 
adults. We conduct a simulation study assessing how the relationship 
between response, treatment, and strata affect the performance of our 
method and compare the results to non-stratified GPSM.
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1. Introduction

If it was possible to conduct a randomized clinical trial whenever a new question about a proposed 
treatment, exposure, or intervention was asked, the job of the researcher would be far easier. 
Randomized clinical trials, by design, guarantee treatment groups are constructed in such a way as 
to minimize differences in relevant covariates and thus minimize the potential bias incurred when 
estimating a causal effect. In a completely randomized trial (CRT) the assignment mechanism is 
consistent across the whole population. When it is expected or desirable for treatment assignment or 
outcomes to differ depending on categorical pre-treatment strata, a blocked randomized design is 
preferred. Unfortunately, in practice, researchers frequently must rely on observational data to answer 
their questions of interest as often randomized clinical trials are impractical or even impossible to 
conduct. Observational data brings with it new challenges, as the lack of randomization obfuscates 
treatment effect estimates behind potential confounding between the response and treatment assign
ment. Thankfully, this concern is not new to researchers, and a multitude of methods have been 
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proposed to address confounding in observational data. Matching estimators are one class of methods 
routinely used by researchers to address confounding concerns in observational data; see Stuart (2010) 
for a comprehensive review of the class, and within the class, the subset of propensity score matching 
(PSM) methods are arguably the most common.

PSM is based on the seminal paper of Rosenbaum and Rubin (1983), wherein the authors 
demonstrate that conditioning on the propensity score (the probability of receiving treatment 
given the set of pretreatment covariates) is sufficient to remove treatment assignment bias when 
estimating treatment effects from observational data. Despite its popularity, critiques of PSM 
have focused on its inability to emulate the clinical trial that would have been designed if 
possible. For instance, Rosenbaum and Rubin (1983) considered only the case of binary treat
ment, but often researchers are interested in either continuous treatments or the contrast 
between multiple treatments or treatment levels (see Hirano and Imbens (2004); Imbens 
(2000); Lu et al. (2001); Wu et al. (2018); Yang et al. (2016) for solutions). Here, we use binary 
treatment to indicate any treatment schema where exactly two levels of treatment exist (as 
opposed to a multinomial treatment setting where more than two levels of treatment could 
exist). The most common binary treatment setting would be the case where the researcher is 
comparing a set of observational units that did receive some treatment to a set of units that did 
not, though studies comparing two active treatments would also be considered binary. More 
recently, King and Nielsen (2019) critiqued PSM as being unable to emulate a trial design other 
than a CRT and showed how 1:1 PSM could actually increase bias if data was pruned beyond the 
point where the approximate CRT was obtained. King and Nielsen implore researchers to use 
other matching methods such as Mahalanobis matching (Rubin 1976) or coarsened exact 
matching (Iacus et al. 2012) that are better able to emulate the superior trial design of 
a blocked randomized trial. In this article, we set out to solve both critiques (multi-level 
treatments and blocked randomized design) simultaneously while still constraining ourselves 
within the familiar class of PSM methods.

In our review of the literature, we have found no method for PSM that has been both extended to 
multi-level treatments and approximated the blocked randomized trial design that motivated this 
article. Methods outside of the PSM class have achieved, to some extent, one or both of the goals set 
out by King and Nielsen (e.g., Iacus et al. 2011; Imai and Ratkovic 2014; Lopez and Gutman 2017; 
Lunceford and Davidian 2004), but our motivation here is to develop a method within the PSM class to 
borrow the common understanding of traditional PSM on binary treatments which may aid adoption 
by researchers. 

Related Works. In the context of our intent to develop a PSM-based method addressing both of 
King and Nielsen’s critiques of traditional PSM, it is still important to note the important 
contributions of the example alternatives and demonstrate how close they each come to our goal. 
Lunceford and Davidian (2004) demonstrate doubly-robust methods and stratification methods for 
estimating causal effects in a binary treatment setting, but the stratification implemented is on the 
propensity score and not on specified pre-treatment strata. Iacus et al. (2011) introduce coarsened 
exact matching which will ensure (to the researcher’s level of tolerance) important strata are 
matched exactly and mimic a blocked randomized trial, but it has not been extended to multiple 
treatments. Imai and Ratkovic (2014) target the estimation of propensity scores in such a manner 
to optimize balance in the covariates, and feasibly, the method could be tailored to make strata 
balancing a required part of the optimization. Furthermore, they propose how their method might 
be extended to multiple treatments. On the other hand, the extension to multiple treatments goes 
unexamined in their paper, and they intentionally avoid applications to matching methods. 
Finally, Lopez and Gutman (2017) do focus on matching methods in multi-level treatment settings, 
but any guarantees that important strata will be balanced are not available. 
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We build on the multi-level treatment effect estimation results (Yang et al. 2016) devised via general
ized propensity score matching (GPSM) and weak unconfoundedness. We introduce to their method the 
requirement that the GPSM matched pairs must be constrained within the same level of pretreatment 
strata. This approach is motivated as an attempt to emulate (in the observational setting) the blocked 
randomized trial design often seen in Phase I/II dose-finding studies within the pharmaceutical industry. 
Often these earlier phase trials have multiple doses of the same treatment randomized to subjects within 
relevant pretreatment strata (such as measures of disease severity, geography, or race). When clinical trials 
move into later stages, study sponsors may reduce the analysis of treatments to a binary setting of the 
most successful dose from Phase I/II versus standard of care, though the stratified randomization is likely 
to remain. Here, stratified GPSM still may provide value, as the binary treatment setting is a special case of 
the generalized propensity score. Motivated to emulate the stratified blocked randomized trial designs, we 
propose stratified GPSM as a tool to design observational studies. Like non-stratified GPSM, stratified 
GPSM still estimates the generalized propensity score at the population level, but in the matching step, we 
constrain matches only to units within the same strata. We establish theoretical guarantees of stratified 
GPSM including valid inference on average treatment effects and an asymptotically normal estimator. 
Our findings also demonstrate the stratified GPSM approach is capable of reducing variance among 
multiple treatment effect contrasts beyond the results from non-stratified GPSM when the chosen strata 
are relevant to the treatment assignment mechanism. Our results are further bolstered by the recent 
findings of Wang et al. (2021) who showed in the experimental/clinical trial setting that when an 
estimator is consistent and asymptotically normally distributed under simple randomization, then it is 
consistent and asymptotically normally distributed under stratified randomization with equal or smaller 
asymptotic variance. As non-stratified GPSM has already been shown to be consistent and asymptotically 
normally distributed under standard continuity assumptions, the introduction of a stratifying variable to 
the matching processes to mimic a stratified random sample should also lead to a consistent and 
asymptotically normally distributed estimator with equal or smaller variances to be expected.

This article is laid out as follows. In Section 2, we begin with a review of potential outcomes 
framework and its extension into multiple treatments. In Section 3, we detail the usage of GPSM to 
construct causal effect estimates and characterize their application in the presence of stratifying 
variables. In Section 4, we utilize simulation results to examine the performance of stratified GPSM 
over non-stratified GPSM. Also in this section, we analyze the risk associated with stratifying on non- 
relevant variables. In Section 5, we examine stratified GPSM’s performance in a real-world setting 
utilizing the National Health and Nutrition Examination Survey data. We conclude in Section 6 with 
a discussion of stratified GPSM’s applicability in light of our simulation and real-world data findings 
and make recommendations for further study.

2. Causal inference for multiple-level treatments

2.1. Potential outcomes

The concept of potential outcomes is ingrained in the causal inference literature (Rubin 1974). We 
mimic the same framework but with the modifications necessary to extend the potential outcomes to 
multiple treatments (Imbens 2000; Lechner 2001; McCaffrey et al. 2013). Let Wi represent the 
treatment for individual i from the set of available treatments W ¼ f1; . . . ;Tg, where T � 2. Let 
YiðwÞ be the potential response values for individual i at each of w 2 W treatment levels. We assume 
responses within and between units do not interfere, following the stable-unit-treatment-value 
assumption of Rubin (1980) Commonly, only one treatment level is observable for any individual at 
any time, so we let Yi ¼ YiðWiÞ be the realized and observed response. Allow Xi to be a vector of 
pretreatment covariates potentially relevant to the assignment of Wi. Finally, let Si be a vector of 
stratifying, pre-treatment, categorical variables which may or may not affect treatment assignment but 
are anticipated to affect the response. 
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Remark 1. Our notation may imply Si to be composed of a separate set of categorical variables than Xi, 
but this is not necessarily the case. We do require Si to be categorical, but the values of Si may be 
derived from one or more covariates in X. For instance, if investigating a medical treatment, Si might 
contain a categorical variable for patient sex, but might also contain a variable for disease prognosis 
(i.e.: Si;severe 2 poor; fair; goodf g) derived from pre-treatment lab values contained in Xi.

We next assume the observed set of data fðXi;Wi; Si;YiÞg
N
i¼1 are independent draws from the 

population of interest. Our focus in the paper is on average treatment effects between multiple 
treatment levels. Because average treatment effect in most causal inference literature refers specifically 
to the effect of being treated versus not being treated, we will from here-onward instead use the term 
average treatment contrast to refer to the average treatment effect between any two treatment levels w 
and w0 and define the average treatment contrast 

τðw;w0Þ ¼ E Yiðw0Þ � YiðwÞ½ �: (1) 

Note this expectation is taken at the population level. Under the potential outcomes framework, this 
expectation exists even for individuals not treated with either treatment level w or w0. Commonly, if 
researchers want to estimate a treatment contrast, they might do so by including only patients in either 
treatment group (Lechner 2001) in a pairwise manner. We will let 

τPAIRðw;w0Þ ¼ E Yiðw0Þ � YiðwÞjWi 2 fw;w0g½ �

denote the average treatment contrast estimated via pairwise conditional estimation. While 
convenient, pairwise conditional estimation of average treatment contrasts poses two problems. 
First, the estimates are non-comparable in that the populations are not the same for 
τPAIRðw;w0Þ and τPAIRðw0;w00Þ. Secondly, the estimates are non-transmutable in that 
τPAIRðw;w0Þ � τPAIRðw0;w00Þ�τPAIRðw;w00Þ. Of these two problems, the first is more important 
as it risks a fundamental change to the estimand that may go unnoticed by the researcher. 
Recall under the potential outcomes framework, the (population) ATE is defined in (1) as the 
expected difference between the counterfactuals YiðwÞ and Yiðw0Þ – which is to say the expected 
difference at the population level between the responses when all subjects are treated with W ¼
w and the responses when all subjects are treated with W ¼ w0. When estimating the popula
tion ATE via pairwise treatment contrasts, each pairwise ATE changes the population of 
interest only to subjects observed treated with only the treatment levels in the current contrast. 
To put this in practical terms suppose a doctor wanted to know if a particular surgical 
intervention was superior to some prescription-based (Rx) therapy. The pairwise contrast 
τPAIRðSurgery;Rx) ignores all counterfactuals of patients in the population and sample who 
had been eligible for therapy but who have not yet undergone either therapy. Combine this 
problem with the second (that estimates are non-transmutable) it is conceivable that the 
collection of pairwise contrasts could lead to a paradoxical outcome where every therapy is 
better than at least one other in some sub-population. Since the population of patients in each 
pairwise contrasts changes, it would be possible that all three statements below are true: 

1. Surgery is better than Rx among patients with either treatment.
2. Rx is better than doing nothing in patients who did not undergo surgery.
3. Doing nothing is better than surgery among patients that did not undergo Rx therapy.

Unless careful attention is paid to the reshuffling of populations under examination in each 
pairwise contrast, the pairwise results might be used to inform a (combined) population-level 
decision to change nothing when their may actually be a superior treatment protocol at the 
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(combined) population level. Therefore, we must find a way to estimate potential outcomes for 
all treatments for all individuals simultaneously in order to take the estimate at the population 
level. 

Remark 2. We include pairwise PSM as a juxtaposing method only because of its common use in 
practice. Yang et al. (2016) has already demonstrated non-stratified GPSM’s superiority to pairwise PSM.

2.2. Generalized propensity scores

The approach put forth in Rosenbaum and Rubin (1983) is a good starting point for estimating 
multiple potential outcomes. In their binary treatment setting they defined the propensity score as 
eðxÞ ¼ PrðWi ¼ 1jXi ¼ xÞ. The authors show under strong unconfoundedness (i.e., 
Yið1Þ;Yið0Þ??WijXi where ?? denotes conditional independence) and sufficient overlap (i.e., eðxÞ is 
bounded away from 0 and 1 for all x such that f ðxÞ > 0) that 

E E YjW ¼ 1; eðXÞf g � E YjW ¼ 0; eðXÞf gjeðXÞ½ � ¼ E Yð1Þ � Yð0Þf g;

thus reducing the need to condition on the full covariate space X to only the scalar balancing score 
eðXÞ. Imbens (2000) expanded the propensity score definition to allow multiple treatments under the 
Generalized Propensity Score (GPS), of which the binary propensity score eðXÞ is a special case:

Definition 1 (Generalized Propensity Score). The generalized propensity score is the probability of 
receiving treatment level w conditional on the pretreatment covariates x: 

pðwjxÞ ¼ PrðWi ¼ wjXi ¼ xÞ: (2) 

Under the GPS, strong unconfoundedness would require Yið1Þ; . . . ;YiðTÞf g??WijXi, which is 
a complex assumption to make when the number of treatment levels is high. It requires the researcher 
to assume their available covariates are sufficient to remove all confounding between treatment 
assignment and all T potential outcomes simultaneously. To gather all relevant covariates informative 
of any treatment assignment may drastically increase the number of measured covariates. Similarly, 
unlike the binary case where eðXÞ is a scalar balancing score, the analogous form of conditioning on 
the GPS in a multiple treatment level setting would result in 

E E Yð1Þ � Yð0Þj pð1jXÞ; . . . ; pðT � 1jXÞf g½ �ð Þ:

Ironically, in the setting where there are more treatment levels than covariates, matching on the GPS 
while requiring strong unconfoundedness would actually increase the dimensionality of the problem 
instead of decreasing it. Thankfully, Imbens (2000) also introduced the concept of weak unconfound
edness to retain the benefits of conditioning on a scalar balancing score. We adopt the weak 
unconfoundedness assumption here-onward. To assume weak unconfoundedness, let DiðwÞ 2
f0; 1g be treatment indicators constructed as 

DiðwÞ ¼
1 if Wi ¼ w;
0 otherwise:

�

Assumption 1 (Weak unconfoundedness). Let treatment level w be weakly unconfounded with 
response YðwÞ "w conditional on the pretreatment covariates as in DiðwÞ??YiðwÞjXi.

Under weak unconfoundedness, the expected value for any individual for any treatment can be 
obtained by 

E YiðwÞf g ¼ E E YijWi ¼ w; pðwjXiÞf g½ �; (3) 

and the average treatment contrast becomes 
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E Yiðw0Þ � YiðwÞf g ¼ E E YijWi ¼ w0; pðw0jXiÞf g½ � � E E YijWi ¼ w; pðwjXiÞf g½ �: (4) 

Assuming weak unconfoundedness (instead of strong unconfoundedness) importantly limits the focus 
of estimation to only one conditional on a scalar balancing equation, a problem well suited for 
matching-based estimators.

As in the binary propensity score case, GPS must also assume sufficient overlap for equation (3) to 
be estimable. Otherwise, there will be points in the covariate space where E YiðwÞ½ � can not exist for one 
or more treatment levels. To extend the sufficient overlap assumption to the GPS notation, we make 
the following assumption.

Assumption 2 (Sufficient Overlap). pðwjxÞ > 0 " w; x.

3. Propensity score matching for multi-level treatments

3.1. Generalized propensity score matching

GPSM (Yang et al. 2016) extends traditional PSM on binary treatments to multi-level treatments. Like 
other matching methods, GPSM seeks to impute the non-observed potential outcomes by matching 
units in one treatment group to others with similar covariates in the other treatment group(s). The 
matching is done in such a fashion as to minimize covariate imbalance among the matches. Unlike 
other PSM-based methods for multi-level treatment contrast estimation that either match pairwise 
between treatments (Lechner 2001) or match using all estimated GPS simultaneously (Rassen et al. 
2013, 2011; Tu et al. 2013), GPSM uses the weak unconfoundedness assumption to preserve the 
dimension reduction features seen in PSM for binary treatments to a scalar balancing score while still 
allowing for comparable and transmutable treatment contrast estimates. To do so, GPSM begins the 
same way as other GPS-based methods, by positing a model for GPS in equation (2) and simulta
neously estimating all GPS for all treatments and all individuals. This is commonly done via 
a multinomial regression model, though other models can be incorporated. Matching takes place 
with replacement along the GPSM matching function 

mGPSðw; pÞ ¼ arg min
j:Wj¼w

jjpðwjXjÞ � pjj (5) 

leading to an estimate for equation (3) as 

ŶiðwÞ ¼ YmGPSðw;pðwjXiÞÞ ¼
def YðwÞGPSi

; (6) 

where ¼def is used to define an equivalent shorthand representation. In words, GPSM imputes the 
unobserved potential outcome for unit i and treatment w as the observed outcome for unit j where 
Wj ¼ w and unit j has the closest estimated GPS for treatment level w to the estimated GPS of unit i for 
treatment level w.

Given the imputed potential outcome values via GPSM through equation (6), we can define the 
GPSM treatment effect estimate for a given contrast as 

τ̂GPSMðw;w0Þ ¼ N � 1
XN

i¼1
Ŷ iðw0Þ � ŶiðwÞ
� �

¼ N � 1
XN

i¼1
Yðw

0Þ

GPSi
� YðwÞGPSi

n o
:

Note that the index i is over the whole population and not just the subset where Wi 2 ðw;w0Þ. This 
means all treatment contrast estimates share the same support and are thus directly comparable and 
transmutable. It also means model dependence increases as there is further reliance on a correctly 
specified GPS model when individuals in neither treatment group being contrasted are contributing to 
the treatment effect estimate. Yang et al. (2016) found the performance of GPSM deteriorates when the 
GPS model is incorrectly specified. We continue forward assuming the GPS model is correct.
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Assumption 3 (Correctly specified GPS model). Let p̂ðwjXi; θ̂Þ be the estimated GPS model under 
a specified parameterization θ. We assume p̂ðwjXi; θ̂Þ is consistent for pðwjXiÞ.

3.2. Stratified GPSM

One of the critiques in King and Nielsen (2019) of traditional PSM on binary treatments is that at some 
point as more and more bad matches are pruned, PSM approximates a CRT, and any further pruning 
will increase the imbalance. Even when no pruning of bad matches is done, Wang (2020) highlights 
PSM can still increase imbalance in covariates, noting in practice, when a covariate is originally near 
balanced, PSM is more likely to worsen its balance rather than to improve it. This feature is of 
particular concern if we return to our motivating example of a hypothetical Phase I/II dose-finding 
study where the intended randomized clinical trial would have randomized within relevant pretreat
ment strata. If pretreatment strata are already balanced at the population level, pairs matched via PSM/ 
GPSM may cross strata and subsequently increase imbalance. To control for this risk, we propose 
modifying GPSM to force matches to be constrained by desired prespecified strata, in a manner we 
term stratified GPSM.

Our method is not the first attempt to formalize the inclusion of stratifying variables into a PSM- 
based method. Included within the approach of Rubin and Thomas (2000) is a method by which 
researchers can deploy PSM while also matching on a set of special prognostic variables. In their work, 
PSM’s role was limited to reducing the set of candidate matches (via a caliper) prior to a Mahalanobis 
match on the prognostic variables. Moreover, the combination of the two matching methods (PSM 
and Mahalanobis matching) was primarily done as a preprocessing step to obtain a matched sample 
for some subsequent causal analysis to utilize. Nonetheless, if one were to allow those prognostic 
variables to only be categorical and the matching results were used as the primary causal analysis 
instead of only a preprocessing step, one would arrive at a method similar in nature to our own about 
to be discussed. This application of Rubin and Thomas (2000) would better emulate a blocked 
randomized design for the binary treatment setting than would traditional PSM, though it does not 
address other critiques in King and Nielsen (2019) such as what would happen when observations are 
pruned. As pairwise comparisons of treatment contrasts under a multinomial treatment setting would 
necessitate removing observations not treated with either level of treatment within the contrast. As 
a result, an estimate of the population-level treatment effect can not be performed under pairwise 
comparisons of a multinomial treatment. Thus, if a population-level treatment effect estimate is 
required, further work building on Rubin and Thomas (2000) needs developed.

To implement stratified GPSM, we replace the GPSM matching function in equation (5) with the 
stratified GPSM matching function 

mSTRATðw; p; sÞ ¼ arg min
j:Wj¼w;Sj¼s

jjpðwjXjÞ � pjj (7) 

and equation (6) with 

ŶiðwjSiÞ ¼ YmSTRATðw;pðwjXiÞ;SiÞ ¼
def YðwjSiÞ

STRATi
: (8) 

such that ŶiðwjSiÞ is the imputed value of YiðwÞ under its observed strata Si. The inclusion of the 
conditioning on Si is for notational purposes only and is used to signify that the stratified GPSM 
estimate is constraining the set of available match candidates to those that are observed with the same 
level of strata as Yi. The notational addition is only relevant for the estimated value ŶðwjSiÞ where Si is 
controlling the available matches. The potential outcomes Yið1Þ; . . . ;YiðTÞf g remain unchanged. 
Note the GPS model pðwjxÞ is still constructed at the population level and not impacted by strata. 
This reduces the need to construct multiple propensity models covering different sub-populations. 
The choice to not recalculate the GPS model within each stratum has other advantages which will 
become evident in Section 3.2.1.
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Once imputed potential outcomes are obtained, we can estimate the average treatment effect for 
different treatment contrasts via stratified GPSM 

τ̂STRATðw;w0Þ ¼ N � 1
XN

i¼1
Ŷiðw0jSiÞ � ŶiðwjSiÞ
� �

¼ N � 1
XN

i¼1
Yðw

0 jSiÞ
STRATi

� YðwjSiÞ
STRATi

n o
:

This estimator is easy to implement in practice and functions similarly to placing a caliper on the 
GPSM matching function where pairs are penalized with an added distance of 1 if the candidate unit 
is from a different strata than the unit needing imputed.

3.2.1. Asymptotic distribution and variance estimation
Because of our choice to not recalculate the GPS model within each stratum, variance estimation of 
τ̂STRAT is made much simpler. Following Yang et al. (2016), we introduce the following assumptions: 

Assumption 4. We have a random sample of size N from a large population

Assumption 5. Let μðw; x; sÞ be the conditional response means given the treatment, the covariates, 
and specified strata. X has a continuous distribution with compact support X with a continuous 
density function. μðw; x; sÞ is Lipschitz-continuous in x. E jYij

2þδ
jWi ¼ w; pðwjXiÞ ¼ p; Si ¼ s

n o
is 

uniformly bounded for some δ > 0.

Assumption 6. Let �μðw; p; sÞ be the conditional response means given the treatment, the GPS, and 
specified strata. pðwjXiÞ has a continuous distribution with compact support p; p

h i
with a continuous 

density function. �μðw; p; sÞ is Lipschitz-continuous in p. E jYij
2þδ
jWi ¼ w; pðwjXiÞ ¼ p; Si ¼ s

n o
is 

uniformly bounded for some δ > 0.

Assumption 4 ensures we have a sample of sufficient size to evaluate the asymptotic result and are 
not constrained by finite population concerns. Because components of the variance are calculated at 
the strata-treatment level, a larger N will be needed to satisfy Assumption 4 in stratified GPSM than in 
the non-stratified setting such that there are still no finite populations concerns in the smallest strata- 
treatment combination. Assumption 5 is used to invoke the central limit theorem when balance on 
covariates is achieved. Likewise, Assumption 6 is used to establish the limiting distribution of the 
stratified GPSM via the central limit theorem. Our introduction of a requirement to match within 
selected pretreatment strata has no effect on Assumption 1 or 2, because we still estimate the GPS at 
the population level. Assumption 3 does change from Yang et al. (2016), replacing μðw; xÞ, the 
conditional response mean given the covariates, with μðw; x; sÞ Similarly, Assumption 4 must replace 
�μðw; pÞ with �μðw; p; sÞ. The key finding here, however, is the continuity requirement in each assump
tion was within x and p respectively. This means the introduction of strata does not violate any 
assumptions underlying the limiting distribution of non-stratified GPSM. Thus, it is straight forward 
to extend the findings of Yang et al. (2016) to stratified GPSM with only need to make the appropriate 
notational changes to index the finite set of strata. 

Theorem 1. Under Assumptions 1–6, the stratified GPSM estimator is root-N consistent and asymp
totically normal, 
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N � 1=2 τ̂STRATðw;w0Þ � τðw;w0Þf g ! Nð0; σ2
STRATðw;w

0ÞÞ

in distribution as N !1, where 

σ2
STRATðw;w0Þ ¼ EX;S �μðw0; pðw0jXiÞ; SiÞ � �μðw; pðwjXiÞ; SiÞ � τðw;w0Þf g

2� �

þEX;S �σ2ðw; pðwjXiÞ; SiÞ � 3=ð2pðwjXiÞÞ � pðwjXiÞ=2f g½ �

þEX;S �σ2ðw0; pðw0jXiÞ; SiÞ � 3=ð2pðw0jXiÞÞ � pðw0jXiÞ=2f g½ �

(9) 

with �σ2ðw; p; sÞ ¼ V YjW;p;S Wi ¼ w; pðwjXiÞ ¼ p; Si ¼ s½ � under the true GPS model.

By forcing matches within relevant strata, we would expect in many instances for variability in Y to 
improve, in much the same way. Wang et al. (2021) showed to be true for experimental data when 
applying a consistent estimator to data derived from a stratified randomization scheme to that of 
a simple randomization scheme. In fact, in stratified GPSM, if the inequality �σ2fw; pðwjXiÞ; Sig �

�σ2fw; pðwjXiÞg does hold when Si is derived based on some variables in Xi, then the inequality 
σ2

STRATðwÞ � σ2
NON� STRATðwÞ will hold as well. See the Appendix for a proof.

Commonly, the true GPS model is not known and must be estimated. Suppose we let θ parameter
ized the proposed estimated GPS model as in Assumption 3 be estimated by p̂ðwjXi; θ̂Þ. Let Iθ be the 
information matrix from estimating θ via the chosen GPS model and 

τ̂STRAT;θ̂ðw;w
0Þ ¼ N � 1

XN

i¼1
Yðw

0 jSiÞ

STRATi;θ̂
� YðwjSiÞ

STRATi;θ̂

n o
:

be the estimated stratified GPSM treatment contrast estimate under θ̂ and 

YðwjSiÞ

STRATi;θ̂
¼ YmSTRATðw;pðwjXi;θ̂Þ;SiÞ

:

Also define cðw;w0Þ as 

cðw;w0Þ ¼ E Cov Xi; μðw0;Xi; SiÞjpðw0jXi; θÞf g � p0ðw0jXi; θÞ=pðw0jXi; θÞ½ ��

E Cov Xi; μðw;Xi; SiÞjpðwjXi; θÞf g � p0ðwjXi; θÞ=pðwjXi; θÞ½ �

where p0ðwjXi; θÞ denotes the derivative of pðwjXi; θÞ. 

Theorem 2. Under Assumptions 1–6, the stratified GPSM estimator with the estimated GPS is root-N 
consistent and asymptotically normal, 

N � 1=2 τ̂STRAT;θ̂ðw;w
0Þ � τðw;w0Þ

n o
! Nð0; σ2

STRAT;θ̂ðw;w
0ÞÞ

in distribution as N !1, where σ2
STRAT;θ̂

ðw;w0Þ ¼ σ2
STRATðw;w0Þ � cðw;w0ÞTIθcðw;w0Þ.

Our estimator of σ2
STRAT;θ̂

ðw;w0Þ follows Abadie and Imbens (2016) and Yang et al. (2016) but 
where responses were previously imputed using only the GPS and covariates, the imputed values must 
be constrained within strata. Most importantly, in estimating the covariance contributing to cðw;w0Þ
and the within treatment variance �σ2ðw; pðwjXiÞ; SiÞ, the estimation matches within treatment and 
within strata as in 

dCov Xi; μðw;Xi; SiÞjpðwjXi; θ̂Þ
n o

¼
1

L � 1

X

j2SLði;θ̂Þ

Xj �
1
L

X

k2SLði;θ̂Þ

Xk

0

@

1

A Yj �
1
L

X

k2SLði;θ̂Þ

Yk

0

@

1

A;

and 
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�̂σ2ðw; pðwjXi; θ̂Þ; SiÞ ¼
1

L � 1

X

j2SLði;θ̂Þ

Yj �
1
L

X

k2SLði;θ̂Þ

Yk

0

@

1

A

2

;

where dCov Xi; μðw;Xi; SiÞjpðwjXi; θ̂
n o

estimates CovðXi; μðw;Xi; SiÞjpðwjXi; θ, �̂σ2ðw; pðwjXiÞ; SiÞ

estimates �σ2ðw; pðwjXiÞ; SiÞ, and SLði; θÞ indexes a set of L nearest neighbor matches for unit i within 
treatment and strata. SLði; θÞ is defined 

SLði; θÞ ¼ j ¼ 1; . . . ;N : Wj ¼Wi; Sj ¼ Si;
�

X

k:Wk¼Wi;Sk¼Si

Ið�Þ jpðWi jX1 ; θÞ � pðWkjXk; θÞj � jpðWi jXi ; θÞ � pðWjjXj; θÞjf g�;

where Ið�Þ is an indicator function returning 1 if the given condition ð�Þ is true and 0 if false. The 
resulting estimator for the variance of σ2

STRAT;θ̂
ðw;w0Þ is thus 

σ̂2
STRAT;θ̂

ðw;w0Þ ¼
PN

i¼1
Yðw

0 jSiÞ

STRATi;θ̂
� YðwjSiÞ

STRATi;θ̂

nh
� N � 1P

N

i¼1
ðYðw

0jSiÞ

STRATi;θ̂
� YðwjSiÞ

STRATi;θ̂
Þ

�2
#

þ
PN

i¼1

�̂σ2
ðw; pðwjXi; θ̂Þ; SiÞ � 3=ð2pðwjXi; θ̂ÞÞ � pðwjXi; θ̂Þ=2

n oh i

þ
PN

i¼1

�̂σ2
ðw0; pðw0jXi; θ̂; θ̂Þ; SiÞ � 3=ð2pðw0jXi; θ̂ÞÞ � pðw0jXi; θ̂Þ=2

n oh i

� ĉðw;w0ÞTIθĉðw;w0Þ;

(10) 

where 

ĉðw;w0Þ ¼ N� 1
XN

i¼1

XS

s¼1
Ið�ÞðSi ¼ sÞ dCovðXi; μðw0;Xi; sÞjpðw0jXi; θ̂ÞÞ � p0ðw0jXi; θ̂Þ=pðw0jXi; θ̂Þ

n o
�

h

dCovðXi; μðw;Xi; sÞjpðwjXi; θ̂ÞÞ � p0ðwjXi; θ̂Þ=pðwjXi; θ̂Þ
n oi

:

4. Simulation study

To evaluate the extent to which constraining GPS matches to within pretreatment strata affects the 
precision and accuracy of treatment contrast estimates, we chose to emulate the simulation set-up of 
Yang et al. (2016) but with the addition of a stratifying variable introduced with varying levels of 
dependence on both the response and propensity scores. We examine the differences in stratified 
GPSM and non-stratified GPSM in the settings where

1. Y and W depend on S
2. Y??S but W depends on S
3. Y??S and W??S.
We furthermore seek to confirm the effect of Stratified GPSM on the relevant strata variable beyond 

what might occur from stratifying on random noise. For the remainder of our simulation results, we 
will abbreviate Stratified GPSM as (STRAT), non-stratified GPSM as (NON-STRAT), and randomly 
stratified GPSM as (RAND).

In each of the three design settings we construct a finite population ðX;W; S;YÞ of size N = 100,000 
and take samples of size n = 2,000. Within the population ðX1i;X2i;X3i;XSiÞ are multivariate normal 
with means (1,2,1,1) and covariance matrix 
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�X ¼

1 0:7 0:4 0:1
0:7 2 1 � 1
0:4 1 1 � 0:5
0:1 � 1 � 0:5 1

0

B
B
@

1

C
C
A:

Stratifying variable Si is derived from XS;i as 

Si ¼

1 if XS;i < � 0:5
2 if � 0:5< ¼ XS;i < 0:5
3 if 0:5< ¼ XS;i:

8
<

:

When evaluating STRAT, S ¼ ðSiÞ
N
i¼1. When evaluating NON-STRAT, S ¼ ð1ÞNi¼1. When evaluat

ing RAND, S ¼ ðS�i Þ
N
i¼1, where S�i is a discrete uniform variable drawing from f1; 2; 3g. Additional 

covariates X4i,U½� 3; 3�, X5i,χ2ð1Þ, and X6i,Bernoullið0:5Þ are also generated, resulting in 
XT

i ¼ ð1;X1i;X2i;X3i;X4i;X5i;X6i;XSiÞ. Treatment groups are formed via multinomial regression 

Dið1Þ;Dið2Þ;Dið3ÞÞ,Multinom ðpð1jXiÞ; pð2jXiÞ; pð3jXiÞÞ;

where DiðwÞ ¼ 1 indicates unit i belongs to treatment group Wi ¼ w and 

pðwjXiÞ ¼ expðXT
i βwÞ=

X3

w0¼1
expðXT

i βw0 Þ

with parameter vectors βT
1 ¼ 0:5� ð1; 0; 0; 0; 0; 0; 0; γ1Þ, βT

2 ¼ 0:1� ð0; 1; 1; 1; 1; 1; 1; γ2Þ, 
βT

3 ¼ 0:1� ð0; 1; 1; 1; � 1; � 1; � 1; γ3Þ, and γT ¼ ðγ1; γ2; γ3Þ is the set of coefficients controlling 
the impact of the stratifying variable XS on the propensity scores. The outcome YiðwÞ ¼
XT

i αw þPi where Pi,Nð0; 1Þ, αT
1 ¼ ð0; 1; 1; 1; � 1; 1; 1; η1Þ, αT

2 ¼ ð0; 2; 1; 3; 2; 1; 1; η2Þ, 
αT

3 ¼ ð0; 3; 1; 2; � 3; � 1; � 2; η3Þ, and ηT ¼ ðη1; η2; η3Þ is the set of coefficients controlling the 
impact of the stratifying variable XS on Y . Each simulation setting is replicated 2,000 times. 
Within each simulation we evaluate bias, MSE, and coverage under both the naive and 
corrected variance estimates. By the naive variance estimate we mean the estimate based on 
Abadie and Imbens (2006) only taking into account the number of times an observation is 
used in matching. By the corrected we mean the variance estimate derived in Section 3.2.1.

4.1. Simulation setting: Y and W depend onS

Let γT ¼ ð0; � 2; 2Þ and ηT ¼ ð2; 1; � 2Þ. Under these settings, the population level treatment, strata, 
and response levels are displayed in Table 1. Note that while the marginal distributions can be 
approximately considered uniform among treatments and strata, within strata or treatments, the 
distributions are not uniform.

For the results depicted in Table 2, the same pattern emerges for all three treatment contrasts. In all 
cases, STRAT, NON-STRAT, and RAND are all approximately unbiased and well covered under the 
corrected variances. Under the naive variance estimate, all methods are over-covered with STRAT 

Table 1. Population share and average response by treatment and strata for Setting 1.

% of Population Average Response

Strata W = 1 W = 2 W = 3 Total W = 1 W = 2 W = 3 Total

S = 1 11.8% 11.3% 7.9% 31.0% 3.652 7.620 5.625 5.606
S = 2 13.2% 11.9% 13.0% 38.1% 7.381 11.365 6.155 8.207
S = 3 9.6% 7.8% 13.5% 30.9% 10.843 14.877 6.916 10.144
Total 34.6% 31.0% 33.4% 100.0% 7.080 10.882 6.332 8.001
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being the closest to nominal coverage under the naive estimate each time. Likewise, Stratified GPSM 
has the smallest MSE in all contrasts by 12–17%. Interestingly, conducting GPSM under random strata 
performed reasonably well. This observation will be addressed in more detail in Section 4.4.

4.2. Simulation setting: Y??S but W depends onS

Let γT ¼ ð0; � 2; 2Þ and ηT ¼ ð0; 0; 0Þ. As the choice of γ is the same between Simulation Setting 1 and 
Simulation Setting 2, the percentage of the population in each treatment/strata is the same as Table 1; 
however, the changes in η cause an update in the response distribution as displayed in Table 3. Despite 
no remaining explicit relationship between Y and S, there is still a clear pattern observed where Y 
tends to be greater for higher strata. This would suggest that even without an explicit link between the 
response and the strata, STRAT still may provide value over NON-STRAT. From the results in Table 4 
that does prove true.

Table 2. Treatment contrast results when Y and W depend on S.

Treatment Contrast Method Bias MSE Coverage (Naive) Coverage (Corrected)

τð1; 2Þ ¼ STRAT 0.007 0.038 96.8% 94.3%
2.98 NON-STRAT 0.009 0.046 99.2% 95.5%

RAND 0.003 0.045 99.4% 95.3% 

τð1; 3Þ ¼ STRAT 0.022 0.042 98.1% 94.7%
−2.48 NON-STRAT 0.013 0.047 98.7% 95.0%

RAND 0.023 0.048 98.5% 94.2% 

τð2; 3Þ ¼ STRAT 0.015 0.079 96.4% 94.8%
−5.46 NON-STRAT 0.004 0.092 97.7% 94.9%

RAND 0.021 0.097 97.7% 94.0%

Table 3. Population share and average response by treatment and strata for Setting 2.

% of Population Average Response

Strata W = 1 W = 2 W = 3 Total W = 1 W = 2 W = 3 Total

S = 1 11.8% 11.3% 7.9% 31.0% 3.954 7.795 5.482 5.750
S = 2 13.2% 11.9% 13.0% 38.1% 5.400 10.376 8.190 7.908
S = 3 9.6% 7.8% 13.5% 30.9% 6.642 12.790 11.316 10.231
Total 34.6% 31.0% 33.4% 100.0% 5.260 10.041 8.795 7.958

Table 4. Treatment contrast results when Y??S but W depends on S.

Treatment Contrast Method Bias MSE Coverage (Naive) Coverage (Corrected)

τð1; 2Þ ¼ STRAT 0.006 0.032 96.8% 94.3%
3.98 NON-STRAT 0.006 0.038 98.9% 95.1%

RAND 0.003 0.037 98.9% 94.7% 

τð1; 3Þ ¼ STRAT 0.015 0.034 98.5% 95.4%
1.51 NON-STRAT 0.008 0.036 99.0% 94.9%

RAND 0.021 0.036 99.2% 94.9%

τð2; 3Þ ¼ STRAT 0.009 0.070 96.7% 95.1%
−2.46 NON-STRAT 0.002 0.076 98.0% 95.5%

RAND 0.018 0.079 98.1% 95.1%
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Again, STRAT, NON-STRAT, and RAND are all approximately unbiased and well covered under the 
corrected variances. Under the naive variance estimate, all methods are over-covered with STRAT being 
the closest to nominal coverage under the naive estimate each time. Stratified GPSM again has the smallest 
MSE in all contrasts, but this time the gain over Non-Stratified GPSM has shrunk to 6–15%. RAND 
continues, confoundingly, to perform reasonably well, even slightly outperforming Non-Stratified GPSM.

4.3. Simulation setting: Y??S andW??S

In our final simulation setting, we let γT ¼ ð0; 0; 0Þ and ηT ¼ ð0; 0; 0Þ. The change in γ results in new 
treatment, strata, and response distributions as shown in Table 5.

Compared to the marginal distributions in Simulation Setting 1 (Table 1), the marginal strata 
distribution is mostly unchanged; however, the treatment distribution now heavily favors treatment 2 
at the expense of treatment 3. The variability in average response across strata has also increased 
considerably, especially within treatment 3. Despite this pronounced increase in range, the choice 
between STRAT a NON-STRAT turns out to be irrelevant when both Y??S and PðW ¼ wÞ??S.

Using Stratified GPSM when Y??S and PðW ¼ wÞ??S did tend to have the best coverage of any of 
the three methods; however, the gain in efficiency is now almost inconsequential. The relative 
improvement in MSE between STRAT and NON-STRAT has fallen to below 5%. All methods are 
still unbiased, though, indicating you are no worse off if you did use Stratified GPSM when the 
underlying relationship between the strata and the response or propensities did not support doing so. 
Unsurprisingly, Simulation Setting 3 is the closest STRAT and RAND have come to mimicking the 
results of each other as demonstrated in the results in Table 6.

4.4. Investigating the impact of the number of strata

In the above simulation settings, performing GPSM on randomized strata did at least as good a job in 
estimating treatment effect contrasts as did performing GPSM with no strata. In some instances, 
coverage and variance properties improved when implementing RAND. At face value, this would 
seem counter-intuitive, as how could adding random noise improve variability and coverage? One 
hypothesis is the random stratification is functioning as a make-shift caliper function, creating de facto 

Table 5. Population share and average response by treatment and strata for Setting 3.

% of Population Average Response

Strata W = 1 W = 2 W = 3 Total W = 1 W = 2 W = 3 Total

S = 1 11.8% 11.0% 8.1% 30.9% 3.935 7.902 5.341 5.716
S = 2 13.1% 14.4% 10.6% 38.1% 5.415 10.286 8.263 8.044
S = 3 9.8% 12.0% 9.1% 30.9% 6.695 12.660 11.501 10.427
Total 34.7% 37.4% 27.8% 100.0% 5.272 10.346 8.473 8.061

Table 6. Treatment contrast results when Y??S and W??S.

Treatment Contrast Method Bias MSE Coverage (Naive) Coverage (Corrected)

τð1; 2Þ ¼ STRAT 0.016 0.025 96.5% 94.2%
3.98 NON-STRAT 0.005 0.026 97.3% 93.4%

RAND 0.012 0.026 97.3% 93.1% 

τð1; 3Þ ¼ STRAT 0.018 0.037 98.8% 96.5%
1.51 NON-STRAT (0.000) 0.039 98.7% 96.6%

RAND 0.018 0.038 99.1% 97.0%

τð2; 3Þ ¼ STRAT 0.002 0.067 97.3% 95.6%
−2.46 NON-STRAT (0.005) 0.069 98.0% 96.1%

RAND 0.006 0.069 97.7% 95.7%
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constraints on the max distance between two matched points. As the number of available matches 
decreases, the limits of the observed covariate space decreases as well (or more accurately is split over 
multiple strata). By randomly assigning units into K strata, the researcher is effectively pruning ð1 �
1=KÞ � 100% randomly and taking the average result of doing so over K non-overlapping sets.

Unlike the random pruning effect on PSM discussed by King and Nielsen (2019), randomly 
stratified GPSM still retains all treated and control units. However, it could be argued that within 
each random strata, the results in Simulation Settings 1–3 could simply be experiencing the initial 
decrease in bias and variance King and Nielson observed prior to the point where a CRT was 
approximated. To examine the effect of randomized strata on GPSM, we conduct a secondary 
simulation analysis varying the number of randomized strata and examining the distribution of 
distances between matched pairs.

To construct our data for the simulation we let X1 and X2 be independent random variables distributed 
Nð0; 1Þ. As our interest in this secondary simulation is in the variation of S ¼ f1; . . . ;Kg and not 
W ¼ f1; . . . ;Tg, we will let T ¼ 2 and draw W,BinomialðϕÞ and ϕ ¼ logit� 1ðX1 þ X2Þ. Response 
Y ¼ X1 � X2 þW, and strata are randomly assigned with equal probability PrðS ¼ sÞ ¼ 1=K. We vary 
K 2 f1; 2; 3; 5; 10g. Note that K ¼ 1 is the same as non-stratified GPSM. We construct data sets of n ¼ 500 
repeatedly for 5; 000 simulations. Results for bias and average covariate distance (the absolute Euclidean 
distance in the covariate space between matched units) are in Figure 1.

What becomes quickly apparent is that as the number of random strata increases so too does 
the bias. Likewise, as the number strata increases, so too does the average distance between 
observations in a matched pair but at a slower rate than the bias. At K = 3 (the number of strata 
used in our prior simulation results), the true value of τð1; 2Þ is still contained within the inter- 
quartile range of the distribution; however, the covariate distance distributions is mostly 
unchanged from K = 1 to K = 3. Compare this to K = 10 where the IQR no longer contains 
the true value of tau and the distribution of distances has shifted noticeably upwards. Figure 1 

Figure 1. Treatment contrast estimate and covariate distance distributions when conducting GPSM with random strata. Left: Boxplot 
of treatment contrast estimates by strata. Black line represents true value of τ. Right: Boxplot of average covariate distance of 
matched pairs by strata

Table 7. Frequency chart by strata and percentile for the occurrence that the 
covariate distance for matches under non-stratified GPSM was greater than for 
randomly stratified GPSM.

Percentile K = 2 K = 3 K = 5 K = 10

90th 48.9% 46.9% 45.2% 39.1%
75th 45.6% 44.1% 40.2% 30.6%
50th 42.8% 39.2% 31.9% 20.2%
25th 38.7% 34.3% 26.4% 13.9%
10th 36.7% 33.3% 23.3% 10.5%
Average 43.0% 39.0% 32.7% 19.1%
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suggests that we should expect bias to increase as additional random strata are introduced but 
the difference in estimates might not be evident in lower strata counts. Conversely, it does not 
immediately suggest a rationale for the decreases in variance observed in the simulations 
comparing STRAT, NON-STRAT, and RAND.

To identify an underlying cause for the decrease in variance for randomly stratified GPSM over 
non-stratified GPSM, we instead have to examine the within-sample differences of the covariate 
distance distributions. Table 7 displays the percent of simulations in which the covariate distance 
between matched units was greater for NON-STRAT than RAND.

As is suggested by Figure 1, on average, the covariate distance for non-stratified GPSM is shorter than for 
randomly stratified GPSM. What is interesting is that the superiority of NON-STRAT over RAND is not 
distributed evenly. At higher percentiles (as measured by covariate distance) even K = 10 strata has shorter 
covariate distances nearly 40% of the time. The fact that the upper tail of the distance distribution is 
preserved longer than the lower tail gives credence to the intuition that random strata may be mimicking the 
random pruning phenomena described in King and Nielsen (2019). Random strata are throwing out some 
of the worst matches non-stratified GPSM would select. Eventually, though, the effect on bias of accepting 
lower quality matches overcomes the gain from generating shorter-distance matches on the strata-pruned 
observations.

Comparatively, if conducting the same analysis with a relevant stratifying variable, the increase in 
bias is not observed, and the average covariate distance between matched units decreases with 
increasing strata. Figure 2 shows the simulation results of same conditions, except here, S is derived 
by the k-quantile function over X1. K ¼ 1 represents no stratification. K ¼ 2 represents constraining 
matches above or below the median of X1. Similarly, for K 2 f3; 5; 10g representing constraining 
matches within thirds, quintiles, and deciles respectively along X1.

Even at K ¼ 10 strata, the true value of τ is within the center-mass of the distribution; however, bias is 
starting to increase slightly. Recall though n ¼ 500, which may not allow a sufficient number of treated or 
control units within each strata if over-coarsened. At such a point, there may be better (nearer) matches just 
on the other side of the strata boundary than within a sparsely populated strata. Repeating the simulation 
with larger sample size caused the apparent increase in bias to disappear. The steady decrease in covariate 
distance also indicates better balance among covariates with higher strata values, though the decrease in 
covariate distance is diminishing.

5. Application of stratified GPSM on real-world data

In this section, we illustrate the application of stratified GPSM in a real-world data application. We elect to 
utilize four years of the U.S. Center for Disease Control’s National Health and Nutrition Examination 
Survey (NHANES) to examine the effect of the number of children in a household has on an individual’s 

Figure 2. Treatment contrast estimate and covariate distance distributions when conducting GPSM stratified by k quantiles of X1. 
Left: Boxplot of treatment contrast estimates by strata. Black line represents true value of τ. Right: Boxplot of average covariate 
distance of matched pairs by strata
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systolic blood pressure (SBP). Chronic stress has long been associated with increased blood pressure 
(Kulkarni et al. 1998; Spruill et al. 2019), and so too has the link between parenting and increased stress 
(Berry and Jones 1995; Holly et al. 2019). In all of this literature, the causal relationships are admittedly 
nuanced. The uncertainty is compounded in the parenting stress literature with the need to introduce 
measures of stress that themselves required validation. Suppose a researcher was interested in using SBP as 
a biomarker for stress (instead of using a questionnaire) to circumvent the measurement/validation concern 
and wanted to use the demographic and laboratory in the NHANES data to control for other factors that 
may influence stress. The NHANES data does not have a continuous variable for the number of children in 
a household and instead truncates the upper-tail, leading to a categorical view of the treatment variable. We 
demonstrate how we can still investigate the question of interest via stratified GPSM, as the method can 
address the multiple treatment levels derived from the NHANES data while also incorporating the available 
covariates and stratifying variables.

To begin, we combine the two most recent, complete NHANES data sets, which collectively span the 
survey years 2015–2018. We construct the treatment variable by recombining the truncated variables for 
household young child count and household youth count variables into a single variable W 2
fNone;One;Multipleg corresponding to how many children ages 0–17 are in the household. For conve
nience, we will refer to our treatment as child count. The response Y is directly obtained as the SBP lab value. 
Survey and lab values for general health satisfaction, waist circumference, cholesterol, liver function, BMI, 
and age are obtained to construct the covariate space X. Respondent’s data for marital status (Smarital), 
insurance type (Spayer), race (Srace), and weight group (Sweight) are extracted to be used as potential stratifying 
variables. A complete listing of variables and derivations (where applicable) is provided in the appendix.

For each potential strata variable S 2 fSrace; Smarital; Sweight; Spayerg we conduct Stratified GPSM and 
compare its treatment contrast estimates and variances to what would be obtained via non-stratified GPSM 
and via pairwise PSM. Recall, pairwise estimation restricts analysis only to the sub-population actually 
treated with either treatment in the underlying contrast and not the total population as is the case with 
STRAT and NON-STRAT. Direct comparisons should not be made between PAIRWISE and the other two 
methods; however, due to the ubiquity of PAIRWISE estimation and because the population versus sub- 
population nuance may sometimes be missed in applied situations, we still include PAIRWISE as 
a juxtaposing method.

We restrict our analysis each time to respondents where Y , W, and S are all observed. To ensure the 
STRAT results are fairly compared to NON-STRAT and PAIRWISE results using the same data, the 
deletion of records missing Y , W, or the selected S at the start of each comparing analysis. This does cause 
the treatment contrast and variance estimates for NON-STRAT and PAIRWISE to differ slightly depending 
on the stratifying variable utilized by STRAT; however, the effect is minimal. Missing values for covariates 
are obtained via mean imputation. Generalized propensity scores were estimated via a multinomial model 
using the selected demographic and lab value covariates as predictors.

In Table 8, we can see the treatment contrasts vary depending on the choice of strata. Graphical 
depictions of the table’s data are available in the appendix. Against expectations, the effect of child count 
on SBP consistently reported higher SBP for individuals with no children than with one or multiple children. 
Admittedly the treatment contrast sizes are small. For scale, prior analysis of NHANES data has shown 
a 10 mm Hg increase in SPB increased the risk of cardiovascular mortality among prehypertensive adults by 
an odds ratio of 2.11 (Greenberg 2006), so a treatment contrast of +~1 mm Hg is unlikely to be medically 
relevant. Nonetheless, stratified GPSM was able to identify one significant contrasts that went otherwise 
undetected by NON-STRAT and PAIRWISE. When stratifying on insurance type, moving from no 
children to one child in the household significantly decreased respondents’ average SBP (the same effect 
would be significant at the α ¼ 0:1 level for marital status).

Taking aside medical relevance, we also see a pattern emerge similar to the results in Section 4.4. In most 
instances stratifying decreases the variance of treatment contrasts. This is true for all contrasts for insurance 
type. Conversely, stratifying on race increased variance more times than it decreases. Recall from Section 4.4 
that stratifying on random noise is expected to increase bias and variance as the amount of noise increases. 
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Because stratifying on race increases variance over non-stratified GPSM, it should be assumed that it is 
contributing little to no information for estimating the propensity score or response and can be discarded in 
favor on the available non-stratified GPSM estimate.

Finally, of narrative interest are the results when stratifying by insurance type. The variable Spayer 
categorizes respondents into having commercial, government, or no insurance. Because in the United 
States, commercial insurance is typically obtained through an employer, whereas government insurance is 
typically extended in response to financial need (Medicaid) or age (Medicare), the single stratifying variable 
Spayer contains information relating to a wider range of latent covariates (income, age, access to healthcare, 
etc.). It is no surprise then that insurance has the largest changes between NON-STRAT and STRAT for 
both the treatment contrasts and variance estimates. Full comparisons of covariate balance pre/post- 
matching are available in the Appendix.

6. Conclusions

In this article we show how GPSM can be easily extended to formally incorporate constraining pretreatment 
strata, allowing GPSM to better approximate a blocked randomized trial. We show how the estimation of 
the GPSM variance is minimally affected when switching to stratified GPSM but through simulation study 
show how if selected strata are informative of treatment assignment that stratified GPSM is more efficient 
than non-stratified GPSM. From the results where Y??S and W??S and the investigation of random 
stratification we illustrate how constraining matches to non-relevant strata may not pose a risk to bias or 
variance when the number of strata levels are small, but also how the risk increases as the number of strata 
levels increases. Because of how easily stratified GPSM can be rerun to generate non-stratified GPSM results 
(by providing a strata variable with a single level), if there is any prior uncertainty about the strength of 
association between a chosen strata and treatment assignment we recommend researchers obtain results for 
both stratified and non-stratified GPSM to ensure efficiency is being improved by the strata’s inclusion. 
Finally, we demonstrate how stratified GPSM can be deployed in a real-world data setting to identify 
treatment contrasts non-stratified GPSM may overlook.

Due to stratified GPSM’s ability to handle multiple treatment levels and emulate a blocked randomized 
design used in many clinical trials, it would be a natural extension to consider GPSM in the context of 
ANCOVA testing. Because stratified GPSM has forced matches within strata, any categorical pre-treatment 
variables would be balanced by design, leaving only continuous variables left to balance. Recent draft 
guidance from the United States Food and Drug Administration recommends expanding ANCOVA’s 
usage within randomized trials (Center for Drug Evaluation and Research 2019), and Wang et al. (2019) 
have found ANCOVA to be consistent for estimating treatment effect estimates in randomized clinical trials 
(even when the ANCOVA model is misspecified). It may be possible for the benefits of ANCOVA testing to 
be applicable within the emulated randomized trials generated by stratified-GPSM. Yang and Kim (2019) 
and Yang and Kim (2020) considered the prognostic score instead of the propensity score in matching. 
Additionally, Yang and Zhang (2022); Zhang et al. (2021) have proposed a double score matching (DSM) 
algorithm that combines propensity score and prognostic score estimates to improve the efficiency of the 
propensity score. If DSM can be extended to work with GPS, stratified GPSM may prove to be a special case 
of DSM. Either way the integration of the prognostic scores into the double score may function similarly to 
stratified GPSM and allow for ANCOVA testing via DSM. Further work to confirm the possibility of 
applying ANCOVA in either stratified or prognostic score-supported GPSM is interesting and will be 
investigated in the future.

As a closing comment and recommendation, we advise researchers to be aware stratified GPSM still 
relies on a correctly specified propensity score model, so some of the critiques of traditional PSM on 
binary treatments from King and Nielsen (2019) are still not addressed. We would direct researchers to 
Wang (2020) where a broader set of recommendations is provided for using common propensity 
score-based matching methods in clinical practice. In their listing, stratified GPSM provides a means 
for incorporating their final two suggestions and does so while also extending to multiple treatments. 
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We hope our findings are useful for researchers and get them closer to being able to emulate the 
clinical trials they would have constructed if only using observational data had been avoidable. 
Moreover, like most matching approaches, the proposed matching estimator requires all confounders 
to be measured, which however is not verifiable empirically. In the future, we will develop sensitivity 
analysis (Yang and Lok 2018) for the stratified GPSM framework to assess the robustness of the study 
conclusion to the key unverifiable assumptions.

Notes

1. Data available at: https://wwwn.cdc.gov/nchs/nhanes/Default.aspx
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A1 Appendix

A1.1 Improvement in variance of stratified GPSM over non-stratified GPSM

To show that the stratified GPSM estimator is more efficient than the non-stratified GPSM, we will compare their 
asymptotic variances. First, we write 

σ2
STRATðwÞ ¼ EX;S �μðw; pðwjXiÞ; SiÞ � τðwÞf g

2� �

þ EX;S �σ2ðw; pðwjXiÞ; SiÞ � 3=ð2pðwjXiÞÞ � pðwjXiÞ=2f g
� �

þ �σ2ðw; pðwjXiÞ; SiÞ � �σ2ðw; pðwjXiÞ; SiÞ

¼ EX;S �μðw; pðwjXiÞ; SiÞ � τðwÞf g
2
þ �σ2ðw; pðwjXiÞ; SiÞ

� �

þ EX;S �σ2ðw; pðwjXiÞ; SiÞ � 3=ð2pðwjXiÞÞ � pðwjXiÞ=2 � 1f g
� �

¼ V YðwÞf g þ EX;S �σ2ðw; pðwjXiÞ; SiÞ � 3=ð2pðwjXiÞÞ � pðwjXiÞ=2 � 1f g
� �

: (A1) 

Similarly it can be shown 

σ2
NON� STRATðwÞ ¼ V YðwÞf gþX;S �σ2ðw; pðwjXiÞÞ � 3=ð2pðwjXiÞÞ � pðwjXiÞ=2 � 1f g

� �
: (A2) 

The first terms are the same between equations (A1) and (A2), and due to the choice to model the GPS at the population 
level instead of within each strata, so too are the last terms. By assumption �σ2fw; pðwjXiÞ; Sig � �σ2fw; pðwjXiÞg implies 
σ2

STRATðwÞ � σ2
NON� STRATðwÞ.
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A1.2 NHANES Data Descriptions and Derivations

Table A1 catalogs the variable, usage, description, and derivation of each variable used in the analysis of child count on 
systolic blood pressure. Variables in all capital letters in the Source/Derivation column indicate variable names as they 
appear in the publicly available NHANES data.1

Table A1: Description and Derivations of NHANES variables used in the analysis of the effect of child count on 
systolic blood pressure.

Variable Use Description Source/Derivation

bp_sys Response Systolic blood pressure in mm Hg BPXSY1
Child_Group Treatment Treatment indicator for if a household has child_count=DMDHHSZA+DMDHHSZB;

0, 1, or 2+ children living in the household 
who are ages 0-17

if child_count=0 then Child_group=’No Child’;

else if Child_count=1 then Child_group=’1 Child’;
else if Child_count≥2 then Child_group=’2+ Child’;

health_status Covariate Self-assessed satisfaction of current health (5 
point scale)

if 0<HSD010≤5 then health_status=HSD010;

waist Covariate Waist circumference in cm BMXWAIST
liv_alt Covariate Alanine Aminotransferase (ALT) in U/L. ALT is 

a common
LBXSATSI

biomarkder of liver function with higher 
levels indicative of

worse liver function.
chol_tot Covariate Total Cholesterol in mg/dL. Cholesterol is 

a common
LBXSCH

biomarker of cardiac health with higher 
leverls

indicative of worse cardiovascular disease 
prognosis.

BMI Covariate Body mass index BMXBMI
age Covariate Chronological age in years RIDAGEYR
marital_status Strata Categorization of marital status into Married/ 

Cohabitating,
if year=2018 then do;

Widowed/Divorced/Separated, Never 
Married, or Other if DMDHRMAZ = 1 then marital_status=’Married/ 

Cohab’;

else if DMDHRMAZ = 2 then marital_status=’Widow/ 
Div/Sep’;

else if DMDHRMAZ = 3 then marital_status=’Never 
Married’;

else if DMDHRMAZ > 3 then marital_status=’Other’;
end;

if year=2016 then do;
if DMDHRMAR = 1 or DMDHRMAR=6 then 

marital_status=’Married/Cohab’;
else if DMDHRMAR = 2 or DMDHRMAR=3

or DMDHRMAR=4 then marital_status=’Widow/Div/ 
Sep’;

else if DMDHRMAR = 5 then marital_status=’Never 
Married’;

else if DMDHRMAR > 6 then marital_status=’Other’;

end;
payer_type Strata Categorization of source of health insurance 

into
if hiq011=2 then payer_type=’No Ins’;

commercial, government, and no insurance else if HIQ031A=14 THEN payer_type=’Comm’;

(Continued)
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(Continued).

Variable Use Description Source/Derivation

else if HIQ031B=15 THEN payer_type=’Govt’;

else if HIQ031C=16 THEN payer_type=’Govt’;
else if HIQ031D=17 THEN payer_type=’Govt’;
else if HIQ031E=18 THEN payer_type=’Govt’;

else if HIQ031F=19 THEN payer_type=’Govt’;
else if HIQ031H=21 THEN payer_type=’Govt’;

else if HIQ031I=22 THEN payer_type=’Govt’;
race Strata Reported race of survey respondent if RIDRETH1 = 1 then race=’Mex.Amer’;

else if RIDRETH1 = 2 then race=’Oth.Hisp’;
else if RIDRETH1 = 3 then race=’White’;
else if RIDRETH1 = 4 then race=’Black’;

else race=’Other’;
weight_group Strata Categorization of BMI into Under/Normal 

weight,
if MISSING(bmi) then weight_group=””;

Overweight, and Obese else if 0≤bmi<25 then weight_group=’1.UNDER/ 
NORMAL’;

else if bmi<30 then weight_group=’2.OVER’;
else if bmi≥30 then weight_group=’3.OBESE’;
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A1.4 NHANES Treatment and Variance Results

Depictions of the treatment contrast estimates, variances, and 95% confidence intervals for the effect of child count on 
respondent’s SPB broken out by stratifying variable, estimation method, and treatment contrast are depicted in Figure 
A1 – A3.

Figure A2. Variance estimates for the effect of child count on respondent’s SPB broken out by stratifying variable, estimation 
method, and treatment contrast. Rows denote treatment contrast, and columns denote stratifying variable.

Figure A1. Treatment contrast estimates for the effect of child count on respondent’s SPB broken out by stratifying variable, 
estimation method, and treatment contrast. Rows denote treatment contrast, and columns denote stratifying variable.
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Figure A3. Treatment contrast and 95% confidence interval (CI) for the effect of child count on respondent’s SPB broken out by 
stratifying variable, estimation method, and treatment contrast. Rows denote treatment contrast, and columns denote stratifying 
variable.
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